Name	CWID
Name	CWID

Midterm Exam

March 10th, 2016 1:50-3:05

CS520 - Data Integration, Warehousing, and Provenance

Please le	eave this e	mpty!				
1.1	1.2		1.3	1.4	Sun	1

Instructions

- Try to answer all the questions using what you have learned in class. Keep hard questions until the end.
- When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example instance!
- The exam is closed book and closed notes! No calculator, smartphones, or similar allowed!

Consider the following database schema and example instance about music albums:

product

pid	version	title	category
1	8.3c	VCleaner	antivirus
1	6.0	VCleaner	antivirus
2	0.3	EncM	music
3	0.4	EncM	musc

supporter

name	salary	location
Bob	40,000	Chicago
Alice	54,000	Austin

bug

$\mathbf{bugNumber}$	product	version	description	status
1	1	8.3c	Does not start on windows	resolved
2	1	6.0	Crashes after scan	open
3	2	0.4	Does not play mp3	open

bugAssignment

name	bug
Bob	1
Bob	2
Alice	2

Hints:

- Attributes with black background form the primary key of a relation (e.g., name for relation supporter)
- The attributes *product* and *version* of relation *bug* are a foreign key to relation *product*.
- The attribute name of relation bugAssignment is a foreign key to relation supporter.
- ullet The attribute bug of relation bugAssignment is a foreign key to relation bug.

Part 1.1 Datalog (Total: 25 Points) Recall that Datalog applies set semantics. Question 1.1.1 (4 Points)

Write a Datalog program that returns product titles (attribute title of relation product).

Question 1.1.2 (6 Points)

Write a **Datalog program** that returns the description and status of bugs for product "VCleaner".

Question 1.1.3 (7 Points)	
Question 1.1.3 (7 Points) Write a Datalog program that returns all products (attribute title) that office (attribute category).	belong to category antivirus or
Question 1.1.4 (8 Points)	
Write a Datalog program that returns the names of supportes that are (attribute status).	not assigned to any open bugs

Part 1.2 Constraints (Total: 30 Points)

Question 1.2.1 Expressing Constraints in First-Order Logic (15 Points)

Recall the logical representation of constraints introduced in class. Write down the logical definition for the following constraints over the example schema:

- ullet The foreign key from attributes product and version of relation bug to relation product.
- ullet The primary key of relation product
- The following functional dependency for relation $supporter: location \rightarrow salary$

Spring 2016: Page 5 (of 12)

Question 1.2.2 Creating Denial Constraints (15 Points)

Create denial constraints over the example schema based on the following descriptions.

- $\bullet\,$ All supporters earn less than \$20,000.
- Resolved bugs (attribute status) should not be assigned to any supporter
- Each bug is assigned to at most one supporter

Part 1.3 Query Containment And Equivalence (Total: 27 Points)

Question 1.3.1 (27 Points)

Consider the 3 queries shown below. Check all possible containment relationships. If there exists a containment mapping from Q_i to Q_j then write down the mapping.

 $\begin{aligned} Q_1(X,Y) &: -R(X,X), R(X,Y). \\ Q_2(X,Y) &: -R(X,X), R(Y,Y). \\ Q_3(X,Y) &: -R(X,X), R(Z,Y). \end{aligned}$

Part 1.4 Virtual Data Integration (Total: 18 Points)

Question 1.4.1 (9 Points)

Check all correct statements below. You have to answer the question (incorrect blanks are considered errors)

- GLAV mappings can be expressed as tuple-generating dependencies.
- Both the inverse rule algorithm and the Minicon algorithm compute maximally contained rewritings.
- Maximally contained rewritings are independent of the query language used for expressing rewritings.
- If there exists a maximally contained rewriting for Q given a set of views then there has to exist an equivalent rewriting for a query Q using the same set of views.
- The open world assumption is the same as the closed world assumption.
- $Q_G(X): -Person(X,Y) \supseteq Q_L(X): -P(X,Y,Z)$ is a GAV mapping.

Question 1.4.2 (9 Points)

Rewrite the following query using the inverse rules algorithm.

$$Q(X, A, Y, B) : -G(X, A, Y, B)$$

The available views are:

$$V_1(X,Y) : -G(X, A, Y, B)$$

$$V_2(X, A) : -G(X, A, Y, B)$$

$$V_3(Y,B):-G(X,A,Y,B)$$

