
Name CWID

Final Exam

May 6th, 2016
10:30-12:30

CS520 - Data Integration,
Warehousing, and Provenance

Results

Please leave this empty!

1.1 1.2 1.3 Sum

Instructions
• Try to answer all the questions using what you have learned in class. Keep hard questions until the end.

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

• The exam is closed book and closed notes! No calculator, smartphones, or similar allowed!

Consider the following datawarehouse schema (star schema) and partial example instance. There is a single fact
table about calls and four dimension tables for the following dimensions:

• Time with four levels (year, month, day, hour)

• Location with three levels (state, city, zip)

• Customer with two levels (type, SSN)

• Provider with two levels (network, providerName)

callfacts
LID TID CID PID numCalls
1 4 1 1 15
2 1 5 2 10
100 1 76 4 22
.

customerDim
CID type SSN
1 premium 122-324-3454
1 standard 222-324-3454
.

timeDim
TID year month day hour
1 2015 1 1 1
2 2015 1 1 2
.
. . . 2016 5 6 23

locationDim
LID state city zip
1 Illinois Chicago 60616
2 Lousiana New Orleans 42345
.

providerDim
PID network providerName
1 CDMA Sprint
2 CDMA Verizon
3 GSM AT&T
4 GSM T-Mobile

DB - Spring 2016: Page 2 (of 21)

Hints:

• Attributes with black background form the primary key of a relation (e.g., PID for relation providerDim)

• Attributes LID, TID, PID, and CID in the fact table are foreign keys to the dimension tables

DB - Spring 2016: Page 3 (of 21)

Part 1.1 Data Warehousing (Total: 40 Points)

Recall that you should write all queries according to the schema and not according to the example instance.

Question 1.1.1 (6 Points)

Write an SQL query that returns the total number of calls in the database and also the number of calls per
year, per month, and per day.

Solution

SELECT sum (numCalls)
FROM c a l l f a c t s f NATURAL JOIN timeDim t
GROUP BY ROLLUP (year , month , day) ;

DB - Spring 2016: Page 4 (of 21)

Question 1.1.2 (6 Points)

Write an SQL query that returns the total number of calls made by premium customers on December 31st
(month 12, day 31) of 2015 in Chicago.

Solution

SELECT sum (numCalls)
FROM c a l l f a c t s f

NATURAL JOIN
(SELECT CID FROM customerDim WHERE type = ’premium ’) c
NATURAL JOIN
(SELECT TID FROM timeDime WHERE year = 2015 AND month = 12 AND day = 31) t
NATURAL JOIN
(SELECT LID FROM locat ionDim WHERE c i t y = Chicago) l

DB - Spring 2016: Page 5 (of 21)

Question 1.1.3 (7 Points)

Write an SQL query that returns year and month pairs during which no calls where made using the Sprint
provider. For example, if there where no Sprint calls made in January 2016 then (2016,1) should be in the
result.

Solution

SELECT DISTINCT year , month
FROM timeDim t1
WHERE NOT EXISTS (SELECT ∗

FROM c a l l f a c t s f NATURAL JOIN timeDim t2
WHERE t2 . year = t1 . year AND t2 . month = t1 . month)

if students assume that every time unit has an entry then this is also correct:

SELECT DISTINCT year , month
FROM timeDim t1
WHERE NOT EXISTS (SELECT ∗

FROM c a l l f a c t s f NATURAL JOIN timeDim t2
WHERE t2 . year = t1 . year AND t2 . month = t1 . month AND numCalls != 0)

DB - Spring 2016: Page 6 (of 21)

Question 1.1.4 (7 Points)

Write an SQL query that returns the name of the provider with the most calls.

Solution

SELECT providerName
FROM (SELECT providerName ,

sum (numCalls) OVER (PARTITION BY providerName) AS t t l
FROM c a l l f a c t s f NATURAL JOIN providerDim p)

ORDER BY t t l DESC
LIMIT 1

DB - Spring 2016: Page 7 (of 21)

Question 1.1.5 (7 Points)

Write an SQL query that returns for each provider a rolling sum for the total number of calls per month in
2015. For example, if there where 20 Sprint calls in January 2015 and 30 Spring calls in February 2015 then
the rolling sum for January would be 20 and the one for February would be 50.

Solution

SELECT DISTINCT providerName , month ,
sum (numCalls) OVER (PARTITION BY providerName ORDER BY month)

FROM c a l l f a c t s f NATURAL JOIN providerDim p NATURAL JOIN timeDime t
WHERE year = 2015 ;

DB - Spring 2016: Page 8 (of 21)

Question 1.1.6 (7 Points)

Write an SQL query that returns for each provider and year the name of the city with the most and the name
of the city with the least amount of calls. For example, a result for Sprint and 2015 may be (Sprint, 2015,
Chicago, New York) if Chicago had the most calls on the Sprint provider network during 2015 and New York
had the least.

Solution

SELECT DISTINCT providerName , year ,
f i r s t_va l u e (c i t y) OVER (PARTITION BY providerName , year

ORDER BY t t l
ROWS UNBOUNDED PRECEDING) ,

l a s t_va lue (c i t y) OVER (PARTITION BY providerName , year
ORDER BY t t l
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

FROM (SELECT providerName , year , c i ty , sum (numCalls) AS t t l
FROM c a l l f a c t s f

NATURAL JOIN timeDim t
NATURAL JOIN locat ionDim l
NATURAL JOIN providerDim p

GROUP BY providerName , year , c i t y) sub

DB - Spring 2016: Page 9 (of 21)

Part 1.2 Big Data (Total: 30 Points)

Question 1.2.1 Basic Concepts (2.5 Points)

q Any algorithm can be efficiently parallelized and distributed

n The pay-as-you-go integration approach can lead to repeated efforts (e.g., an input dataset is cleaned
once for each analysis)

q The pay-as-you-go integration approach has the advantage that data can be processed in a more timely
fashion because no schema and ETL process needs to be designed upfront

n Load balancing ensures that computational load is distributed evenly across machines in a cluster

q Fault tolerance is more important for smaller clusters than for larger clusters

Question 1.2.2 Distributed file systems (2.5 Points)

n In HDFS there is a single node storing the file system metadata, but many nodes storing the data (file
content)

q HDFS provides a random access interface for writing to an existing file, i.e., we can overwrite any part
of an existing file in HDFS

n Fault tolerance in HDFS is achieved through replication

q Reads in HDFS are slower than writes

q In HDFS, clients only communicate with the name node, but never with any of the data nodes

Question 1.2.3 HDFS Block Size (4 Points)

Name two reasons for why HDFS only works well with large block sizes (e.g., 128MB).

Solution

• name node is bottleneck for metadata access and small blocks would result in large amounts of metadata

• sequential access to files for speed

DB - Spring 2016: Page 10 (of 21)

Question 1.2.4 HDFS Fault Tolerance (4 Points)

How does HDFS detect that a data node has crashed? Just name the mechanism that is used or describe it in
1-2 sentences.

Solution

• heartbeat messages that are send from data nodes to the name node

Question 1.2.5 MapReduce and Hadoop (4 Points)

q In Hadoop, after each map phase the results are written to HDFS

q The shuffle operation does not require any communication among the worker nodes

n The combiner operation can improve performance of a MR computation

q Data locality is not taken into account when a Map job is scheduled

q The user provided map function takes as input a key and a list of values

n Map and Reduce are higher-level functions that take as input a collection and a user defined function

q More complex computations in MR can be written by connecting multiple MR jobs into a more complex
workflow

q No more than one map job will run on each node of a Hadoop cluster

DB - Spring 2016: Page 11 (of 21)

Question 1.2.6 (4 Points)

Describe in 2-3 sentences how Hadoop achieves fault tolerance.

Solution

Question 1.2.7 (4 Points)

Describe in 2-3 sentences how Spark achieves fault tolerance.

Solution

DB - Spring 2016: Page 12 (of 21)

Question 1.2.8 (5 Points)

When should we use a broadcast join and when a reduce join (partition join). Describe in 2-3 sentences.

Solution

DB - Spring 2016: Page 13 (of 21)

Part 1.3 Provenance (Total: 30 Points)

For the following the queries over the schema shown below, compute the provenance according to the following
provenance models for all their result tuples.

• Why-Provenance

• Minimal Why-Provenance

• Provenance Polynomials

Before presenting provenance, show the results for each query first and label the result tuples t1, t2, . . . , tn.
Consider the following database schema and instance:

location
lName city owner sizeSf

Windsor Castle Windsor Queen 40,000 l1
Big Ben London Public 3,500 l2

Stonehedge Amesbury Public 14,000 l3

account
witness suspect crimeId
Bob Peter 1 a1
Peter Bob 1 a2
Queen Bob 2 a3

crime
crimeId lName time type victim

1 Big Ben 10:30 murder Alice c1
2 Windsor Castle 11:00 theft Queen c2

DB - Spring 2016: Page 14 (of 21)

Question 1.3.1 (5 Points)

πsuspect(account)

Solution
Result relation:

suspect
Peter t1
Bob t2

Why provenance:

name
Peter {{a1}}
Bob {{a2}, {a3}}

Minimal Why provenance:

name
Peter {{a1}}
Bob {{a2}, {a3}}

Provenance Polynomials:

name
Peter a1
Bob a2 + a3

Question 1.3.2 (8 Points)

q = πtime,type,victim(crime >< σcity=Windsor(location))

Solution

DB - Spring 2016: Page 15 (of 21)

Result relation:

time type victim
11:00 theft Queen t1

Why provenance:

time type victim
11:00 theft Queen {{l1, c2}}

Minimal Why provenance:

time type victim
11:00 theft Queen {{l1, c2}}

Provenance Polynomials:

time type victim
11:00 theft Queen l1 × c2

Question 1.3.3 (8 Points)

q = ρp←witness(πwitness(account) ∪ πsuspect(account) ∪ πvictim(crime))

Solution

DB - Spring 2016: Page 16 (of 21)

Result relation:

p
Bob t1
Peter t2
Queen t3
Alice t4

Why provenance:

p
Bob {{a1}, {a2}, {a3}}
Peter {{a1}, {a2}}
Queen {{a3}, {c2}}
Alice {{c1}}

Minimal Why provenance:

p
Bob {{a1}, {a2}, {a3}}
Peter {{a1}, {a2}}
Queen {{a3}, {c2}}
Alice {{c1}}

Provenance Polynomials:

name
p

Bob a1 + a2 + a3
Peter a1 + a2
Queen a3 + c2
Alice c1

Question 1.3.4 (9 Points)

q = ρname←witness(πwitness(σsuspect=witness((πwitness,crimeId(account)./πsuspect,crimeId(account)))))

Solution

DB - Spring 2016: Page 17 (of 21)

Result relation:

name
Bob t1
Peter t2

Why provenance:

name
Bob {{a1, a2}}
Peter {{a1, a2}}

Minimal Why provenance:

name
Bob {{a1, a2}}
Peter {{a1, a2}}

Provenance Polynomials:

name
Bob a1 × a2
Peter a1 × a2

DB - Spring 2016: Page 18 (of 21)

DB - Spring 2016: Page 19 (of 21)

DB - Spring 2016: Page 20 (of 21)

DB - Spring 2016: Page 21 (of 21)

