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 1 CS520 - 1) Introduction 

2. Overview 

•  Topics covered in this part 
– Causes of Dirty Data 
– Constraint-based Cleaning 
– Outlier-based and Statistical Methods 
– Entity Resolution 
– Data Fusion 

2 CS520 - 1) Introduction 

2. Causes of “Dirty” Data 

•  Manual data entry or result of erroneous 
integration 
– Typos:  
•  “Peter” vs. “Pteer” 

– Switching fields 
•  “FirstName: New York, City: Peter” 

–  Incorrect information 
•  “City:New York, Zip: 60616” 

– Missing information 
•  “City: New York, Zip: “ 

3 CS520 - 1) Introduction 

2. Causes of “Dirty” Data 

•  Manual data entry or result of erroneous 
integration (cont.) 
– Redundancy:  
•  (ID:1, City: Chicago, Zip: 60616) 
•  (ID:2, City: Chicago, Zip: 60616) 

–  Inconsistent references to entities 
•  Dept. of Energy, DOE, Dep. Of Energy, … 

4 CS520 - 1) Introduction 

2. Cleaning Methods 

•  Enforce Standards 
– Applied in real world 
– How to develop a standard not a fit for this lecture 
– Still relies on no human errors 

•  Constraint-based cleaning 
– Define constraints for data 
– “Make” data fit the constraints 

•  Statistical techniques 
– Find outliers and smoothen or remove 
•  E.g., use a clustering algorithm 

5 CS520 - 1) Introduction 
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2. Overview 

•  Topics covered in this part 
– Causes of Dirty Data 
– Constraint-based Cleaning 
– Outlier-based and Statistical Methods 
– Entity Resolution 
– Data Fusion 

6 CS520 - 1) Introduction 

2.1 Cleaning Methods 

•  Constraint-based cleaning 
– Choice of constraint language 
– Detecting violations to constraints 
– Fixing violations (automatically?) 

7 CS520 - 1) Introduction 

2.1 Constraint Languages 

•  First work focused on functional dependencies 
(FDs) 

•  Extensions of FDs have been proposed to 
allow rules that cannot be expressed with FDs 
– E.g., conditional FDs only enforce the FD is a 

condition is met 
•  -> finer grained control, e.g., zip -> city only if country 

is US 

•  Constraints that consider master data 
– Master data is highly reliable data such as a 

government issued zip, city lookup table 
8 CS520 - 1) Introduction 

2.1 Constraint Languages (cont.) 

•  Denial constraints 
– Generalize most other proposed constraints 
– State what should not be true 
– Negated conjunction of relational and comparison 

atoms 

•  Here we will look at FDs mainly and a bit at 
denial constraints 
– Sometimes use logic based notation introduced 

previously 
9 CS520 - 1) Introduction 

8~x : ¬(�(~x))

2.1 Example Constraints 

10 CS520 - 1) Introduction 

Example:)Constraints)Languages)

C1: The zip code uniquely determines the city 
 
 
C2: Nobody should earn more than their direct superior 
 
 
C3: Salaries are non-negative 
 
 
 
 

SSN) zip) city) name) boss) salary)

333"333"3333# 60616# New#York# Peter# Gert# 50,000#

333"333"9999# 60615# Chicago# Gert# NULL# 40,000#

333"333"5599# 60615# Schaumburg# Gertrud# Hans# 10,000#

333"333"6666# 60616# Chicago# Hans# NULL# 1,000,000#

333"355"4343# 60616# Chicago# Malcom# Hans# 20,000#

2.1 Example Constraints 

11 CS520 - 1) Introduction 

Example:)Constraints)Languages)

C1: The zip code uniquely determines the city 
    - expressible as functional dependency 
 
C2: Nobody should earn more than their direct superior 
    - e.g., denial constraint 
 
C3: Salaries are non-negative 
    - e.g., denial constraint 
 
 
 

SSN) zip) city) name) boss) salary)

333"333"3333# 60616# New#York# Peter# Gert# 50,000#

333"333"9999# 60615# Chicago# Gert# NULL# 40,000#

333"333"5599# 60615# Schaumburg# Gertrud# Hans# 10,000#

333"333"6666# 60616# Chicago# Hans# NULL# 1,000,000#

333"355"4343# 60616# Chicago# Malcom# Hans# 20,000#
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2.1 Example Constraints 

12 CS520 - 1) Introduction 

Example:)Constraints)Languages)

C1: The zip code uniquely determines the city 
FD1: zip -> city 
 
 
C2: Nobody should earn more than their direct superior 
 
 
 
C3: Salaries are non-negative 
 
 
 

SSN) zip) city) name) boss) salary)

333"333"3333# 60616# New#York# Peter# Gert# 50,000#

333"333"9999# 60615# Chicago# Gert# NULL# 40,000#

333"333"5599# 60615# Schaumburg# Gertrud# Hans# 10,000#

333"333"6666# 60616# Chicago# Hans# NULL# 1,000,000#

333"355"4343# 60616# Chicago# Malcom# Hans# 20,000#
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2.1 Constraint based Cleaning 
Overview 
•  Define constraints 

•  Given database D 
– 1) Detect violations of constraints 
•  We already saw example of how this can be done using 

queries. Here a bit more formal 

– 2) Fix violations 
•  In most cases there are many different ways to fix the 

violation by modifying the database (called solution) 
– What operations do we allow: insert, delete, update 
– How do we choose between alternative solutions 

13 CS520 - 1) Introduction 

2.1 Constraint Repair Problem 

•  This would allow us to take any I’ 
– E.g., empty for FD constraints 

•  We do not want to loose the information in I 
(unless we have to) 

•  Let us come back to that later 

14 CS520 - 1) Introduction 

Given#set#of#constraints#Σ#and#an#database#instance#I#which#violates#the#
constraints#find#a#clean#instance#I’#so#that#I’#fulfills#Σ)

Defini>on:)Constraint)Repair)Problem)

2.1 Constraint based Cleaning 
Overview 
•  Study 1) + 2) for FDs 

•  Given database D 
– 1) Detect violations of constraints 
•  We already saw example of how this can be done using 

queries. Here a bit more formal 

– 2) Fix violations 
•  In most cases there are many different ways to fix the 

violation by modifying the database (called solution) 
– What operations do we allow: insert, delete, update 
– How do we choose between alternative solutions 

15 CS520 - 1) Introduction 

2.1 Example Constraints 

16 CS520 - 1) Introduction 

Example:)Constraints)

FD1: zip -> city 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

2.1 Example Constraints 

17 CS520 - 1) Introduction 

Example:)Constraint)Viola>ons)

FD1: zip -> city 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#
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2.1 Example Constraints 

18 CS520 - 1) Introduction 

Example:)Constraint)Viola>ons)

How to repair? 
 
Deletion: 
  - remove some conflicting tuples 
  - quite destructive 
 
Update: 
  - modify values to resolve the conflict 
  - equate RHS values (city here) 
  - disequate LHS value (zip) 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

2.1 Constraint based Cleaning 
Overview 
•  How to repair? 
•  Deletion: 
–  remove some conflicting tuples 
– quite destructive 

•  Update: 
– modify values to resolve the conflict 
– equate RHS values (city here) 
– disequate LHS value (zip) 

•  Insertion? 
– Not for FDs, but e.g., FKs 

19 CS520 - 1) Introduction 

2.1 Example Constraints 

20 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

Deletion: 
 
Delete Chicago or Schaumburg? 
 
Delete New York or the two Chicago tuples? 
   - one tuple deleted vs. two tuples deleted 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

2.1 Example Constraints 

21 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

Update equate RHS: 
 
Update Chicago->Schaumburg or Schaumburg->Chicago 
 
Update New York->Chicago or Chicago->New York 
   - one tuple deleted vs. two cells updated 
 
Update disequate LHS: 
 
Which tuple to update? 
What value do we use here? 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

2.1 Constraint based Cleaning 
Overview 
•  Principle of minimality 
– Choose repair that minimally modifies database 
– Motivation: consider the solution that deletes every 

tuple 

•  Most update approaches equate RHS because 
there is usually no good way to choose LHS 
values unless we have master data 
– E.g., update zip to 56423 or 52456 or 22322 … 

22 CS520 - 1) Introduction 

2.1 Detecting Violations 

•  Given FD A -> B on R 
– Recall logical representation 
– Forall X, X’: R(X) and R(X’) and A=A’ -> B=B’ 
– Only violated if we find two tuples where A=A’, 

but B != B’ 
–  In datalog 
•  Q(): R(X), R(X’), A=A’, B!=B’ 

–  In SQL 
SELECT EXISTS (SELECT * 
              FROM R x, R y 
         WHERE A=A’ AND B<>B’) 

23 CS520 - 1) Introduction 
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2.1 Example Constraints 

24 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)SQL)Viola>on)Detec>on)

Relation: Person(name,city,zip) 
 
FD1: zip -> city 
 
Violation Detection Query 
 
SELECT EXISTS (SELECT * 

      FROM Person x, Person y 
      WHERE x.zip = y.zip 
            AND x.city <> y.city) 

 
To know which tuples caused the conflict: 
 
SELECT * 
FROM Person x, Person y 
WHERE x.zip = y.zip 
      AND x.city <> y.city) 
 

2.1 Fixing Violations 

•  Principle of minimality 
– Choose solution that minimally modifies the 

database 
– Updates: 
•  Need a cost model 

– Deletes: 
•  Minimal number of deletes 

25 CS520 - 1) Introduction 

2.1 Constraint Repair Problem 

•  Cost metrics that have been used 
– Deletion + Insertion 

•  S-repair: minimize measure above under set inclusion 
•  C-repair: minimize cardinality 

– Update 
•  Assume distance metric d for attribute values 

26 CS520 - 1) Introduction 

Given#set#of#constraints#Σ#and#an#database#instance#I#which#violates#the#
constraints#find#a#clean#instance#I’#(does#not#violate#the#constraints)#with#
cost(I,I’)#being#minimal)

Defini>on:)Constraint)Repair)Problem)(restated))

�(I, I 0) = (I � I 0) [ (I 0 � I)

2.1 Cost Metrics 

•  Deletion + Insertion 
 
•  S-repair: minimize measure above under set inclusion 
•  C-repair: minimize cardinality 

•  Update 
•  Assume single relation R with uniquely identified tuples 
•  Assume distance metric d for attribute values 
•  Schema(R) = attributes in schema of relation R 
•  t’ is updated version of tuple t 
•  Minimize:  

27 CS520 - 1) Introduction 

�(I, I 0) = (I � I 0) [ (I 0 � I)

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Cost Metrics 

•  Update 
•  Assume single relation R with uniquely identified tuples 
•  Assume distance metric d for attribute values 
•  Schema(R) = attributes in schema of relation R 
•  t’ is updated version of tuple t 
•  Minimize:  

•  We focus on this one 
•  This is NP-hard 
– Heuristic algorithm 

28 CS520 - 1) Introduction 

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Naïve FD Repair Algorithm 

•  FD Repair Algorithm: 1. Attempt 
– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint 
– For each pair of tuples t and t’ that violate the 

constraint 
•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

29 CS520 - 1) Introduction 
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2.1 Constraint Repair 

30 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

t1 and t4: set t1.city = Chicago 
t1 and t5: set t1.city = Chicago 
t2 and t3: set t2.city = Schaumburg 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

t1#
t2#
t3#
t4#
t5#
#

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 1. Attempt 
– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint 
– For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 
•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– Our updates may cause new violations! 

31 CS520 - 1) Introduction 

2.1 Constraint Repair 

32 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

t4 and t1: set t4.city = New York 
t1 and t5: set t1.city = Chicago 
t2 and t3: set t2.city = Schaumburg 
 
Now t1 and t4 and t4 and t5 in violation! 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

t1#
t2#
t3#
t4#
t5#
#

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 
–  I’ = I 
– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint 
– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 
•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– 3) If we changed I’ goto 1) 

33 CS520 - 1) Introduction 

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 
–  I’ = I 
– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint 
– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 
•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– 3) If we changed I’ goto 1) 
•  May never terminate 

34 CS520 - 1) Introduction 

2.1 Constraint Repair 

35 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

t4 and t1: set t4.city = New York 
t1 and t5: set t1.city = Chicago 
 
Now t1 and t4 and t4 and t5 in violation! 
 
t4 and t1: set t1.city = New York 
T5 and t4: set t4.city = Chicago 
 
repeat 
 
 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

t1#
t2#
t3#
t4#
t5#
#
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2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 
– Even if we succeed the repair may not be 

minimal. There may be many tuples with the 
same X values 
•  They all have to have the same Y value 
•  Choice which to update matters! 

36 CS520 - 1) Introduction 

2.1 Constraint Repair 

37 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

Cheaper: t1.city = Chicago 
Not so cheap: set t4.city and t5.city = New York 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

t1#
t2#
t3#
t4#
t5#
#

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 
– Equivalence Classes 
•  Keep track of sets of cells (tuple,attribute) that have to 

have the same values in the end (e.g., all Y attribute 
values for tuples with same X attribute value) 

•  These classes are updated when we make a choice 
•  Choose Y value for equivalence class using minimality, 

e.g., most common value 
– Observation 
•  Equivalence Classes may merge, but never split if we  
only update RHS of all tuples with same X at once 
•  -> we can find an algorithm that terminates 

38 CS520 - 1) Introduction 

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 
– Initialize:  
•  Each cell in its own equivalence class 
•  Put all cells in collection unresolved 

– While unresolved is not empty 
•  Remove tuple t from unresolved 
•  Pick FD X->Y (e.g., random) 
•  Compute set of tuples S that have same value in X 
•  Merge all equivalence classes for all tuples in S and 

attributes in Y 
•  Pick values for Y (update all tuples in S to Y) 

39 CS520 - 1) Introduction 

2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 
•  Algorithm using this idea: 
– More heuristics to improve quality and 

performance 
•  Cost-based pick of next EQ’s to merge 

– Also for FKs (Inclusion Constraints) 

 A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification 

40 CS520 - 1) Introduction 

2.1 Consistent Query Answering 

•  As an alternative to fixing the database which 
requires making a choice we could also leave it 
dirty and try to resolve conflicts at query time 
– Have to reason over answers to the query without 

knowing which of the possible repairs will be 
chosen 

– Intuition: return tuples that would be in the query 
result for every possible repair 

 

41 CS520 - 1) Introduction 
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2.1 Constraint Repair 

42 CS520 - 1) Introduction 

Heterogeneity#

System# Structural# SemanNc#

SoOware# Interface# Datamodel# Schema# Naming# IdenNty#
Value#

conflicts#

Example:)Constraint)Repair)

Cheaper: t1.city = Chicago 
Not so cheap: set t4.city and t5.city = New York 

SSN) zip) city) name)

333"333"3333# 60616# New#York# Peter#

333"333"9999# 60615# Chicago# Gert#

333"333"5599# 60615# Schaumburg# Gertrud#

333"333"6666# 60616# Chicago# Hans#

333"355"4343# 60616# Chicago# Malcom#

t1#
t2#
t3#
t4#
t5#
#

2. Overview 

•  Topics covered in this part 
– Causes of Dirty Data 
– Constraint-based Cleaning 
– Outlier-based and Statistical Methods 
– Entity Resolution 
– Data Fusion 

43 CS520 - 1) Introduction 

2.2 Statistical and Outlier 

•  Assumption 
– Errors can be identified as outliers 

•  How do we find outliers? 
– Similarity-based: 
•  Object is dissimilar to all (many) other objects 
•  E.g., clustering, objects not in cluster are 

outliers 

– Some type of statistical test: 
•  Given a distribution (e.g., fitted to the data) 
•  How probable is it that the point has this value? 
•  If low probability -> outlier 

  44 CS520 - 1) Introduction 

2. Overview 

•  Topics covered in this part 
– Causes of Dirty Data 
– Constraint-based Cleaning 
– Outlier-based and Statistical Methods 
– Entity Resolution 
– Data Fusion 

45 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Entity Resolution (ER) 
•  Alternative names 
– Duplicate detection 
– Record linkage 
– Reference reconciliation 
– Entity matching 
– … 

  

46 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Intuitively, E should be based on how 
similar t and t’ are 
– Similarity measure? 

•  E should be an equivalence relation 
–  If t is the same as t’ and t’ is the same as t’’ 

then t should be the same as t’’ 

  47 CS520 - 1) Introduction 

Given#sets#of#tuples#A#compute#equivalence#relaNon#E(t,t’)#which#denotes#that#
tuple#t#and#t’#represent#the#same#enNty.#
)

Defini>on:)En>ty)Resolu>on)Problem)
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2.3 Constraint Repair 

48 CS520 - 1) Introduction 

Example:)Constraint)Repair)

SSN) zip) city) name)

333"333"3333# 60616# Chicago# Peter#

SSN) zip) city) name)

3333333333# IL#60616# Petre#

2.3 Entity Resolution 

•  Similarity based on similarity of attribute 
values 
– Which distance measure is appropriate? 
– How do we combine attribute-level distances? 
– Do we consider additional information? 
•  E.g., foreign key connections 

– How similar should duplicates be? 
•  E.g., fixed similarity threshold 

– How to guarantee transitivity of E 
•  E.g., do this afterwards 

  
49 CS520 - 1) Introduction 

2.3 Constraint Repair 

50 CS520 - 1) Introduction 

Example:)Constraint)Repair)

SSN) zip) city) name)

333"333"3333# 60616# Chicago# Peter#

SSN) zip) city) name)

3333333333# IL#60616# Petre#

1# 0.8# 0?# 0.6#

2.3 Entity Resolution – Distance 
Measures 
•  Edit-distance 
– measures similarity of two strings 
– d(s,s’) = minimal number of insert, replace, 

delete operations (single character) that 
transform s into s’ 

–  Is symmetric (actually a metric) 
•  Why? 

  

51 CS520 - 1) Introduction 

2.3 Entity Resolution 

52 CS520 - 1) Introduction 

Given#two#strings#s,#s’#we#define#the#edit#distance#d(s,s’)#as#the#minimum#
number#of#single#character#insert,#replacements,#deleNons#that#transforms#s#
into#s’#
)

Defini>on:)Edit)Distance)

NEED -> STREET 
 
Trivial solution: delete all chars in NEED, then 
insert all chars in STREET 
 
- gives upper bound on distance len(NEED) + 

 len(STREET) = 10 

Example:)

2.3 Entity Resolution 

53 CS520 - 1) Introduction 

NEED -> STREET 
 
Minimal solution: 

 - insert S 
 - insert T 
 - replace N with R 
 - replace D with T 

 
d(NEED,STREET) = 4 

Example:)
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2.3 Entity Resolution 

•  Principal of optimality 
– Best solution of a subproblem is part of the best 

solution for the whole problem 

•  Dynamic programming algorithm 
– D(i,j) is the edit distance between prefix of len i of 

s and prefix of len j of s’ 
– D(len(s),len(s’)) is the solution 
– Represented as matrix 
– Populate based on rules shown on the next slide 

54 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Recursive definition 
– D(i,0) = i 
•  Cheapest way of transforming prefix s[i] into empty 

string is by deleting all i characters in s[i] 

– D(0,j) = j 
•  Same holds for s’[j] 

– D(i,j) = min { 
•  D(i-1,j) + 1 
•  D(i,j-1) + 1 
•  D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else 
} 

55 CS520 - 1) Introduction 

2.3 Entity Resolution 

56 CS520 - 1) Introduction 

NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 

E 2 

E 3 

D 4 

2.3 Entity Resolution 

57 CS520 - 1) Introduction 

NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 

E 2 

E 3 

D 4 

2.3 Entity Resolution 
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NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 

E 2 2 

E 3 

D 4 

2.3 Entity Resolution 
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NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 

E 2 2 2 

E 3 3 

D 4 
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2.3 Entity Resolution 

60 CS520 - 1) Introduction 

NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 

E 2 2 2 3 

E 3 3 3 

D 4 4 

2.3 Entity Resolution 

61 CS520 - 1) Introduction 

NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 

E 2 2 2 3 3 

E 3 3 3 3 

D 4 4 4 

2.3 Entity Resolution 

62 CS520 - 1) Introduction 

NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 6 

E 2 2 2 3 3 4 

E 3 3 3 3 3 

D 4 4 4 4 

2.3 Entity Resolution 
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NEED -> STREET 
 
 
 
 
 
 
 
 
 
 

Example:)

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 6 

E 2 2 2 3 3 4 5 

E 3 3 3 3 3 3 4 

D 4 4 4 4 4 4 4 

2.3 Entity Resolution – Distance 
Measures 
•  Other sequence-based measures for string 

similarity 
– Needleman-Wunsch 
•  Missing character sequences can be penalized 

differently from character changes 

– Affine Gap Measure 
•  Limit influence of longer gaps 
•  E.g., Peter Friedrich Mueller vs. Peter Mueller 

– Smith-Waterman Measure 
•  More resistant to reordering of elements in the string 
•  E.g., Prof. Franz Mueller vs. F. Mueller, Prof. 

  
64 CS520 - 1) Introduction 

2.3 Entity Resolution – Distance 
Measures 
•  Other sequence-based measures for string 

similarity 
– Jaro-Winkler 
•  Consider shared prefixes 
•  Consider distance of same characters in strings 
•  E.g., johann vs. ojhann vs. ohannj 

– See textbook for details! 

  

65 CS520 - 1) Introduction 
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2.3 Entity Resolution – Distance 
Measures 
•  Token-set based measures 
– Split string into tokens 
•  E.g., single characters 
•  E.g., words if string represents a longer text 

– Potentially normalize tokens 
•  E.g., word tokens replace word with its stem 

– Generating, generated, generates are all replaced with 
generate 

– Represent string as set (multi-set) of tokens  

  66 CS520 - 1) Introduction 

2.3 Entity Resolution 

67 CS520 - 1) Introduction 

Input string: 
S = “the tokenization of strings is commonly used in 
information retrieval” 
 
Set of tokens: 
Tok(S) = {commonly, in, information, is, of, 

    retrieval, strings, the, tokenization, used} 
 
Bag of tokens: 
Tok(S) = {commonly:1, in:1, information:1, is:1,  
         of:1, retrieval:1,strings:1, the:1, 
    tokenization:1, used:1} 

Example:)Tokeniza>on)

2.3 Entity Resolution – Distance 
Measures 
•  Jaccard-Measure 
– Bs = Tok(s) = token set of string s 
– Jaccard measures relative overlap of tokens in 

two strings 
•  Number of common tokens divided by total number 

of tokens 

  

68 CS520 - 1) Introduction 

djacc(s, s
0) =

kBs \Bs0k
kBs [Bs0k

2.3 Entity Resolution 

69 CS520 - 1) Introduction 

Input string: 
S = “nanotubes are used in these experiments to…” 
S’= “we consider nanotubes in our experiments…” 
S’’= “we prove that P=NP, thus solving …” 
 
Tok(S)  = {are,experiments,in,nanotubes,these,to,used} 
Tok(S’) = {consider,experiments,in,nanotubes,our,we} 
Tok(S’’)= {P=NP,prove,solving,that,thus,we} 
 
djacc(S,S’)= 
djacc(S,S’’)= 
djacc(S’,S’’)= 
 

Example:)Tokeniza>on)

2.3 Entity Resolution 

70 CS520 - 1) Introduction 

Input string: 
S = “nanotubes are used in these experiments to…” 
S’= “we consider nanotubes in our experiments…” 
S’’= “we prove that P=NP, thus solving …” 
 
Tok(S)  = {are,experiments,in,nanotubes,these,to,used} 
Tok(S’) = {consider,experiments,in,nanotubes,our,we} 
Tok(S’’)= {P=NP,prove,solving,that,thus,we} 
 
djacc(S,S’)  = 3 / 10 = 0.3     
djacc(S,S’’) = 0 / 13 = 0 
djacc(S’,S’’)= 1 / 11 = 0.0909 
 

Example:)Tokeniza>on)

2.3 Entity Resolution 

•  Other set-based measures 
– TF/IDF: term frequency, inverse document 

frequency 
•  Take into account that certain tokens are more common 

than others 
•  If two strings (called documents for TF/IDF) overlap on 

uncommon terms they are more likely to be similar than 
if they overlap on common terms 
–  E.g., the vs. carbon nanotube structure 

71 CS520 - 1) Introduction 
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2.3 Entity Resolution 

•  TF/IDF: term frequency, inverse document 
frequency 
– Represent documents as feature vectors 
•  One dimension for each term 
•  Value computed as frequency times IDF 

–  Inverse of frequency of term in the set of all documents 

– Compute cosine similarity between two feature 
vectors 
•  Measure how similar they are in term distribution 

(weighted by how uncommon terms are) 
•  Size of the documents does not matter 

– See textbook for details 72 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Entity resolution 
– Concatenate attribute values of tuples and use 

string similarity measure 
•  Loose information encoded by tuple structure 
•  E.g., [Gender:male,Salary:9000]  

-> “Gender:male,Salary:9000” 
or -> “male,9000” 

– Combine distance measures for single attributes 
•  Weighted sum or more complex combinations 

–  E.g.,  

– Use quadratic distance measure 
•  E.g., earth-movers distance 

73 CS520 - 1) Introduction 

d(t, t0) = w1 ⇥ dA(t.A, t0.A) + w2 ⇥ dB(t.B, t0.B)

2.3 Entity Resolution 

•  Entity resolution 
– Rule-based approach 
•  Set of if this than that rules 

– Learning-based approaches 
– Clustering-based approaches 
– ProbabilisNc#approaches#to#matching#

– Collective matching 

74 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Weighted linear combination 
– Say tuples have n attributes 
– wi: predetermined weight of an attribute 
– di(t,t’): similarity measure for the ith attribute 

•  Tuples match if d(t,t’) > β for a threshold β  

75 CS520 - 1) Introduction 

d(t, t0) =
nX

i=0

wi ⇥ di(t, t
0)

2.3 Constraint Repair 

76 CS520 - 1) Introduction 

#
#
#
#
#
#
#
#
#

Assumption: SSNs and names are most important, city and 
zip are not very predictive 
 
 
 
 
 
 
 

Example:)Constraint)Repair)

SSN) zip) city) name)

333"333"3333# 60616# Chicago# Peter#

SSN) zip) city) name)

3333333333# IL#60616# Petre#

1# 0.8# 0?# 0.6#

wSSN = 0.4, wzip = 0.05, wcity = 0.15, wname = 0.4

d(t, t0) = 0.4⇥ 1 + 0.05⇥ 0.8 + 0.15⇥ 0 + 0.4⇥ 0.6

= 0.4 + 0.04 + 0 + 0.24

= 0.68

2.3 Entity Resolution 

•  Weighted linear combination 
– How to determine weights? 
•  E.g., have labeled training data and use ML to learn 

weights  
– Use non-linear function? 

77 CS520 - 1) Introduction 
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2.3 Entity Resolution 

•  Entity resolution 
– Rule-based approach 
– Learning-based approaches 
– Clustering-based approaches 
– ProbabilisNc#approaches#to#matching#
– Collective matching 

78 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Rule-based approach 
– Collection (list) of rules 
–  if dname(t,t’) < 0.6 then unmatched 
–  if dzip(t,t’) = 1 and t.country = USA then matched 
–  if t.country != t’.country then unmatched 

•  Advantages 
– Easy to start, can be incrementally improved 

•  Disadvantages 
– Lot of manual work, large rule-bases hard to 

understand 
79 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Entity resolution 
– Rule-based approach 
– Learning-based approaches 
– Clustering-based approaches 
– Probabilistic approaches to matching 
– Collective matching 

80 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Learning-based approach 
– Build all pairs (t,t’) for training dataset 
– Represent each pair as feature vector from, e.g., 

similarities 
– Train classifier to return {match,no match} 

•  Advantages 
– automated 

•  Disadvantages 
– Requires training data 

81 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Entity resolution 
– Rule-based approach 
– Learning-based approaches 
– Clustering-based approaches 
– Probabilistic approaches to matching 
– Collective matching 

82 CS520 - 1) Introduction 

2.3 Entity Resolution 

•  Clustering-based approach 
– Apply clustering method to group inputs 
– Typically hierarchical clustering method 
– Clusters now represent entities 
•  Decide how to merge based on similarity between 

clusters 

•  Advantages 
– Automated, no training data required 

•  Disadvantages 
– Choice of cluster similarity critical 

83 CS520 - 1) Introduction 
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2.3 Entity Resolution 

•  Entity resolution 
– Rule-based approach 
– Learning-based approaches 
– Clustering-based approaches 
– Probabilistic approaches to matching 
– Collective matching 
•  See text book 

84 CS520 - 1) Introduction 

2. Overview 

•  Topics covered in this part 
– Causes of Dirty Data 
– Constraint-based Cleaning 
– Outlier-based and Statistical Methods 
– Entity Resolution 
– Data Fusion 

85 CS520 - 1) Introduction 

2.4 Data Fusion 

•  Data Fusion = how to combine (possibly 
conflicting) information from multiple objects 
representing the same entity 
– Choose among conflicting values 
•  If one value is missing (NULL) choose the other one 
•  Numerical data: e.g., median, average 
•  Consider sources: have more trust in certain data 

sources 
•  Consider value frequency: take most frequent value 
•  Timeliness: latest value 

86 CS520 - 1) Introduction 

Outline 

0) Course Info 
1)  Introduction 
2)  Data Preparation and Cleaning 
3)   Schema matching and mapping 
4)  Virtual Data Integration 
5)  Data Exchange 
6)  Data Warehousing  
7)  Big Data Analytics 
8)  Data Provenance 
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