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Chapter 10: Concurrency Control

■ Lock-Based Protocols
■ Timestamp-Based Protocols
■ Validation-Based Protocols
■ Multiple Granularity
■ Multiversion Schemes
■ Insert and Delete Operations
■ Concurrency in Index Structures
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Intuition of Lock-based Protocols

■ Transactions have to acquire locks on data items before accessing them
■ If a lock is hold by one transaction on a data item this restricts the ability 

of other transactions to acquire locks for that data item
■ By locking a data item we want to ensure that no access to that data 

item is possible that would lead to non-serializable schedules
■ The trick is to design a lock model and protocol that guarantees that
■ Lock-based concurrency protocols are a form of pessimistic 

concurrency control mechanism
● We avoid ever getting into a state that can lead to a non-serializable

schedule
■ Alternative concurrency control mechanism do not avoid conflicts, but 

determine later on (at commit time) whether committing a transaction 
would cause a non-serializable schedule to be generated
● Optimistic concurrency control mechanism
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Lock-Based Protocols

■ A lock is a mechanism to control concurrent access to a data item
■ Data items can be locked in two modes :

1.  exclusive (X) mode. Data item can be both read as well as   
written. X-lock is requested using lock-X instruction.

2.  shared (S) mode. Data item can only be read. S-lock is          
requested using lock-S instruction.

■ Lock requests are made to concurrency-control manager. 
● Transaction do not access data items before having acquired a lock on 

that data item
● Transactions release their locks on a data item only after they have 

accessed a data item
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Lock-Based Protocols (Cont.)

■ Lock-compatibility matrix

■ A transaction may be granted a lock on an item if the requested lock is 
compatible with locks already held on the item by other transactions

■ Any number of transactions can hold shared locks on an item, 
● but if any transaction holds an exclusive lock on the item no other 

transaction may hold any lock on the item.
■ If a lock cannot be granted, the requesting transaction is made to wait till 

all incompatible locks held by other transactions have been released.  
The lock is then granted.

S X
S true false

X false false
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Lock-Based Protocols (Cont.)

■ Example of a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

■ Locking as above is not sufficient to guarantee serializability — if A and B
get updated in-between the read of A and B, the displayed sum would be 
wrong.

■ A  locking protocol is a set of rules followed by all transactions while 
requesting and releasing locks. Locking protocols restrict the set of 
possible schedules.
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Pitfalls of Lock-Based Protocols
■ Consider the partial schedule

■ Neither T3 nor T4 can make progress — executing  lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing  lock-X(A) causes 
T3 to wait for T4 to release its lock on A.

■ Such a situation is called a deadlock. 
● To handle a deadlock one of T3 or T4 must be rolled back 

and its locks released.
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Pitfalls of Lock-Based Protocols (Cont.)

■ The potential for deadlock exists in most locking protocols. Deadlocks 
are a necessary evil.

■ Starvation is also possible if the concurrency control manager is 
badly designed. For example:
● A transaction may be waiting for an X-lock on an item, while a 

sequence of other transactions request and are granted an S-lock 
on the same item.  

● The same transaction is repeatedly rolled back due to deadlocks.
■ Concurrency control managers can be designed to prevent starvation.
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The Two-Phase Locking Protocol

■ This is a protocol which ensures conflict-serializable schedules.
■ Phase 1: Growing Phase

● transaction may obtain locks 
● transaction may not release locks

■ Phase 2: Shrinking Phase
● transaction may release locks
● transaction may not obtain locks

■ The protocol assures serializability. It can be proved that the 
transactions can be serialized in the order of their lock points (i.e. 
the point where a transaction acquired its final lock). 
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The Two-Phase Locking Protocol (Cont.)

■ Two-phase locking does not ensure freedom from deadlocks
■ Cascading roll-back is possible under two-phase locking. To avoid 

this, follow a modified protocol called strict two-phase locking 
(S2PL). Here a transaction must hold all its exclusive locks till it 
commits/aborts.

■ Rigorous two-phase locking (SS2PL) is even stricter: here all locks 
are held till commit/abort. In this protocol transactions can be 
serialized in the order in which they commit.
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The Two-Phase Locking Protocol (Cont.)

■ There can be conflict serializable schedules that cannot be obtained if 
two-phase locking is used.  

■ However, in the absence of extra information (e.g., ordering of  access 
to data), two-phase locking is needed for conflict serializability in the 
following sense:

Given a transaction Ti that does not follow two-phase locking, we can 
find a transaction Tj that uses two-phase locking, and a schedule for Ti
and Tj that is not conflict serializable.
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Lock Conversions

■ Two-phase locking with lock conversions:
– First Phase:        
● can acquire a lock-S on item
● can acquire a lock-X on item
● can convert a lock-S to a lock-X (upgrade)

– Second Phase:
● can release a lock-S
● can release a lock-X
● can convert a lock-X to a lock-S  (downgrade)

■ This protocol assures serializability. But still relies on the programmer to 
insert the various  locking instructions.
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Automatic Acquisition of Locks

■ A transaction Ti issues the standard read/write instruction, without 
explicit locking calls.

■ The operation read(D) is processed as:
if Ti has a lock on D

then
read(D) 

else begin
if necessary wait until no other  

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end
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Automatic Acquisition of Locks (Cont.)

■ write(D) is processed as:
if Ti has a  lock-X on D

then
write(D)

else begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

■ All locks are released after commit or abort
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Implementation of Locking

■ A lock manager can be implemented as a separate process to which 
transactions send lock and unlock requests

■ The lock manager replies to a lock request by sending a lock grant 
messages (or a message asking the transaction to roll back, in case of  
a deadlock)

■ The requesting transaction waits until its request is answered
■ The lock manager maintains a data-structure called a lock table to 

record granted locks and pending requests
■ The lock table is usually implemented as an in-memory hash table 

indexed on the name of the data item being locked
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Lock Table

■ Black rectangles indicate granted locks, 
white ones indicate waiting requests

■ Lock table also records the type of lock 
granted or requested

■ New request is added to the end of the 
queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks

■ Unlock requests result in the request 
being deleted, and later requests are 
checked to see if they can now be 
granted

■ If transaction aborts, all waiting or 
granted requests of the transaction are 
deleted 
● lock manager may keep a list of 

locks held by each transaction, to 
implement this efficiently

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912
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Deadlock Handling

■ Consider the following two transactions:
T1:     write (X)               T2:    write(Y)

write(Y)                         write(X)
■ Schedule with deadlock
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Deadlock Handling

■ System is deadlocked if there is a set of transactions such that every 
transaction in the set is waiting for another transaction in the set.

■ Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :
● Require that each transaction locks all its data items before it 

begins execution (predeclaration).
4 Not practical

● Impose partial ordering of all data items and require that a 
transaction can lock data items only in the order specified by the 
partial order (graph-based protocol).
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More Deadlock Prevention Strategies

■ Following schemes use transaction timestamps for the sake of deadlock 
prevention alone.
● Preemptive: Transaction holding a lock is aborted to make lock 

available
■ wait-die scheme — non-preemptive

● older transaction may wait for younger one to release data item. 
Younger transactions never wait for older ones; they are rolled back 
instead.

● a transaction may die several times before acquiring needed data 
item

■ wound-wait scheme — preemptive
● older transaction wounds (forces rollback) of younger transaction 

instead of waiting for it. Younger transactions may wait for older 
ones.

● may be fewer rollbacks than wait-die scheme.
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Deadlock prevention (Cont.)

■ Both in wait-die and in wound-wait schemes, a rolled back 
transactions is restarted with its original timestamp. Older transactions 
thus have precedence over newer ones, and starvation is hence 
avoided.

■ Timeout-Based Schemes:
● a transaction waits for a lock only for a specified amount of time. 

After that, the wait times out and the transaction is rolled back.
● thus deadlocks are not possible
● simple to implement; but starvation is possible. Also difficult to 

determine good value of the timeout interval.
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Deadlock Detection

■ Deadlocks can be described as a wait-for graph, which consists of a 
pair G = (V,E), 
● V is a set of vertices (all the transactions in the system)
● E is a set of edges; each element is an ordered pair Ti ®Tj.  

■ If Ti ® Tj is in E, then there is a directed edge from Ti to Tj, implying 
that Ti is waiting for Tj to release a data item.

■ When Ti requests a data item currently being held by Tj, then the edge 
Ti Tj is inserted in the wait-for graph. This edge is removed only when 
Tj is no longer holding a data item needed by Ti.

■ The system is in a deadlock state if and only if the wait-for graph has a 
cycle.  Must invoke a deadlock-detection algorithm periodically to look 
for cycles.
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Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

T18 T20

T17

T19

T18 T20

T17

T19
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Deadlock Recovery

■ When deadlock is  detected :
● Some transaction will have to rolled back (made a victim) to break 

deadlock.  Select that transaction as victim that will incur minimum 
cost.

● Rollback -- determine how far to roll back transaction
4 Total rollback: Abort the transaction and then restart it.
4 More effective to roll back transaction only as far as necessary 

to break deadlock.
● Starvation happens if same transaction is always chosen as 

victim. Include the number of rollbacks in the cost factor to avoid 
starvation
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Weak Levels of Consistency

■ Degree-two consistency: differs from two-phase locking in that S-locks 
may be released at any time, and locks may be acquired at any time
● X-locks must be held till end of transaction
● Serializability is not guaranteed, programmer must ensure that no 

erroneous database state will occur]
■ Cursor stability: 

● For reads, each tuple is locked, read, and lock is immediately 
released

● X-locks are held till end of transaction
● Special case of degree-two consistency
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Weak Levels of Consistency in SQL
■ SQL allows non-serializable executions

● Serializable: is the default
● Repeatable read: allows only committed records to be read, and 

repeating a read should return the same value (so read locks should 
be retained)
4 However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see 
others inserted by T2

● Read committed:  same as degree two consistency, but most 
systems implement it as cursor-stability

● Read uncommitted: allows even uncommitted data to be read
■ In many database systems, read committed is the default consistency 

level
● has to be explicitly changed to serializable when required

4 set isolation level serializable



©Silberschatz, Korth and Sudarshan10.26CS425 – Fall 2016 – Boris Glavic

Recap
■ Concurrency Control

● Pessimistic: Prevent bad things from happening
4 Locking Protocols

● Optimistic: Detect that bad things have happened and resolve the 
problem

■ Two-Phase Locking (2PL)
● Two types of locks:

4 Shared (S) locks for read-only access
4 Exclusive (X) locks for write + read access

● Lock compatibility
● Transactions cannot acquire locks after they have released a lock

4 Divides transaction into growing and shrinking phase
● Ensures conflict-serializability
● Cascading rollbacks are possible
● Deadlocks are possible
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Recap
■ Strict Two-Phase Locking (S2PL)

● Exclusive locks are held until transaction commit
● Prevents cascading rollbacks
● Deadlocks are still possible

■ Strict Strong Two-Phase Locking (SS2PL)
● All locks are held until transaction commit
● Enables serializablility in commit order

■ Deadlocks
● Deadlock Prevention

4 Wait-die: Younger transaction that waits for older is rolled back
4 Wound-wait: If older waits for younger, then younger is rolled back

● Deadlock Detection
4 Cycle Detection in Waits-for graph

– Expensive
4 Timeout
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End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot 
Isolation examples
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Multiple Granularity

■ Allow  data items to be of various sizes and define a hierarchy of data 
granularities, where the small granularities are nested within larger 
ones

■ Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

■ When a transaction locks a node in the tree explicitly, it implicitly locks 
all the node's descendents in the same mode.

■ Granularity of locking (level in tree where locking is done):
● fine granularity (lower in tree): high concurrency, high locking 

overhead
● coarse granularity (higher in tree): low locking overhead, low 

concurrency
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Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
● database
● area 
● file
● record

ra1 ra2 ran rb1 rbk rc1 rcm

Fa Fb Fc

A1 A2

DB
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Intention Lock Modes

■ In addition to S and X lock modes, there are three additional lock 
modes with multiple granularity:
● intention-shared (IS): indicates explicit locking at a lower level of 

the tree but only with shared locks.
● intention-exclusive (IX): indicates explicit locking at a lower level 

with exclusive or shared locks
● shared and intention-exclusive (SIX): the subtree rooted by that 

node is locked explicitly in shared mode and explicit locking is 
being done at a lower level with exclusive-mode locks.

■ intention locks allow a higher level node to be locked in S or X mode 
without having to check all descendent nodes.
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Compatibility Matrix with Intention Lock Modes

■ The compatibility matrix for all lock modes is: 

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false
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Multiple Granularity Locking Scheme
■ Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any 

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent 

of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node 

(that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently 

locked by Ti.
■ Observe that locks are acquired in root-to-leaf order, whereas they are 

released in leaf-to-root order.
■ Lock granularity escalation: in case there are too many locks at a 

particular level, switch to higher granularity S or X lock
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Timestamp-Based Protocols

■ Each transaction is issued a timestamp when it enters the system. If an old 
transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-
stamp TS(Tj) such that TS(Ti) <TS(Tj). 

■ The protocol manages concurrent execution such that the time-stamps 
determine the serializability order.

■ In order to assure such behavior, the protocol maintains for each data Q two 
timestamp values:
● W-timestamp(Q) is the largest time-stamp of any transaction that 

executed write(Q) successfully.
● R-timestamp(Q) is the largest time-stamp of any transaction that 

executed read(Q) successfully.
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Timestamp-Based Protocols (Cont.)
■ The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order.
■ Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) £ W-timestamp(Q), then Ti needs to read a value of Q
that was already overwritten.
■ Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti)³ W-timestamp(Q), then the read operation is executed, 
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).
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Timestamp-Based Protocols (Cont.)

■ Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 

producing was needed previously, and the system assumed that 
that value would never be produced. 
■ Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. 
■ Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) 
is set to TS(Ti).
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Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5
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Correctness of Timestamp-Ordering Protocol

■ The timestamp-ordering protocol guarantees serializability since all 
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
■ Timestamp protocol ensures freedom from deadlock as no 

transaction ever waits.  
■ But the schedule may not be cascade-free, and may  not even be 

recoverable.
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Recoverability and Cascade Freedom

■ Problem with timestamp-ordering protocol:
● Suppose Ti aborts, but Tj has read a data item written by  Ti

● Then Tj must abort; if Tj had been allowed to commit earlier, the 
schedule is not recoverable.

● Further, any transaction that has read a data item written by Tj must 
abort

● This can lead to cascading rollback --- that is, a chain of rollbacks 
■ Solution 1:

● A transaction is structured such that its writes are all performed at 
the end of its processing

● All writes of a transaction form an atomic action; no transaction may 
execute while a transaction is being written

● A transaction that aborts is restarted with a new timestamp
■ Solution 2: Limited form of locking: wait for data to be committed before 

reading it
■ Solution 3: Use commit dependencies to ensure recoverability
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Thomas’Write Rule

■ Modified version of the timestamp-ordering protocol in which obsolete 
write operations may be ignored under certain circumstances.

■ When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), 
then Ti is attempting to write an obsolete value of {Q}. 
● Rather than rolling back Ti as the timestamp ordering protocol 

would have done, this {write} operation can be ignored.
■ Otherwise this protocol is the same as the timestamp ordering 

protocol.
■ Thomas' Write Rule allows greater potential concurrency. 

● Allows some view-serializable schedules that are not conflict-
serializable.
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Validation-Based Protocol

■ Execution of transaction Ti is done in three phases.
1.  Read and execution phase: Transaction Ti writes only to         

temporary local variables
2.  Validation phase: Transaction Ti performs a ``validation test'' 

to determine if local variables can be written without violating         
serializability.

3.  Write phase: If Ti is validated, the updates are applied to the 
database; otherwise, Ti is rolled back.

■ The three phases of concurrently executing transactions can be    
interleaved, but each transaction must go through the three phases in 
that order.
● Assume for simplicity that the validation and write phase occur 

together, atomically and serially
4 I.e., only one transaction executes validation/write at a time. 

■ Also called as optimistic concurrency control since transaction 
executes fully in the hope that all will go well during validation
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Validation-Based Protocol (Cont.)

■ Each transaction Ti has 3 timestamps
● Start(Ti) : the time when Ti started its execution
● Validation(Ti): the time when Ti entered its validation phase
● Finish(Ti) : the time when Ti finished its write phase

■ Serializability order is determined by timestamp given at validation 
time,  to increase concurrency. 
● Thus TS(Ti) is given the value of Validation(Ti).

■ This protocol is useful and gives greater degree of concurrency if 
probability of conflicts is low. 
● because the serializability order is not pre-decided, and
● relatively few transactions will have to be rolled back.
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Validation Test for Transaction Tj

■ If for all Ti with TS (Ti) < TS (Tj) either one of the following condition 
holds:
● finish(Ti) < start(Tj) 
● start(Tj) < finish(Ti) < validation(Tj) and the set of data items 

written by Ti does not intersect with the set of data items read by 
Tj.  

then validation succeeds and Tj can be committed.  Otherwise, 
validation fails and Tj is aborted.

■ Justification:  Either the first condition is satisfied, and there is no 
overlapped execution, or the second condition is satisfied and
■ the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.
■ the writes of Ti do not affect reads of Tj since Tj does not read  

any item written by Ti.
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Schedule Produced by Validation

■ Example of schedule produced using validation
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Multiversion Schemes

■ Multiversion schemes keep old versions of data item to increase 
concurrency.
● Multiversion Timestamp Ordering
● Multiversion Two-Phase Locking

■ Each successful write results in the creation of a new version of the 
data item written.

■ Use timestamps to label versions.
■ When a read(Q) operation is issued, select an appropriate version of 

Q based on the timestamp of the transaction, and return the value of 
the selected version.  

■ reads never have to wait as an appropriate version is returned 
immediately.
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Multiversion Timestamp Ordering

■ Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each 
version Qk contains three data fields:
● Content -- the value of version Qk.
● W-timestamp(Qk) -- timestamp of the transaction that created 

(wrote) version Qk

● R-timestamp(Qk) -- largest timestamp of a transaction that 
successfully read version Qk

■ when a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti). 

■ R-timestamp of Qk is updated whenever a transaction Tj reads Qk, and 
TS(Tj) > R-timestamp(Qk).
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Multiversion Timestamp Ordering (Cont)

■ Suppose that transaction Ti issues a read(Q) or write(Q) operation.  Let 
Qk denote the version of Q whose write timestamp is the largest write 
timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the       
content of version Qk.

2. If transaction Ti issues a write(Q)
1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back. 
2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten
3. else a new version of Q is created.

■ Observe that
● Reads always succeed
● A write by Ti is rejected if some other transaction Tj that (in the 

serialization order defined by the timestamp values) should read 
Ti's write, has already read a version created by a transaction older 
than Ti.

■ Protocol guarantees serializability
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Multiversion Two-Phase Locking

■ Differentiates between read-only transactions and update transactions
■ Update transactions acquire read and write locks, and hold all locks up 

to the end of the transaction. That is, update transactions follow rigorous 
two-phase locking.
● Each successful write results in the creation of a new version of the 

data item written.
● each version of a data item has a single timestamp whose value is 

obtained from a counter ts-counter that is incremented during 
commit processing.

■ Read-only transactions are assigned a timestamp by reading the current 
value of  ts-counter before they start execution; they follow the 
multiversion timestamp-ordering protocol for performing reads.
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Multiversion Two-Phase Locking (Cont.)

■ When an update transaction wants to read a data item:
● it obtains a shared lock on it, and reads the latest version. 

■ When it wants to write an item
● it obtains X lock on; it then creates a new version of the item and 

sets this version's timestamp to ¥.
■ When update transaction Ti completes, commit processing occurs:

● Ti sets timestamp on the versions it has created to ts-counter + 1
● Ti increments  ts-counter by 1

■ Read-only transactions that start after Ti increments ts-counter will see 
the values updated by Ti. 

■ Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

■ Only serializable schedules are produced.
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MVCC: Implementation Issues

■ Creation of multiple versions increases storage overhead
● Extra tuples
● Extra space in each tuple for storing version information

■ Versions can, however, be garbage collected
● E.g. if Q has two versions Q5 and Q9, and the oldest active 

transaction has timestamp > 9, than Q5 will never be required 
again
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Snapshot Isolation

■ Motivation: Decision support queries that read large amounts of data 
have concurrency conflicts with OLTP transactions that update a few 
rows
● Poor performance results

■ Solution 1:  Give logical “snapshot” of database state to read only 
transactions, read-write transactions use normal locking
● Multiversion 2-phase locking
● Works well, but how does system know a transaction is read only?

■ Solution 2: Give snapshot of database state to every transaction, 
updates alone use 2-phase locking to guard against concurrent 
updates
● Problem: variety of anomalies such as lost update can result
● Partial solution: snapshot isolation level (next slide)

4 Proposed by Berenson et al, SIGMOD 1995
4 Variants implemented in many database systems 

– E.g. Oracle, PostgreSQL, SQL Server 2005
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Snapshot Isolation

■ A transaction T1 executing with Snapshot 
Isolation
● takes snapshot of committed data at 

start
● always reads/modifies data in its own 

snapshot
● updates of concurrent transactions are 

not visible to T1 
● writes of T1 complete when it commits
● First-committer-wins rule:

4 Commits only if no other concurrent 
transaction has already written data 
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) à 0
R(Y)à 1

W(X:=2)
W(Z:=3)
Commit

R(Z) à 0
R(Y) à 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back
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Snapshot Read
■ Concurrent updates invisible to snapshot read
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Snapshot Write: First Committer Wins

● Variant: “First-updater-wins”
4 Check for concurrent updates when write occurs by locking item

– But lock should be held till all concurrent transactions have finished
4 (Oracle uses this plus some extra features)
4 Differs only in when abort occurs, otherwise equivalent 
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Benefits of SI

■ Reading is never blocked, 
● and also doesn’t block other txns activities

■ Performance similar to Read Committed
■ Avoids the usual anomalies

● No dirty read
● No lost update
● No non-repeatable read
● Predicate based selects are repeatable (no phantoms)

■ Problems with SI
● SI does not always give serializable executions

4 Serializable: among two concurrent txns, one sees the effects 
of the other

4 In SI: neither sees the effects of the other
● Result: Integrity constraints can be violated
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Snapshot Isolation

■ E.g. of problem with SI
● T1: x:=y
● T2: y:= x
● Initially x = 3 and y = 17

4 Serial execution:  x = ??, y = ??
4 if both transactions start at the same time, with snapshot 

isolation:  x = ?? , y = ??
■ Called skew write
■ Skew also occurs with inserts

● E.g:
4 Find max order number among all orders
4 Create a new order with order number = previous max + 1
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Snapshot Isolation Anomalies

■ SI breaks serializability when txns modify different items, each based on a 
previous state of the item the other modified
● Not very common in practice

4 E.g., the TPC-C benchmark runs correctly under SI
4 when txns conflict due to modifying different data, there is usually also 

a shared item they both modify too (like a total quantity) so SI will abort 
one of them

● But does occur
4 Application developers should be careful about write skew

■ SI can also cause a read-only transaction anomaly, where read-only 
transaction may see an inconsistent state even if updaters are serializable
● We omit details

■ Using snapshots to verify primary/foreign key integrity can lead to 
inconsistency
● Integrity constraint checking usually done outside of snapshot
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SI In Oracle and PostgreSQL

■ Warning: SI used when isolation level is set to serializable, by Oracle, and
PostgreSQL versions prior to 9.1
● PostgreSQL’s implementation of SI (versions prior to 9.1) described in 

Section 26.4.1.3
● Oracle implements “first updater wins” rule (variant of “first committer 

wins”)
4 concurrent writer check is done at time of write, not at commit time
4 Allows transactions to be rolled back earlier
4 Oracle and PostgreSQL < 9.1 do not support true serializable

execution
● PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot 

Isolation” (SSI)
4 Which guarantees true serializabilty including handling predicate 

reads (coming up)
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SI In Oracle and PostgreSQL

■ Can sidestep SI for specific queries by using select .. for update in Oracle 
and PostgreSQL
● E.g., 

1. select max(orderno) from orders for update
2. read value into local variable maxorder
3. insert into orders (maxorder+1, …)

● Select for update (SFU) treats all data read by the query as if it were 
also updated, preventing concurrent updates

● Does not always ensure serializability since phantom phenomena can 
occur (coming up)

■ In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks 
when the transaction completes, even if other concurrent transactions are 
active
● Not quite same as SFU in Oracle, which keeps locks until all
● concurrent transactions have completed
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Insert and Delete Operations

■ If two-phase locking is used :
● A  delete operation may be performed only if the transaction 

deleting the tuple has an exclusive lock on the tuple to be deleted.
● A transaction that inserts a new tuple into the database is given an 

X-mode lock on the tuple
■ Insertions and deletions can lead to the phantom phenomenon.

● A transaction that scans a relation 
4 (e.g., find sum of balances of all accounts in Perryridge) 
and a transaction that inserts a tuple in the relation 
4 (e.g., insert a new account at Perryridge)
(conceptually) conflict in spite of not accessing any tuple in 

common.
● If only tuple locks are used, non-serializable schedules can result

4 E.g. the scan transaction does not see the new account, but 
reads some other tuple written by the update transaction
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Insert  and Delete Operations (Cont.)

■ The transaction scanning the relation is reading  information that indicates 
what tuples the relation contains, while a transaction inserting a tuple 
updates the same information.
● The conflict should be detected, e.g. by locking the information.

■ One solution: 
● Associate a data item with the relation, to represent the information 

about what tuples the relation contains.
● Transactions scanning the relation acquire a shared lock in the data 

item, 
● Transactions inserting or deleting a tuple acquire an exclusive lock on 

the data item. (Note: locks on the data item do not conflict with locks on 
individual tuples.)

■ Above protocol provides very low concurrency for insertions/deletions.
■ Index locking protocols provide higher concurrency while 

preventing the phantom phenomenon, by requiring locks 
on certain index buckets. 
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Index Locking Protocol

■ Index locking protocol:
● Every relation must have at least one index. 
● A transaction can access tuples only after finding them through one or 

more indices on the relation
● A transaction Ti that performs a lookup must lock all the index leaf 

nodes that it accesses, in S-mode
4 Even if the leaf node does not contain any tuple satisfying the index 

lookup (e.g. for a range query, no tuple in a leaf is in the range)
● A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

4 must update all indices to r
4 must obtain exclusive locks on all index leaf nodes affected by the 

insert/update/delete
● The rules of the two-phase locking protocol must be observed

■ Guarantees that phantom phenomenon won’t occur
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Next-Key Locking

■ Index-locking protocol to prevent phantoms required locking entire leaf
● Can result in poor concurrency if there are many inserts

■ Alternative: for an index lookup
● Lock all values that satisfy index lookup (match lookup value, or 

fall in lookup range)
● Also lock next key value in index
● Lock mode: S for lookups, X for insert/delete/update

■ Ensures that range queries will conflict with inserts/deletes/updates
● Regardless of which happens first, as long as both are concurrent
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Concurrency in Index Structures

■ Indices are unlike other database items in that their only job is to help in 
accessing data.

■ Index-structures are typically accessed very often, much more than 
other database items. 
● Treating index-structures like other database items, e.g. by 2-phase 

locking of index nodes can lead to low concurrency.   
■ There are several index concurrency protocols where locks on internal 

nodes are released early, and not in a two-phase fashion.
● It is acceptable to have nonserializable concurrent access to an 

index as long as the accuracy of the index is maintained.
4 In particular, the exact values read in an internal node of a 

B+-tree are irrelevant so long as we land up in the correct leaf 
node.
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Concurrency in Index Structures (Cont.)

■ Example of index concurrency protocol:
■ Use crabbing instead of two-phase locking on the nodes of the B+-tree, as 

follows.  During search/insertion/deletion:
● First lock the root node in shared mode.
● After locking all required children of a node in shared mode, release the lock 

on the node.
● During insertion/deletion, upgrade leaf node locks to exclusive mode.
● When splitting or coalescing requires changes to a parent, lock the parent in 

exclusive mode.
■ Above protocol can cause excessive deadlocks

● Searches coming down the tree deadlock with updates going up the tree
● Can abort and restart search, without affecting transaction

■ Better protocols are available; see Section 16.9 for one such protocol, the B-link 
tree protocol
● Intuition: release lock on parent before acquiring lock on child

4 And deal with changes that may have happened between lock release 
and acquire
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Figure 15.01
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X false false



©Silberschatz, Korth and Sudarshan10.67CS425 – Fall 2016 – Boris Glavic

Figure 15.04
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Figure 15.07
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Figure 15.08
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Figure 15.09
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Figure 15.10
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Figure 15.11
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Figure 15.12
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Figure 15.13
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Figure 15.14
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Figure 15.15
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Figure 15.16

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false
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Figure 15.17
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Figure 15.18
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Figure 15.19
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Figure 15.20
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Figure 15.21
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Figure 15.22
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Figure 15.23
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Figure in-15.1
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