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Hi, I am Boris Glavic, 

 Assistant Professor in 

CS
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Hi, I am Boris Glavic, 

 Assistant Professor in 
CS

I am a database guy!

©Silberschatz, Korth and Sudarshan0.4CS425 – Boris Glavic

Hi, I am Boris Glavic, 
 Assistant Professor in 

CS

I am a database guy!

I will teach you:
database stuff
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Why are Databases Important?

■ What do Databases do?

1. Provide persistent storage

2. Efficient declarative access to data -> Querying

3. Protection from hardware/software failures

4. Safe concurrent access to data

©Silberschatz, Korth and Sudarshan0.6CS425 – Boris Glavic

What happens if you do not pay attention?
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Who uses Databases?

■ Most big software systems involve DBs! 

● Business Intelligence ⇒ e.g., IBM Cognos

● Web based systems

● …

■ You! (desktop software)

● Your music player ⇒ e.g., Amarok

● Your Web Content Management System 

● Your email client

● Half of the apps on your phone

● …

■ Every big company

● Banks

● Insurance

● Government

● Google, …
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Who Produces Databases?

■ Traditional relational database systems is big 

business

● IBM ⇒ DB2

● Oracle ⇒ Oracle J

● Microsoft ⇒ SQLServer

● Open Source ⇒ MySQL, Postgres, SQLite, …

■ Emerging distributed systems with DB 
characteristics and Big Data

● Cloud storage and Key-value stores ⇒Amazon S3, 
Google Big Table, . . . 

● Big Data Analytics ⇒Hadoop, Google Map & 
Reduce, . . . 

● SQL on Distributed Platforms ⇒ Hive, Tenzing, …
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Why are Database Interesting (for 

Students)?
■ The pragmatic perspective

● Background in databases makes you competitive in the job market 
;-) 

■ Systems and theoretical research

● Database research has a strong systems aspect

4 Hacking complex and large systems

4 Low-level optimization

– cache-conscious algorithms

– Exploit modern hardware

● Databases have a strong theoretical foundation

4 Complexity of query answering

4 Expressiveness of query languages

4 Concurrency theory

4 …
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Why are Database Interesting (for 

Students)?
■ Connection to many CS fields

● Distributed systems

4 Getting more and more important

● Compilers

● Modeling

● AI and machine learning

4 Data mining

● Operating and file systems

● Hardware

4 Hardware-software co-design
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Webpage and Faculty

■ Course Info

● Course Webpage: http://cs.iit.edu/~cs425

● Google Group: https://groups.google.com/d/forum/cs425-2017-
fall-group

4 Used for announcements

4 Use it to discuss with me, TA, and fellow students

● Syllabus: http://cs.iit.edu/~cs425/files/syllabus.pdf

● Git Repos: https://github.com/IITDBGroup/cs425

■ Faculty

● Boris Glavic (http://cs.iit.edu/~glavic)

● Email: bglavic@iit.edu

● Phone: 312.567.5205

● Office: Stuart Building, room 226C 

● Office Hours: Mondays, 12pm-1pm (and by appointment)
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TAs

■ TAs

● TBA
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Workload and Grading

■ Exams

● Midterm (25%)

● Final (35%)

■ Homework Assignments (preparation for exams!) – 20%

● HW1 (Relational algebra)

● HW2 (SQL)

● HW3 (Database modeling)

■ Course Project (20%)

● In groups of 3 students

● Given an example application (e.g., ticketing system)

4 Develop a database model

4 Derive a database schema from the model

4 Implement the application accessing the database
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Course Objectives

■ Understand the underlying ideas of database systems 

■ Understand the relational data model 

■ Be able to write and understand SQL queries and data definition 
statements 

■ Understand relational algebra and its connection to SQL 

■ Understand how to write programs that access a database server 

■ Understand the ER model used in database design 

■ Understand normalization of database schemata 

■ Be able to create a database design from a requirement analysis for 
a specific domain 

■ Know basic index structures and understand their importance 

■ Have a basic understanding of relational database concepts such as 

concurrency control, recovery, query processing, and access 
control
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PostgreSQL

■ In this course we will use PostgreSQL, a powerful open source 

database management system

● https://www.postgresql.org/
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Course Project

■ Forming groups

● Your responsibility!

● Inform me + TA

● Deadline: TBA

■ Git repositories

● Create an account on Bitbucket.org (https://bitbucket.org/) using 

your IIT email

● We will create a repository for each student

● Use it to exchange code with your fellow group members

● The project has to be submitted via the group repository

■ Timeline:

● Brainstorming on application (by Sep 11th)

● Design database model (by Nov 12th)

● Derive relational model (by Nov 25th)

● Implement application (by end of the semester)
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Fraud and Late Assignments

■ All work has to be original!

● Cheating = 0 points for assignment/exam

● Possibly E in course and further administrative sanctions

● Every dishonesty will be reported to office of academic honesty

■ Late policy:

● -20% per day

● No exceptions!

■ Course projects:

● Every student has to contribute in every phase of the project!

● Don’t let others freeload on you hard work!

4 Inform me or TA immediately
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Reading and Prerequisites

■ Textbook: Silberschatz, Korth and Sudarsham

● Database System Concepts, 6th edition

● McGraw Hill

● publication date:2006, 

● ISBN 0-13-0-13-142938-8.

■ Prerequisites:

● CS 331 or CS401 or CS403
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Self-study

■ I expect you to learn by yourself how to effectively use the 
following technologies

● Git – a version control system

4 You have to submit your project through git and should also 

use git to collaborate with your project group members

4 We provide some useful examples/scripts through git

● Docker – a virtualization platform (think VMs, but more 
lightweight)

4 The easiest way to get postgres running is by using the docker
image we provide

● PostgreSQL

4 I expect you to learn how to start/stop/configure a postgres

server and how to connect to a running postgres server

■ Help is on the way!

● https://github.com/IITDBGroup/cs425
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PostgreSQL Overview

■ Client/Server Architecture

● Postgres Cluster

4 A directory on the machine running the server that stores data 
and configuration files

● Postgres Server

4 A postgres server handles the data of single cluster

4 Clients connect to the server via network (TCP/IP)

– Send commands and receive results

● Clients

4 GUI clients: e.g., PGAdmin (https://www.pgadmin.org/)

4 CLI clients: e.g., the built-in psql tool

4 Programming Language Libraries

– Java: JDBC (https://jdbc.postgresql.org/)

– Python: pyscopg (http://initd.org/psycopg/)

– …
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Get Your Hands Dirty

■ Get a working version of the PostgreSQL server

● Your options

4 Install locally

– Installer packages for windows exists

– Most Linux distributions have a postgres package

– Installation from source is not that hard

4 Get our docker image (docker pull iitdbgroup/cs425)

– It’s an extension of the official postgres image which loads 
our running example university database

■ Validate your installation

● Create a database cluster (the directory PostgreSQL uses to store 

data)

● Check that you can start/stop the server

● Check that you can connect to the running server using psql or 
any other client

■ https://github.com/IITDBGroup/cs425
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Jupyther notebook

■ Jupyther notebooks

● Notebooks mix documentation and code

● Over the course of the class I will put SQL examples we discuss in 
class into a notebook that is shared through the class repository:

4 classnotebook-2017-Fall/CS425-2017-Notebook.ipynb

■ Find the classnotebook

● https://github.com/IITDBGroup/cs425
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization



1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

CS425 – Fall 2017

Boris Glavic

Chapter 1: Introduction 

©Silberschatz, Korth and Sudarshan1.2CS425 – Boris Glavic

Textbook: Chapter 1
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Database Management System (DBMS)

■ DBMS contains information about a particular domain

● Collection of interrelated data

● Set of programs to access the data 

● An environment that is both convenient and efficient to use

■ Database Applications:

● Banking: transactions

● Airlines: reservations, schedules

● Universities:  registration, grades

● Sales: customers, products, purchases

● Online retailers: order tracking, customized recommendations

● Manufacturing: production, inventory, orders, supply chain

● Human resources:  employee records, salaries, tax deductions

■ Databases can be very large.

■ Databases touch all aspects of our lives
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University Database Example

■ Application program examples

● Add new students, instructors, and courses

● Register students for courses, and generate class rosters

● Assign grades to students, compute grade point averages (GPA) 

and generate transcripts

■ In the early days, database applications were built directly on top of 
file systems

©Silberschatz, Korth and Sudarshan1.5CS425 – Boris Glavic

Drawbacks of using file systems to store data

● Data redundancy and inconsistency

4 Multiple file formats, duplication of information in different files

● Difficulty in accessing data 

4 Need to write a new program to carry out each new task

● Data isolation — multiple files and formats

● Integrity problems

4 Integrity constraints  (e.g., account balance > 0) become 

buried in program code rather than being stated explicitly

4 Hard to add new constraints or change existing ones
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Drawbacks of using file systems to store data (Cont.)

● Atomicity of updates

4 Failures may leave database in an inconsistent state with partial updates 

carried out

4 Example: Transfer of funds from one account to another should either 

complete or not happen at all

● Concurrent access by multiple users

4 Concurrent access needed for performance

4 Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it by 

withdrawing money (say 50 each) at the same time

● Security problems

4 Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems!
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Levels of Abstraction

■ Physical level: describes how a record (e.g., customer) is stored.

■ Logical level: describes data stored in database, and the relationships 
among the data.

type instructor = record

ID : string; 
name : string;

dept_name : string;
salary : integer;

end;

■ View level: application programs hide details of data types.  Views can 
also hide information (such as an employee s salary) for security 

purposes. 
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View of Data

An architecture for a database system 

view 1 view 2

logical
level

physical
level

view n…

view level
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Instances and Schemas

■ Similar to types and variables in programming languages

■ Schema – the logical structure of the database 

● Example: The database consists of information about a set of customers and 

accounts and the relationship between them

● Analogous to type information of a variable in a program

● Physical schema: database design at the physical level

● Logical schema: database design at the logical level

■ Instance – the actual content of the database at a particular point in time 

● Analogous to the value of a variable

■ Physical Data Independence – the ability to modify the physical schema without 

changing the logical schema

● Applications depend on the logical schema

● In general, the interfaces between the various levels and components should 

be well defined so that changes in some parts do not seriously influence others.

■ Logical Data Independence – the ability to modify the logical schema without 

changing the applications

● For example, add new information to each employee
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Data Models

■ A collection of tools for describing 

● Data 

● Data relationships

● Data semantics

● Data constraints

■ Relational model

■ Entity-Relationship data model (mainly for database design) 

■ Object-based data models (Object-oriented and Object-relational)

■ Semistructured data model  (XML)

■ Other older models:
● Network model  
● Hierarchical model

■ Other newer (or revived) models:

● Key-value

©Silberschatz, Korth and Sudarshan1.11CS425 – Boris Glavic

Relational Model

■ Relational model (Chapter 2)

■ Example of tabular data in the relational model
Columns (attributes)

Rows (tuples)

©Silberschatz, Korth and Sudarshan1.12CS425 – Boris Glavic

A Sample Relational Database
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Data Manipulation Language (DML)

■ Language for accessing and manipulating the data organized by the 

appropriate data model

● DML also known as query language

■ Two classes of languages 

● Procedural – user specifies what data is required and how to get 
those data 

● Declarative (nonprocedural) – user specifies what data is 

required without specifying how to get those data

■ SQL is the most widely used query language
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Data Definition Language (DDL)

■ Specification notation for defining the database schema

Example: create table instructor (

ID char(5),

name           varchar(20),

dept_name varchar(20),

salary numeric(8,2))

■ DDL compiler generates a set of table templates stored in a data dictionary

■ Data dictionary contains metadata (i.e., data about data)

● Database schema 

● Integrity constraints

4 Primary key (ID uniquely identifies instructors)

4 Referential integrity (references constraint in SQL)

– e.g. dept_name value in any instructor tuple must appear in 

department relation

● Authorization
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SQL

■ SQL: widely used declarative (non-procedural) language

● Example: Find the name of the instructor with ID 22222
select name
from instructor
where instructor.ID = 22222

● Example: Find the ID and building of instructors in the Physics dept.

select instructor.ID, department.building
from instructor, department
where instructor.dept_name = department.dept_name and 

department.dept_name = Physics

■ Application programs generally access databases through one of

● Language extensions to allow embedded SQL

● Application program interface (e.g., ODBC/JDBC) which allow SQL 
queries to be sent to a database

■ Chapters 3, 4 and 5
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Database Design

The process of designing the general structure of a database:

■ Logical Design – Deciding on the database schema. Database design 
requires that we find a good representation of the information from an 
application domain (e.g., banking) as a collection of relation schemas.

● Business decision – What information should we record in the 
database?

● Computer Science decision – What relation schemas should we 
have and how should the attributes be distributed among the various 

relation schemas?

■ Physical Design – Deciding on the physical layout of the database                

©Silberschatz, Korth and Sudarshan1.17CS425 – Boris Glavic

Database Design?

■ Is there any problem with this design?

©Silberschatz, Korth and Sudarshan1.18CS425 – Boris Glavic

Database Design?

■ Example: Changing the budget of the ‘Physics’ department

● Updates to many rows!

● Easy to break integrity

4 If we forget to update a row, then we have multiple budget 

values for the physics department!
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Design Approaches

■ Normalization Theory (Chapter 8)

● Formalize what designs are “good”, and test for them

● Translate a “bad” into a “good” design

■ Entity Relationship Model (Chapter 7)

● Models an domainas a collection of entities and relationships

4 Entity: a thing or object in the domain that is 

distinguishable from other objects

– Described by a set of attributes

4 Relationship: an association among several entities

● Represented diagrammatically by an entity-relationship diagram

©Silberschatz, Korth and Sudarshan1.20CS425 – Boris Glavic

The Entity-Relationship Model

■ Models a domain as a collection of entities and relationships

● Entity: a thing or object in the domain that is distinguishable 
from other objects

4 Described by a set of attributes

● Relationship: an association among several entities

■ Represented diagrammatically by an entity-relationship diagram:

What happened to dept_name of instructor and student?

instructor

ID
name
salary

department

dept_name
building
budget

member
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Object-Relational Data Models

■ Relational model: flat, atomic values

● E.g., integer

■ Object Relational Data Models

● Extend the relational data model by including object orientation 

and constructs to deal with added data types.

● Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

● Preserve relational foundations, in particular the declarative 
access to data, while extending modeling power.

● Provide upward compatibility with existing relational languages.
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Semistructured Data: XML and JSON

■ XML: Defined by the WWW Consortium (W3C)

● Originally intended as a document markup language not a 
database language

● The ability to specify new tags, and to create nested tag 
structures made XML a great way to exchange data, not just 

documents

● XML used to be the basis for many data interchange formats

● A wide variety of tools is available for parsing, browsing and 
querying XML documents/data

■ JSON: Javascript Object Notation

● Semistructured data format similar to XML, but simpler

● Well integrated with web technologies

● Is widely used today

©Silberschatz, Korth and Sudarshan1.23CS425 – Boris Glavic

Storage Management

■ Storage manager is a program module that provides the interface 

between the low-level data stored in the database (on disk) and the 
application programs and queries submitted to the system.

■ The storage manager is responsible to the following tasks: 

● Interaction with the file manager 

● Efficient storing, retrieving and updating of data

■ Issues:

● Storage access

● File organization

● Indexing and hashing

©Silberschatz, Korth and Sudarshan1.24CS425 – Boris Glavic

Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

query
output

query
parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data
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Query Processing (Cont.)

■ Alternative ways of evaluating a given query

● Equivalent expressions

● Different algorithms for each operation

■ Cost difference between a good and a bad way of evaluating a query can 

be enormous

■ Need to estimate the cost of operations

● Depends critically on statistical information about relations which the 
database must maintain

● Need to estimate statistics for intermediate results to compute cost of 
complex expressions

■ Need to search for a good plan (low costs)

● Traversing the search space of alternative ways (plans) to compute 
the query result

● This is called query optimization

©Silberschatz, Korth and Sudarshan1.26CS425 – Boris Glavic

Transaction Management

■ What if the system fails?

■ What if more than one user is concurrently updating the same data?

■ A transaction is a collection of operations that performs a single 
logical function in a database application

■ Transaction-management component ensures that the database 
remains in a consistent (correct) state despite system failures (e.g., 
power failures and operating system crashes) and transaction failures.

■ Concurrency-control manager controls the interaction among the 
concurrent transactions, to ensure the consistency of the database.

©Silberschatz, Korth and Sudarshan1.27CS425 – Boris Glavic

Database Users and Administrators

Database

©Silberschatz, Korth and Sudarshan1.28CS425 – Boris Glavic

Database System Internals
naive users

(tellers, agents, 
web users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler 
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)

database
administrators

use write use use
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Database Architecture

The architecture of a database systems is greatly influenced by

the underlying computer system on which the database is running:

■ Centralized (embedded, e.g., SQLite)

■ vs. Client-server (e.g., Postgres, DB2, Oracle, …)

■ Parallel (multi-processor) (most systems)

■ Distributed (e.g., DB2, Hive, SparkSQL …)

©Silberschatz, Korth and Sudarshan1.30CS425 – Boris Glavic

Build a Complete Database System in 

your free time?
■ How much time do you need?

■ To get a rough idea:

● Postgres (about 800,000 lines of code)

4 Hundreds of man-years of work

● Oracle (about 8,000,000 lines of code)

4 Probably thousands of man-years of work?

■ Hmm, … probably not!

■ Maybe a limited research prototype or new feature ;-)
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History of Database Systems

■ 1950s and early 1960s:

● Data processing using magnetic tapes for storage

4 Tapes provided only sequential access

● Punched cards for input

■ Late 1960s and 1970s:

● Hard disks allowed direct access to data

● Network and hierarchical data models in widespread use

● Ted Codd defines the relational data model

4 Would win the ACM Turing Award for this work

4 IBM Research begins System R prototype

4 UC Berkeley begins Ingres prototype

● High-performance (for the era) transaction processing

©Silberschatz, Korth and Sudarshan1.32CS425 – Boris Glavic

History (cont.)

■ 1980s:

● Research relational prototypes evolve into commercial systems

4 SQL becomes industrial standard

● Parallel and distributed database systems

● Object-oriented database systems

■ 1990s:

● Large decision support and data-mining applications

● Large multi-terabyte data warehouses

● Emergence of Web commerce

■ Early 2000s:

● XML and XQuery standards

©Silberschatz, Korth and Sudarshan1.33CS425 – Boris Glavic

History (cont.)

■ Later 2000s:

● Scalable data storage systems

4 Google BigTable, Yahoo PNuts, Amazon, ..

● Scalable distributed query processing

4 Hive, Spark SQL, Impala, Apache Flink, …

● Scalable transaction processing

4 H-store, Spanner, F1, ...

● Scalable machine learning

4 Tensorflow

● Software-Hardware co-design (e.g., Oracle Sparc M7)

©Silberschatz, Korth and Sudarshan1.34CS425 – Boris Glavic

Recap

■ Why databases?

■ What do databases do?

■ Data independence

● Physical and Logical

■ Database design

■ Data models

● Relational, object, XML, network, hierarchical

■ Query languages

● DML

● DDL

■ Architecture and systems aspects of database systems

● Recovery 

● Concurrency control

● Query processing (optimization)

● File organization and indexing

■ History of databases

©Silberschatz, Korth and Sudarshan1.35CS425 – Boris Glavic

End of Chapter 1
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Figure 1.02
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Figure 1.04
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Figure 1.06

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture
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Example of a Relation

attributes

(or columns)

tuples

(or rows)

©Silberschatz, Korth and Sudarshan2.4CS425 – Boris Glavic

Attribute Types

■ The set of allowed values for each attribute is called the domain

or data type of the attribute

■ Attribute values are (normally) required to be atomic; that is, 

indivisible

● E.g., integer values

● E.g., not address (street, city, zip code, state, country)

■ The special value null is a member of every domain

● Means unknown or not applicable

■ The null value causes complications in the definition of many 
operations

● Will be detailed later

©Silberschatz, Korth and Sudarshan2.5CS425 – Boris Glavic

Relation Schema and Instance

■ A1, A2, …, An are attributes names

■ R = (A1, A2, …, An ) is a relation schema

Example:

instructor = (ID,  name, dept_name, salary)

■ Formally, given sets D1, D2, …. Dn of domains a relation r (or relation 

instance) is a subset of 

D1 x  D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai Î Di

■ The current values (relation instance) of a relation are often 

specified in tabular form

■ Caveat: being a set, the tuples of the relation do not have any 

order defined as implied by the tabular representation

■ An element t of r is a tuple, represented as a row in a table

Th
eor
y

Wa
rnin
g
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Alternative Definitions

■ A relation schema is often defined as a list of attribute-domain pairs

● That is the data types of each attribute in the relation are 
considered as part of the relation schema

■ Tuples are sometimes defined as functions from attribute names to 
values (order of attributes does not matter)

● E.g., t(name) = ‘Bob’

■ A relation r can be specified as a function 

● D1 x  D2 x … x Dn -> {true, false}

● t = (a1, a2, …, an) is mapped to true if t is in r and to false 

otherwise

■ These alternative definition are useful in database theory

● We will stick to the simple definition!

Th
eor
y

Wa
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g
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Relations are Unordered

■ A relation is a set -> the elements of a set are not ordered per se 

■ From a pratical perspective:

■Order of tuples is irrelevant (tuples may be stored or returned in an 
arbitrary order)

■ Example: instructor relation with unordered tuples

©Silberschatz, Korth and Sudarshan2.8CS425 – Boris Glavic

Database

■ A database schema S consists of multiple relation schema

■ A database instance I for a schema S is a set of relation instances

● One relation for each relation schema in S

■ Information about an enterprise is broken up into parts

instructor

student

advisor

■ Bad design: 

univ (instructor -ID, name, dept_name, salary, student_Id, ..)

results in

● repetition of information (e.g., two students have the same instructor)

● the need for many null values  (e.g., represent an student with no 
advisor)

■ Normalization theory (Chapter 7) deals with how to design good
relational schemas avoiding these problems

©Silberschatz, Korth and Sudarshan2.9CS425 – Boris Glavic

Bad Design Example Revisited

■ Example: Changing the budget of the ‘Physics’ department

● Updates to many rows!

4 Easy to break integrity

4 If we forget to update a row, then we have multiple budget 

values for the physics department!

■ Example: Deleting all employees from the ‘Physics’ department

● How to avoid deleting the ‘Physics’ department?

● Dummy employee’s to store departments?

4 This is bad. E.g., counting the number of employees per 
department becomes more involved

©Silberschatz, Korth and Sudarshan2.10CS425 – Boris Glavic

Keys

■ Let K Í R

■ K is a superkey of R if values for K are sufficient to identify a unique 

tuple of each possible relation r(R)

● Example:  {ID} and {ID,name} are both superkeys of instructor.

■ Superkey K is a candidate key if K is minimal (no subset of K is also a 

superkey)

Example:  {ID} is a candidate key for Instructor

■ One of the candidate keys is selected to be the primary key.

● which one? -> domain specific design choice

■ Foreign key constraint: Value in one relation must appear in another

● Referencing relation

● Referenced relation

©Silberschatz, Korth and Sudarshan2.11CS425 – Boris Glavic

Keys

■ Formally, a set of attributes K Í R is a superkey if for every instance r of 
R holds that

● ∀t, t’ ∊ r: t.K = t’.K ⇒ t = t’

■ A superkey K is called a candidate key iff

● ∀K’ Í K: K’ is not a superkey

■ A foreign key constraint FK is quartuple (R, K, R’, K’) where R and R’ 

are relation schemata, K Í R, K’ is the primary key of R’, and |K| = |K’|

■ A foreign key holds over an instance {r, r’} for {R,R’} iff

● ∀t ∊ R:∃t’ ∊ R’: t.K = t’.K’ 

Th
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Schema Diagram for the University Database

ID
course_id
sec_id
semester
year
grade

ID
name
dept_name
tot_cred

building
room_no
capacity

s_id
i_id

ID
course_id
sec_id
semester
year

takes

section

classroom

teaches

prereq

course_id
prereq_id

course_id

title
dept_name
credits

course

student

dept_name

building
budget

department

instructor

ID
name
dept_name
salary

advisor

time_slot

time_slot_id
day
start_time
end_time

course_id
sec_id
semester
year
building
room_no
time_slot_id
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Recap

■ Database Schema (or short schema)

● Set of relation schemata

4 List of attribute names

■ Database Instance (or short database)

● Set of relations instances

4 Set of tuples

– List of attribute values

■ Integrity Constraints

● Keys (Super-, Candidate-, Primary-)

4 For identifying tuples

● Foreign keys

4 For referencing tuples in other relations
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Chapter 3:  Formal  Relational Query Languages

■ Relational Algebra

■ Tuple Relational Calculus

■ Domain Relational Calculus

Textbook: Chapter 6
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Relational Query Languages

■ Procedural vs non-procedural (declarative)

■ Pure languages:

● Relational algebra

● Tuple relational calculus

● Domain relational calculus

■ Expressive power of a query language

● What queries can be expressed in this language?

■ Relational algebra:

● Algebra of relations -> set of operators that take relations as input 
and produce relations as output

● -> closed: the output of evaluating an expression in relational 
algebra can be used as input to another relational algebra 
expression

■ Now: First introduction to operators of the relational algebra

©Silberschatz, Korth and Sudarshan3.4CS425 – Boris Glavic

Relational Algebra

■ Procedural language

■ Six basic operators

● select: s

● project: Õ

● union: È

● set difference: –

● Cartesian product: x

● rename: r

■ The operators take one or  two relations as inputs and produce a new 
relation as a result.

● composable

©Silberschatz, Korth and Sudarshan3.5CS425 – Boris Glavic

Select Operation – Example

■ Relation r

¡ sA=B ^ D > 5 (r)

©Silberschatz, Korth and Sudarshan3.6CS425 – Boris Glavic

Select Operation

■ Notation:  s p(r)

■ p is called the selection predicate

■ Defined as:

Where p is a formula in propositional calculus consisting of terms
connected by : Ù (and), Ú (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of:  =, ¹, >, ³. <. £

■ Example of selection:

s dept_name= Physics (instructor)

Th
eor
y

Wa
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g

σp(r) = {t | t ∈ r ∧ p(t)}
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Project Operation – Example

■ Relation r:

■ ÕA,C (r)

©Silberschatz, Korth and Sudarshan3.8CS425 – Boris Glavic

Project Operation

■ Notation:

where A1, A2 are attribute names and r is a relation name.

■ The result is defined as the relation of k columns obtained by erasing 
the columns that are not listed

■ Duplicate rows removed from result, since relations are sets

■ Let A be a subset of the attributes of relation r then:

■ Example: To eliminate the dept_name attribute of instructor

ÕID, name, salary (instructor) 

)( 
,,

2
,

1
r

k
AAA !

Õ
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πA(r) = {t.A | t ∈ r}
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Union Operation – Example 

■ Relations r, s:

■ r È s:
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Union Operation

■ Notation:  r È s

■ Defined as: 

■ For r È s to be valid.

1.  r, s must have the same arity (same number of attributes)

2.  The attribute domains must be union compatible (example: 2nd

column 
of r deals with the same type of values as does the 2nd 

column of s)

■ Example: to find all courses taught in the Fall 2009 semester, or in the 

Spring 2010 semester, or in both

Õcourse_id (s semester= Fall Λ year=2009 (section))  È

Õcourse_id (s semester= Spring Λ year=2010 (section))

r ∪ s = {t | t ∈ r ∨ t ∈ s}
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Set difference of two relations

■ Relations r, s:

■ r  – s:

©Silberschatz, Korth and Sudarshan3.12CS425 – Boris Glavic

Set Difference Operation

■ Notation r – s

■ Defined as:

■ Set differences must be taken between compatible relations.

● r and s must have the same arity

● attribute domains of r and s must be compatible

■ Example: to find all courses taught in the Fall 2009 semester, but 

not in the Spring 2010 semester

Õcourse_id (s semester= Fall Λ year=2009 (section))  −

Õcourse_id (s semester= Spring Λ year=2010 (section))

r � s = {t | t 2 r ^ t 62 s}
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Cartesian-Product Operation – Example

■ Relations r, s:

■ r x s:

©Silberschatz, Korth and Sudarshan3.14CS425 – Boris Glavic

Cartesian-Product Operation

■ Notation r x s

■ Defined as:

■ Assume that attributes of r(R) and s(S) are 
disjoint. (That is, R Ç S = Æ).

■ If attributes of r(R) and s(S) are not disjoint, then 
renaming must be used.

r × s = {t, t0 | t ∈ r ∧ t
0
∈ s}
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Composition of Operations
■ Can build expressions using multiple operations

■ Example:  sA=C(r x s)

■ r x s

■ sA=C(r x s)

©Silberschatz, Korth and Sudarshan3.16CS425 – Boris Glavic

Rename Operation

■ Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.

■ Allows us to refer to a relation by more than one name.

■ Example:

r x (r)

returns the expression E under the name X

■ If a relational-algebra expression E has arity n, then 

returns the result of expression E under the name X, and with the

attributes renamed to A1 , A2 , …., An .

ρ
x(A

1
,A
2
,...,A

n
)
(r)

ρX(r) = {t(X) | t ∈ r}

ρX(A)(r) = {t(X).A | t ∈ r}
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Example Query

■ Find the largest salary in the university

● Step 1: find instructor salaries that are less than some other 
instructor salary (i.e. not maximum)

– using a copy of instructor under a new name d

● Step 2: Find the largest salary

πinstructor.salary(σinstructor.salary<d.salary

(instructor × ρd(instructor)))

πsalary(instructor)−

πinstructor.salary(σinstructor.salary<d.salary

(instructor × ρd(instructor)))

©Silberschatz, Korth and Sudarshan3.18CS425 – Boris Glavic

Example Queries

■ Find the names of all instructors in the Physics department, along with the 
course_id of all courses they have taught

● Query 1

● Query 2

πinstructor.ID,course id(σdept name=0Physics0(

σinstructor.ID=teaches.ID(instructor × teaches)))

πinstructor.ID,course id(σinstructor.ID=teaches.ID(

σdept name=0Physics0(instructor × teaches)))
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Formal Definition (Syntax)

■ A basic expression in the relational algebra consists of either one of the 

following:

● A relation in the database

● A constant relation: e.g., {(1),(2)}

■ Let E1 and E2 be relational-algebra expressions; the following are all 

relational-algebra expressions:

● E1 È E2

● E1 – E2

● E1 x E2

● sp (E1), P is a predicate on attributes in E1

● Õs(E1), S is a list consisting of some of the attributes in E1

● r x (E1), x is the new name for the result of E1

Th
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Formal Definition (Semantics)

■ Let E be an relational algebra expression. We use [E](I) to denote the 

evaluation of E over a database instance I

● For simplicity we will often drop I and []

■ The result of evaluating a simple relational algebra expression E over a 

database is defined as

● Simple relation: [R](I) = R(I)

● Constant relation: [C](I) = C

Th
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Formal Definition (Semantics)

■ Let E1 and E2 be relational-algebra expressions.

Th
eor
y

Wa
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g

[E1 [ E2] = {t | t 2 [E1] _ t 2 [E2]}

[E1 � E2] = {t | t 2 [E1] ^ t 62 [E2]}

[E1 ⇥ E2] = {t, t0 | t 2 [E1] ^ t0 2 [E2]}

[σp(E1)] = {t | t 2 [E1] ^ p(t)}

[πA(E1)] = {t.A | t 2 [E1]}

[ρX(E1)] = {t(X) | t 2 [E1]}
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Null Values

■ It is possible for tuples to have a null value, denoted by null, for some 

of their attributes

■ null signifies an unknown value or that a value does not exist.

■ Examples:

● We register a new employee Peter, but the salary for this 

employee has not yet been determined

4 Unknown value

● A government agency collects data about residents including their 

SSN. Some residents are not allowed to work and, thus, do not 

have an SSN

4 The attribute SSN is not applicable for such residents

©Silberschatz, Korth and Sudarshan3.23CS425 – Boris Glavic

Conditions with Null Values

■ Comparisons with null values return the special truth value: unknown

● If false was used instead of unknown, then    not (A < 5)

would not be equivalent to               A >= 5

■ Three-valued logic using the truth value unknown:

● OR: (unknown or true)         = true, 
(unknown or false)        = unknown

(unknown or unknown) = unknown

● AND: (true and unknown) = unknown,   

(false and unknown) = false,
(unknown and unknown) = unknown

● NOT:  (not unknown) = unknown

● In SQL P is unknown evaluates to true if predicate P evaluates 
to unknown

■ Result of selection predicate is treated as false if it evaluates to 
unknown

©Silberschatz, Korth and Sudarshan3.24CS425 – Boris Glavic

Arithmetics with Null Values

■ The result of any arithmetic expression involving null is null.

■ Aggregate functions simply ignore null values (as in SQL)

■ For duplicate elimination and grouping, null is treated like any other 

value, and two nulls are assumed to be  the same (as in SQL)
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Additional Operations

We define additional operations that do not add any expressive power to 
the relational algebra, but that simplify common queries.

■ Set intersection

■ Natural join

■ Assignment

■ Outer join 

©Silberschatz, Korth and Sudarshan3.26CS425 – Boris Glavic

Set-Intersection Operation

■ Notation: r Ç s

■ Defined as:

■ Assume: 

● r, s have the same arity

● attributes of r and s are compatible

■ Note: r Ç s = r – (r – s)

● That is adding intersection to the language does not make it more 
expressive

r ∩ s = {t | t ∈ r ∧ t ∈ s}
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Set-Intersection Operation – Example

■ Relation r, s:

■ r Ç s
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■ Notation:  r     s

Natural-Join Operation

■ Let r and s be relations on schemas R and S respectively. 
Then,  r     s  is a relation on schema R È S obtained as follows:

● Consider each pair of tuples tr from r and ts from s.  

● If tr and ts have the same value on each of the attributes in R Ç S, add 
a tuple t to the result, where

4 t has the same value as tr on r

4 t has the same value as ts on s

■ Example:

R = (A, B, C, D)

S = (E, B, D)

● Result schema = (A, B, C, D, E)

● r s is defined as:

Õr.A, r.B, r.C, r.D, s.E (sr.B = s.B Ù r.D = s.D (r x  s))

©Silberschatz, Korth and Sudarshan3.29CS425 – Boris Glavic

Natural-Join Operation (cont.)

■ Let r and s be relations on schemas R and S respectively. 
Then,  r     s  is defined as:

X = R ∩ S

S
0 = S −R

r ./ s = ⇡R,S0(�r.X=s.X(r × s))

©Silberschatz, Korth and Sudarshan3.30CS425 – Boris Glavic

Natural Join Example

■ Relations r, s:

■ r     s
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Natural Join and Theta Join

■ Find the names of all instructors in the Comp. Sci. department together with 
the course titles of all the courses that the instructors teach

● Õ name, title (s dept_name= Comp. Sci. (instructor teaches
course))

■ Natural join is associative

● (instructor      teaches)     course is equivalent to
instructor (teaches     course)

■ Natural join is commutative (we ignore attribute order)

● instruct     teaches is equivalent to
teaches     instructor

■ The theta join operation  r     q s is defined as

r ./θ s = �θ(r × s)
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Assignment Operation

■ The assignment operation (¬) provides a convenient way to 
express complex queries. 

● Write query as a sequential program consisting of

4 a series of assignments 

4 followed by an expression whose value is displayed as a 
result of the query.

● Assignment must always be made to a temporary relation 
variable.

E1 ← σsalary>40000(instructor)

E2 ← σsalary<10000(instructor)

E3 ← E1 ∪ E2
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Outer Join

■ An extension of the join operation that avoids loss of information.

■ Computes the join and then adds tuples form one relation that does not 
match tuples in the other relation to the result of the join. 

■ Uses null values:

● null signifies that the value is unknown or does not exist 

● All comparisons involving null are (roughly speaking) false by 
definition.

4 We shall study precise meaning of comparisons with nulls later
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Outer Join – Example

■ Relation instructor1

■ Relation teaches1

ID course_id

10101
12121
76766

CS-101
FIN-201
BIO-101

Comp. Sci.
Finance
Music

ID dept_name

10101
12121
15151

name

Srinivasan
Wu
Mozart
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■ Left Outer Join

instructor          teaches

Outer Join – Example

■ Join 

instructor      teaches

ID dept_name

10101
12121

Comp. Sci.
Finance

course_id

CS-101
FIN-201

name

Srinivasan
Wu

ID dept_name

10101
12121
15151

Comp. Sci.
Finance
Music

course_id

CS-101
FIN-201
null

name

Srinivasan
Wu
Mozart
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Outer Join – Example

■ Full Outer Join

instructor         teaches

■ Right Outer Join

instructor        teaches

ID dept_name

10101
12121
76766

Comp. Sci.
Finance

null

course_id

CS-101
FIN-201
BIO-101

name

Srinivasan
Wu
null

ID dept_name

10101
12121
15151
76766

Comp. Sci.
Finance
Music
null

course_id

CS-101
FIN-201
null
BIO-101

name

Srinivasan
Wu
Mozart
null
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Defining Outer Join using Join

■ Outer join can be expressed using basic operations

r ><s = (r ./ s) ∪ ((r −ΠR(r ./ s))× {(null, . . . , null)})

r>< s = (r ./ s) ∪ ({(null, . . . , null)}× (s−ΠS(r ./ s)))

r >< s = (r ./ s) ∪ ((r −ΠR(r ./ s))× {(null, . . . , null)})

∪ ({(null, . . . , null)}× (s−ΠS(r ./ s)))
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Division Operator

■ Given relations r(R) and s(S), such that S Ì R,  r ÷ s is the largest 
relation t(R-S) such that 

t x s Í r

● Alternatively, all tuples from r.(R-S) such that all their extensions on 
R ∩ S with tuples from s exist in R

■ E.g. let  r(ID, course_id) = ÕID, course_id (takes ) and

s(course_id) = Õcourse_id (sdept_name= Biology (course ) 
then r ÷ s gives us students who have taken all courses in the Biology 
department

■ Can  write r ÷ s as 

E1 ← ΠR−S(r)

E2 ← ΠR−S((E1 × s)−ΠR−S,S(r ./ s))

r ÷ s = E1 − E2
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Division Operator Example

■ Return the name of all persons that read all newspapers

name newspaper

Peter
Bob
Alice
Alice

Times
Wall Street

newspaper

Times
Wall Street
Times
Wall Street

reads newspaper
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Extended Relational-Algebra-Operations

■ Generalized Projection

■ Aggregate Functions

©Silberschatz, Korth and Sudarshan3.41CS425 – Boris Glavic

Generalized Projection

■ Extends the projection operation by allowing arithmetic functions to be 
used in the projection list.

■ E is any relational-algebra expression

■ Each of F1, F2, …, Fn are arithmetic expressions and function calls 

involving constants and attributes in the schema of E.

■ Given relation instructor(ID, name, dept_name, salary) where salary is 
annual salary, get the same information but with monthly salary 

ÕID, name, dept_name, salary/12 (instructor)

■ Adding functions increases expressive power!

● In standard relational algebra there is no way to change attribute 
values

πF1,...,Fn
(E)

©Silberschatz, Korth and Sudarshan3.42CS425 – Boris Glavic

Aggregate Functions and Operations

■ Aggregation function takes a set of values and returns a single value 
as a result.

avg:  average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values

■ Aggregate operation in relational algebra 

E is any relational-algebra expression

● G1, G2 …, Gm is a list of attributes on which to group (can be empty)

● Each Fi is an aggregate function

● Each Ai is an attribute name

■ Note: Some books/articles use g instead of      (Calligraphic G)
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Aggregate Operation – Example

■ Relation r:

A B

a

a

b

b

a

b

b

b

C

7

7

3

10

■ sum(c) (r)
sum(c )

27
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Aggregate Operation – Example

■ Find the average salary in each department

dept_name avg(salary) (instructor)

avg_salary
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Aggregate Functions (Cont.)

■ What are the names for attributes in aggregation results?

● Need some convention!

4 E.g., use the expression as a name avg(salary)

● For convenience, we permit renaming as part of aggregate 
operation

dept_name avg(salary) as avg_sal (instructor)
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Modification of the Database

■ The content of the database may be modified using the following 
operations:

● Deletion

● Insertion

● Updating

■ All these operations can be expressed using the assignment 
operator

■ Example: Delete instructors with salary over $1,000,000

R ← R− (σsalary>1000000(R))
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Restrictions for Modification

■ Consider a modification where R=(A,B) and S=(C)

■ This would change the schema of R!

● Should not be allowed

■ Requirements for modifications

● The name R on the left-hand side of the assignment operator 
refers to an existing relation in the database schema

● The expression on the right-hand side of the assignment operator 
should be union-compatible with R

R ← σC>5(S)

©Silberschatz, Korth and Sudarshan3.48CS425 – Boris Glavic

Tuple Relational Calculus
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Tuple Relational Calculus

■ A nonprocedural query language, where each query is of the form

{t | P (t ) }

■ It is the set of all tuples t such that predicate P is true for t

■ t is a tuple variable, t [A ] denotes the value of tuple t on attribute A

■ t Î r denotes that tuple t is in relation r

■ P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.50CS425 – Boris Glavic

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., <, £, =, ¹, >, ³)

3. Set of logical connectives:  and (Ù), or (v)‚ not (¬)

4. Implication (Þ): x Þ y, if x if true, then y is true

x Þ y º ¬x v y

5. Set of quantifiers:

� $ t Î r (Q (t )) º there exists a tuple in t in relation r
such that predicate Q (t ) is true

� "t Î r (Q (t )) º Q is true for all tuples t in relation r
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Example Queries

■ Find the ID, name, dept_name, salary  for instructors whose salary is 
greater than $80,000

■ As in the previous query, but output only the ID attribute value

{t | $ s Î instructor (t [ID ] = s [ID ] Ù s [salary ] > 80000)}

Notice that a relation on schema (ID) is implicitly defined by             

the query, because

1) t is not bound to any relation by the predicate

2) we implicitly state that t has an ID attribute (t[ID] = s[ID])

{t | t Î instructor Ù t [salary ] > 80000}
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Example Queries

■ Find the names of all instructors whose department is in the Watson 
building

{t | $s Î section (t [course_id ] = s [course_id ] Ù
s [semester] = Fall Ù s [year] = 2009)

v $u Î section (t  [course_id ] = u [course_id ] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, or in 
the Spring 2010 semester, or both

{t | $s Î instructor (t [name ] = s [name ] 
Ù $u Î department (u [dept_name ] = s[dept_name] 

Ù u [building] = Watson ))}
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Example Queries

{t | $s Î section (t [course_id ] = s [course_id ] Ù
s [semester] = Fall Ù s [year] = 2009 )

Ù $u Î section (t  [course_id ] = u [course_id ] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, and in 
the Spring 2010 semester

{t | $s Î section (t [course_id ] = s [course_id ] Ù
s [semester] = Fall Ù s [year] = 2009)

Ù ¬ $u Î section (t  [course_id ] = u [course_id ] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, but not in 
the Spring 2010 semester

©Silberschatz, Korth and Sudarshan3.54CS425 – Boris Glavic

Safety of Expressions

■ It is possible to write tuple calculus expressions that generate infinite 
relations.

■ For example, { t | ¬ t Î r } results in an infinite relation if the domain of 
any attribute of relation r is infinite

■ To guard against the problem, we restrict the set of allowable 
expressions to safe expressions.

■ An expression {t | P (t )} in the tuple relational calculus is safe if every 
component of t appears in one of the relations, tuples, or constants that 
appear in P

● NOTE: this is more than just a syntax condition. 

4 E.g. { t | t [A] = 5 Ú true } is not safe --- it defines an infinite set 
with attribute values that do not appear in any relation or tuples 
or constants in P. 
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Universal Quantification

■ Find all students who have taken all courses offered in the 
Biology department

● {t | $ r Î student (t [ID] = r [ID]) Ù
(" u Î course (u [dept_name]= Biology Þ

$ s Î takes (t [ID] = s [ID ] Ù
s [course_id] = u [course_id]))}

● Note that without the existential quantification on student, 
the above query would be unsafe if the Biology department 
has not offered any courses. 

©Silberschatz, Korth and Sudarshan3.56CS425 – Boris Glavic

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan3.57CS425 – Boris Glavic

Domain Relational Calculus

■ A nonprocedural query language equivalent in power to the tuple 
relational calculus

■ Each query is an expression of the form:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

● x1, x2, …, xn represent domain variables

4 Variables that range of attribute values

● P represents a formula similar to that of the predicate calculus

● Tuples can be formed using <>

4 E.g., <‘Einstein’,’Physics’>

©Silberschatz, Korth and Sudarshan3.58CS425 – Boris Glavic

Example Queries

■ Find the ID, name, dept_name, salary  for instructors whose salary is 
greater than $80,000

● {< i, n, d, s> | < i, n, d, s> Î instructor Ù s > 80000}

■ As in the previous query, but output only the ID attribute value

● {< i> | < i, n, d, s> Î instructor Ù s > 80000}

■ Find the names of all instructors whose department is in the Watson 
building

{< n > | $ i, d, s (< i, n, d, s > Î instructor 

Ù $ b, a (< d, b, a> Î department  Ù b = Watson ))}
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Example Queries

{<c> | $ a, s, y, b, r, t  ( <c, a, s, y, b, t > Î section  Ù
s = Fall Ù y = 2009 )

v $ a, s, y, b, r, t ( <c, a, s, y, b, t > Î section ] Ù
s = Spring Ù y = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, or in 
the Spring 2010 semester, or both

This case can also be written as
{<c> | $ a, s, y, b, r, t  ( <c, a, s, y, b, t > Î section  Ù

( (s = Fall Ù y = 2009 )  v (s = Spring Ù y = 2010))}

■ Find the set of all courses taught in the Fall 2009 semester, and in 
the Spring 2010 semester

{<c> | $ a, s, y, b, r, t  ( <c, a, s, y, b, t > Î section  Ù
s = Fall Ù y = 2009 )

Ù $ a, s, y, b, r, t ( <c, a, s, y, b, t > Î section ] Ù
s = Spring Ù y = 2010)}
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Safety of Expressions

The expression:

{ < x1, x2, …, xn > | P (x1, x2, …, xn )}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values 
from dom (P ) (that is, the values appear either as constants in P or 

in a tuple of a relation mentioned in P ).

2. For every there exists subformula of the form $ x (P1(x )), the 
subformula is true if and only if there is a value of x in dom (P1)
such that P1(x ) is true.

3. For every for all subformula of the form "x (P1 (x )), the subformula is 
true if and only if P1(x ) is true for all values x from dom (P1).
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Universal Quantification

■ Find all students who have taken all courses offered in the Biology 
department

● {< i > | $ n, d, tc ( < i, n, d, tc > Î student  Ù

(" ci, ti, dn, cr ( < ci, ti, dn, cr > Î course Ù dn = Biology
Þ $ si, se, y, g ( <i, ci, si, se, y, g> Î takes ))}

● Note that without the existential quantification on student, the 
above query would be unsafe if the Biology department has not 
offered any courses. 

* Above query fixes bug in page 246, last query
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Relationship between Relational Algebra 

and Tuple (Domain) Calculus
■ Codd’s theorem

● Relational algebra and tuple calculus are equivalent in terms of 
expressiveness

■ That means that every query expressible in relational algebra can also 
be expressed in tuple calculus and vice versa

■ Since domain calculus is as expressive as tuple calculus the same 
holds for the domain calculus

■ Note: Here relational algebra refers to the standard version (no 
aggregation and projection with functions)

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter 3
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Recap
■ Query language

● Declarative

● Retrieve, combine, and analyze data from a database instance

■ Relational algebra

● Standard relational algebra: 

4 Selection, projection, renaming, cross product, union, set 
difference

● Null values

● Semantic sugar operators:

4 Intersection, joins, division,

● Extensions:

4 Aggregation, extended projection 

■ Tuple Calculus

● safety

■ Domain Calculus
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Introduction

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Figure 6.01
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Figure 6.02
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Figure 6.03
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Figure 6.04

©Silberschatz, Korth and Sudarshan3.70CS425 – Boris Glavic

Figure 6.05
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Figure 6.06
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Figure 6.07
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Figure 6.08
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Figure 6.09
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Figure 6.10
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Figure 6.11
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Figure 6.12
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Figure 6.13
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Figure 6.14

©Silberschatz, Korth and Sudarshan3.80CS425 – Boris Glavic

Figure 6.15
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Figure 6.16

©Silberschatz, Korth and Sudarshan3.82CS425 – Boris Glavic

Figure 6.17
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Figure 6.18
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Figure 6.19
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Figure 6.20
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Figure 6.21
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Deletion

■ A delete request is expressed similarly to a query, except 
instead of displaying tuples to the user, the selected tuples are 
removed from the database.

■ Can delete only whole tuples; cannot delete values on only 
particular attributes

■ A deletion is expressed in relational algebra by:

r ¬ r – E

where r is a relation and E is a relational algebra query.

©Silberschatz, Korth and Sudarshan3.88CS425 – Boris Glavic

Deletion Examples

■ Delete all account records in the Perryridge branch.

■ Delete all accounts at branches located in Needham.

r1 ¬ s branch_city = Needham (account      branch )

r2 ¬ Õ account_number, branch_name, balance (r1)

r3 ¬ Õ customer_name, account_number (r2 depositor)

account ¬ account – r2

depositor ¬ depositor – r3

■ Delete all loan records with amount in the range of 0 to 50

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

account ¬ account – s branch_name = Perryridge (account )
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Insertion

■ To insert data into a relation, we either:

● specify a tuple to be inserted

● write a query whose result is a set of tuples to be inserted

■ in relational algebra, an insertion is expressed by:

r ¬ r È E

where r is a relation and E is a relational algebra expression.

■ The insertion of a single tuple is expressed by letting E be a constant 
relation containing one tuple. 
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Insertion Examples

■ Insert information in the database specifying that Smith has $1200 in 
account A-973 at the Perryridge branch.

■ Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account.  Let the loan number serve
as the account number for the new savings account.

account ¬ account È {( A-973 , Perryridge , 1200)}

depositor ¬ depositor È {( Smith , A-973 )}

r1 ¬ (sbranch_name = Perryridge (borrower    loan))

account ¬ account È Õloan_number, branch_name, 200 (r1)

depositor ¬ depositor È Õcustomer_name, loan_number (r1)
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Updating

■ A mechanism to change a value in a tuple without charging all values in 
the tuple

■ Use the generalized projection operator to do this task

■ Each Fi is either 

● the I th attribute of r, if the I th attribute is not updated, or,

● if the attribute is to be updated Fi is an expression, involving only 
constants and the attributes of r, which gives the new value for the 
attribute

)(
,,,, 21
rr

lFFF …
∏←
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Update Examples

■ Make interest payments by increasing all balances by 5 percent.

■ Pay all accounts with balances over $10,000 6 percent interest 
and pay all others 5 percent 

account ¬ Õ account_number, branch_name, balance * 1.06 (s BAL > 10000 (account ))
È Õ account_number, branch_name, balance * 1.05 (sBAL £ 10000 

(account))

account ¬ Õ account_number, branch_name, balance * 1.05 (account)
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Example Queries

■ Find the names of all customers who have a loan and an account at 
bank.

Õcustomer_name (borrower) Ç Õcustomer_name (depositor)

■ Find the name of all customers who have a loan at the bank and the 

loan amount

Õcustomer_name, loan_number, amount (borrower     loan)
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● Query 1

Õcustomer_name (sbranch_name = Downtown (depositor account )) Ç

Õcustomer_name (sbranch_name = Uptown (depositor account))

● Query 2

Õcustomer_name, branch_name (depositor account)

÷ rtemp(branch_name) ({( Downtown ), ( Uptown )})

Note that Query 2 uses a constant relation.

Example Queries

■ Find all customers who have an account from at least the 
Downtown and the Uptown branches.
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■ Find all customers who have an account at all branches located in 

Brooklyn city.

Bank Example Queries

Õcustomer_name, branch_name (depositor account)

÷ Õbranch_name (sbranch_city = Brooklyn (branch))
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Chapter 4:  Introduction to SQL

■ Overview of the SQL Query Language

■ Data Definition

■ Basic Query Structure

■ Additional Basic Operations

■ Set Operations

■ Null Values

■ Aggregate Functions

■ Nested Subqueries

■ Modification of the Database 

Textbook: Chapter 3
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History

■ IBM Sequel language developed as part of System R project at 
the IBM San Jose Research Laboratory

■ Renamed Structured Query Language (SQL)

■ ANSI and ISO standard SQL:

● SQL-86, SQL-89, SQL-92

● SQL:1999, SQL:2003, SQL:2008

■ Commercial systems offer most, if not all, SQL-92 features, 
plus varying feature sets from later standards and special 
proprietary features.

● Not all examples here may work one-to-one on your 
particular system.
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Data Definition Language

■ The schema for each relation.

■ The domain of values associated with each attribute.

■ Integrity constraints

■ And as we will see later, also other information such as 

● The set of indices to be maintained for each relations.

● Security and authorization information for each relation.

● The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the 
specification of information about relations, including:
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Domain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.

■ varchar(n). Variable length character strings, with user-specified 
maximum length n.

■ int. Integer (a finite subset of the integers that is machine-
dependent).

■ smallint. Small integer (a machine-dependent subset of the integer 
domain type).

■ numeric(p,d). Fixed point number, with user-specified precision of 
p digits, with n digits to the right of decimal point.

■ real, double precision. Floating point and double-precision floating 
point numbers, with machine-dependent precision.

■ float(n). Floating point number, with user-specified precision of at 
least n digits.

■ More are covered in Chapter 4.
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Create Table Construct

■ An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation

● each Ai is an attribute name in the schema of relation r

● Di is the data type of values in the domain of attribute Ai

■ Example:

create table instructor (
ID char(5),
name           varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

■ insert into instructor  values ( 10211 , Smith , Biology , 66000);

■ insert into instructor  values ( 10211 , null, Biology , 66000);
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Integrity Constraints in Create Table

■ not null

■ primary key (A1, ..., An )

■ foreign key (Am, ..., An ) references r

Example:  Declare ID as the primary key for instructor

.
create table instructor (

ID char(5),
name           varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),

primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan4.8CS425 – Boris Glavic

And a Few More Relation Definitions
■ create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department) );

■ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section );

● Note: sec_id can be dropped from primary key above, to ensure a 
student cannot be registered for two sections of the same course in the 
same semester
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Even more

■ create table course (
course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department) );

● Primary key declaration can be combined with attribute 
declaration as shown above
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Drop and Alter Table Constructs

■ drop table student

● Deletes the table and its contents

■ alter table

● alter table r add A D

4 where A is the name of the attribute to be added to 
relation r and D is the domain of A.

4All tuples in the relation are assigned null as the value 
for the new attribute.

● alter table r drop A

4where A is the name of an attribute of relation r

4Dropping of attributes not supported by many 
databases

● And more …
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Basic Query Structure 

■ The SQL data-manipulation language (DML) provides the 
ability to query information, and insert, delete and update 
tuples

■ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

● Ai represents an attribute

● Ri represents a relation

● P is a predicate.

■ The result of an SQL query is a relation.
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The select Clause

■ The select clause list the attributes desired in the result of a query

● corresponds to the projection operation of the relational algebra

■ Example: find the names of all instructors:

select name

from instructor

■ NOTE:  SQL keywords are case insensitive (i.e., you may use upper- or 
lower-case letters.)  

● E.g.   Name ≡ NAME ≡ name

● Some people use upper case wherever we use bold font.
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The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.

■ To force the elimination of duplicates, insert the keyword distinct

after select.

■ Find the names of all departments with instructor, and remove 
duplicates

select distinct dept_name
from instructor

■ The (redundant) keyword all specifies that duplicates not be 
removed.

select all dept_name
from instructor
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The select Clause (Cont.)

■ An asterisk in the select clause denotes all attributes

select *
from instructor

■ The select clause can contain arithmetic expressions involving 
the operation, +, –, *, and /, and operating on constants or 
attributes of tuples.

● Most systems also support additional functions

4 E.g., substring

● Most systems allow user defined functions (UDFs)

■ The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, 
except that the value of the attribute salary is divided by 12.

©Silberschatz, Korth and Sudarshan4.15CS425 – Boris Glavic

The from Clause

■ The from clause lists the relations involved in the query

● Corresponds to the Cartesian product operation of the 
relational algebra.

■ Find the Cartesian product instructor X teaches

select *
from instructor, teaches

● generates every possible instructor – teaches pair, with all 
attributes from both relations

■ Cartesian product not very useful directly, but useful combined 
with where-clause condition (selection operation in relational 
algebra)
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The where Clause

■ The where clause specifies conditions that the result must 
satisfy

● Corresponds to the selection predicate of the relational 
algebra.

■ To find all instructors in Comp. Sci. dept with salary > 80000
select name

from instructor
where dept_name = Comp. Sci.' and salary > 80000

■ Comparison results can be combined using the logical 
connectives and, or, and not.

■ Comparisons can be applied to results of arithmetic expressions.

■ SQL standard: any valid expression that returns a boolean result

● Vendor specific restrictions may apply!
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Cartesian Product: instructor X teaches
instructor teaches
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grade
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course_id

title
dept_name
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course

time_slot

time_slot_id
day
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course_id
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year
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time_slot_id

grade
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course_id

title
dept_name
credits

course

time_slot

time_slot_id
day
start_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

Joins

■ For all instructors who have taught some course, find their names 
and the course ID of the courses they taught.

select name, course_id

from instructor, teaches
where  instructor.ID = teaches.ID

■ Find the course ID, semester, year and title of each course offered 
by the Comp. Sci. department

select section.course_id, semester, year, title

from section, course
where  section.course_id = course.course_id  and

dept_name = Comp. Sci.'
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Try Writing Some Queries in SQL

■ Suggest queries to be written…..
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Joined Relations

■ Join operations take two relations and return as a result 
another relation.

■ A join operation is a Cartesian product which requires that 
tuples in the two relations match (under some condition).  
It also specifies the attributes that are present in the result 
of the join

■ The join operations are typically used as subquery 
expressions in the from clause
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Join operations – Example

■ Relation course

■ Relation prereq

■ Observe that 

prereq information is missing for CS-315 and

course information is missing  for  CS-437
©Silberschatz, Korth and Sudarshan4.22CS425 – Boris Glavic

Natural Join

■ Natural join matches tuples with the same values for all 
common attributes, and retains only one copy of each common 
column

● This is the natural join from relational algebra

■ select *

from instructor natural join teaches;
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Natural Join Example

■ List the names of instructors along with the course ID of the courses that 
they taught.

● select name, course_id
from instructor, teaches

where instructor.ID = teaches.ID;

● select name, course_id
from instructor natural join teaches;
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Natural Join (Cont.)

■ Danger in natural join: beware of unrelated attributes with same name which 
get equated incorrectly

■ List the names of instructors along with the the titles of courses that they 
teach

● Incorrect version (makes course.dept_name = instructor.dept_name)

4 select name, title
from instructor natural join teaches natural join course;

● Correct version

4 select name, title
from instructor natural join teaches, course

where teaches.course_id = course.course_id;

● Another correct version

4 select name, title
from (instructor natural join teaches)

join course using(course_id);
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Outer Join

■ An extension of the join operation that avoids loss of 
information.

■ Computes the join and then adds tuples form one relation 
that does not match tuples in the other relation to the result 
of the join. 

■ Uses null values.

©Silberschatz, Korth and Sudarshan4.26CS425 – Boris Glavic

Left Outer Join

■ course natural left outer join prereq
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Right Outer Join

■ course natural right outer join prereq
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Joined Relations

■ Join operations take two relations and return as a result 
another relation.

■ These additional operations are typically used as subquery 
expressions in the from clause

■ Join condition – defines which tuples in the two relations 
match, and what attributes are present in the result of the join.

■ Join type – defines how tuples in each relation that do not 
match any tuple in the other relation (based on the join 
condition) are treated.
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Full Outer Join

■ course natural full outer join prereq

©Silberschatz, Korth and Sudarshan4.30CS425 – Boris Glavic

Joined Relations – Examples 

■ course inner join prereq on
course.course_id = prereq.course_id

■ What is the difference between the above, and a natural join? 

■ course left outer join prereq on

course.course_id = prereq.course_id
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Joined Relations – Examples

■ course natural right outer join prereq

■ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.32CS425 – Boris Glavic

The Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

■ E.g.

● select ID, name, salary/12 as monthly_salary

from instructor

■ Find the names of all instructors who have a higher salary than 
some instructor in Comp. Sci .

● select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = Comp. Sci.

■ Keyword as is optional and may be omitted
instructor as T ≡ instructor T

● Keyword as must be omitted in Oracle

©Silberschatz, Korth and Sudarshan4.33CS425 – Boris Glavic

String Operations

■ SQL includes a string-matching operator for comparisons on 
character strings.  The operator like uses patterns that are 
described using two special characters:

● percent (%).  The % character matches any substring.

● underscore (_).  The _ character matches any character.

■ Find the names of all instructors whose name includes the substring 
dar .

select name

from instructor
where name like '%dar%'

■ Match the string 100 %

like 100 \%' escape  '\'
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String Operations (Cont.)

■ Patters are case sensitive. 

■ Pattern matching examples:

● Intro% matches any string beginning with Intro .

● %Comp% matches any string containing Comp as a substring.

● _ _ _ matches any string of exactly three characters.

● _ _ _ % matches any string of at least three characters.

■ SQL supports a variety of string operations such as

● concatenation (using || )

● converting from upper to lower case (and vice versa)

● finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.35CS425 – Boris Glavic

Case Construct

■ Like case, if, and ? Operators in programming languages

case

when c1 then e1

when c2 then e2

…

[else en]

end

■ Each ci is a condition

■ Each e1 is an expression

■ Returns the first ei for which ci evaluates to true

● If none of the ci is true, then return en (else)

4 If there is no else return null
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Case Construct Example

■ Like case, if, and ? Operators in programming languages

select

name,

case

when salary > 1000000 then ‘premium’

else ‘standard’

end as customer_group

from customer
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Ordering the Display of Tuples

■ List in alphabetic order the names of all instructors 
select distinct name

from    instructor

order by name

■ We may specify desc for descending order or asc for 
ascending order, for each attribute; ascending order is the 
default.

● Example:  order by name desc

■ Can sort on multiple attributes

● Example: order by dept_name, name

■ Order is not expressible in the relational model!
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Where Clause Predicates

■ SQL includes a between comparison operator

■ Example:  Find the names of all instructors with salary between 
$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)

● select name
from instructor

where salary between 90000 and 100000

■ Tuple comparison

● select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, Biology );
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Set Operations

■ Find courses that ran in Fall 2009 or in Spring 2010

■ Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = Fall and year = 2009)
union
(select course_id from section where sem = Spring and year = 2010)

■ Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = Fall and year = 2009)
intersect
(select course_id from section where sem = Spring and year = 2010)

(select course_id from section where sem = Fall and year = 2009)
except
(select course_id from section where sem = Spring and year = 2010)
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Set Operations

■ Set operations union, intersect, and except

● Each of the above operations automatically eliminates 
duplicates

■ To retain all duplicates use the corresponding multiset versions 
union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it 
occurs:

● m + n times in r union all s

● min(m,n) times in r intersect all s

● max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan4.41CS425 – Boris Glavic

Null Values

■ It is possible for tuples to have a null value, denoted by null, for 
some of their attributes

■ null signifies an unknown value or that a value does not exist.

■ The result of any arithmetic expression and comparisons 
involving null evaluate to null

● Example:  5 + null returns null

null > 5 returns null

null = null returns null

■ The predicate  is null can be used to check for null values.

● Example: Find all instructors whose salary is null.

select name
from instructor

where salary is null
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Null Values and Three Valued Logic

■ Any comparison with null returns null

● Example: 5 < null   or   null <> null    or    null = null

■ Three-valued logic using the truth value null:

● OR: (null or true)   = true,
(null or false)  = null

(null or null) = null

● AND: (true and null)  = null,    

(false and null) = false,

(null and null) = null

● NOT:  (not null) = null

● P is null evaluates to true if predicate P evaluates to null

■ Result of where clause predicate is treated as false if it 
evaluates to null
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Aggregate Functions

■ These functions operate on the multiset of values of a 
column of a relation, and return a value

avg: average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values

■ Most DBMS support user defined aggregation functions
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Aggregate Functions (Cont.)

■ Find the average salary of instructors in the Computer Science 
department

● select avg (salary)
from instructor
where dept_name= Comp. Sci. ;

■ Find the total number of instructors who teach a course in the 
Spring 2010 semester

● select count (distinct ID)
from teaches

where semester = Spring and year = 2010

■ Find the number of tuples in the course relation

● select count (*)
from course;
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Aggregate Functions – Group By

■ Find the average salary of instructors in each department

● select dept_name, avg (salary)
from instructor

group by dept_name;

● Note: departments with no instructor will not appear in result
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Aggregation (Cont.)

■ Attributes in select clause outside of aggregate functions must 
appear in group by list

● /* erroneous query */
select dept_name, ID, avg (salary)
from instructor

group by dept_name;
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Aggregate Functions – Having Clause

■ Find the names and average salaries of all departments whose 
average salary is greater than 42000

Note:  predicates in the having clause are applied after the 
formation of groups whereas predicates in the where

clause are applied before forming groups

select dept_name, avg (salary)
from instructor

group by dept_name
having avg (salary) > 42000;
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Null Values and Aggregates

■ Total all salaries

select sum (salary )
from instructor

● Above statement ignores null amounts

● Result is null if there is no non-null amount

■ All aggregate operations except count(*) ignore tuples with null 
values on the aggregated attributes

■ What if collection has only null values?

● count returns 0

● all other aggregates return null
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Empty Relations and Aggregates

■ What if the input relation is empty

■ Conventions:

● sum: returns null

● avg: returns null

● min: returns null

● max: returns null

● count: returns 0
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Duplicates

■ In relations with duplicates, SQL can define how many copies 
of tuples appear in the result.

■ Multiset (bag semantics) versions of some of the relational 
algebra operators – given multiset relations r1 and r2:

1. sq (r1): If there are c1 copies of tuple t1 in r1, and t1

satisfies selections sq,, then there are c1 copies of t1 in sq
(r1).

2. PA (r ): For each copy of tuple t1 in r1, there is a copy of 
tuple PA (t1) in PA (r1) where PA (t1) denotes the 
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies 
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 

x r2
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Multiset Relational Algebra

■ Pure relational algebra operates on set-semantics (no duplicates 
allowed)

● e.g. after projection

■ Multiset (bag-semantics) relational algebra retains duplicates, to 
match SQL semantics

● SQL duplicate retention was initially for efficiency, but is now a 
feature

■ Multiset relational algebra defined as follows

● selection: has as many duplicates of a tuple as in  the input, if the 
tuple satisfies the selection

● projection: one tuple per input tuple, even if it is a duplicate

● cross product:  If there are  m copies of t1 in r, and n copies of 
t2 in s, there are m x n copies of t1.t2 in r x s

● Other operators similarly defined 

4 E.g. union: m + n copies, intersection: min(m, n) copies
difference: max(0, m – n) copies
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Duplicates (Cont.)

■ Example: Suppose multiset relations r1 (A, B) and r2 (C) 
are as follows:

r1 = {(1, a) (2,a)}     r2 = {(2), (3), (3)}

■ Then PB(r1) would be {(a), (a)}, while PB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

■ SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((
21,,, 21 mPAAA

rrr
n

×××∏ …
…

σ
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SQL and Relational Algebra

■ select A1, A2, .. An

from   r1, r2, …, rm

where P

is equivalent to the following expression in multiset relational algebra

Õ A1, .., An (s P (r1 x r2 x .. x rm))

■ select A1, A2, sum(A3)

from   r1, r2, …, rm

where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

A1, A2 sum(A3) (s P (r1 x r2 x .. x rm)))
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SQL and Relational Algebra

■ More generally, the non-aggregated attributes in the select clause 
may be a subset of the group by attributes, in which case the 
equivalence is as follows:

select A1, sum(A3) AS sumA3

from   r1, r2, …, rm

where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

Õ A1,sumA3( A1,A2 sum(A3) as sumA3(s P (r1 x r2 x .. x rm)))
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Subqueries in the From Clause

■ SQL allows a subquery expression to be used in the from clause

■ Find the average instructors salaries of those departments where the 
average salary is greater than $42,000. 

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)
where avg_salary > 42000;

■ Note that we do not need to use the having clause

■ Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary) 
from instructor

group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;
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Nested Subqueries

■ SQL provides a mechanism for the nesting of subqueries.

■ A subquery is a select-from-where expression that is nested 
within another query.

■ A common use of subqueries is to perform tests for set 
membership, set comparisons, and set cardinality.
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Example Query

■ Find courses offered in Fall 2009 and in Spring 2010

■ Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section

where semester = Fall and year= 2009 and 

course_id in (select course_id
from section

where semester = Spring and year= 2010);

select distinct course_id
from section

where semester = Fall and year= 2009 and 

course_id  not in (select course_id
from section

where semester = Spring and year= 
2010);
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Example Query

■ Find the total number of (distinct) studentswho have taken 
course sections taught by the instructor with ID 10101

■ Note: Above query can be written in a much simpler manner.  The 
formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes

where (course_id, sec_id, semester, year) in 

(select course_id, sec_id, semester, year
from teaches

where teaches.ID= 10101);
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Quantification

■ Find names of instructors with salary greater than that of some 
(at least one) instructor in the Biology department.

■ Same query using > some clause

select name
from instructor

where salary > some (select salary

from instructor

where dept_name = Biology );

select distinct T.name
from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = Biology ;
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Definition of  Some Clause

■ F <comp> some r Û $ t Î r such that (F <comp> t )
Where <comp> can be:  <,  £, >, =, ¹

0

5

6

(5 < some ) = true

0
5

0

) = false

5

0

5(5 ¹ some ) = true (since 0 ¹ 5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some) º in

However, (¹ some) º not in
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Example Query

■ Find the names of all instructors whose salary is greater than 
the salary of all instructors in the Biology department.

select name
from instructor

where salary > all (select salary

from instructor

where dept_name = Biology );
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Definition of all Clause

■ F <comp> all r Û " t Î r (F <comp> t)

0

5

6

(5 < all ) = false

6
10

4

) = true

5

4

6(5 ¹ all ) = true (since 5 ¹ 4 and 5 ¹ 6)

(5 < all

) = false(5 = all

(¹ all) º not in

However, (= all) º in
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Test for Empty Relations

■ The exists construct returns the value true if the argument 
subquery returns a nonempty result.

■ exists r Û r ¹ Ø

■ not exists r Û r = Ø
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Correlation Variables

■ Yet another way of specifying the query Find all courses 
taught in both the Fall 2009 semester and in the Spring 2010 
semester

select course_id
from section as S

where semester = Fall and year= 2009 and 

exists (select *
from section as T

where semester = Spring and year= 2010 
and S.course_id= T.course_id);

■ Correlated subquery

■ Correlation name or correlation variable
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Not Exists

■ Find all students who have taken all courses offered in the 
Biology department.

select distinct S.ID, S.name
from student as S

where not exists ( (select course_id

from course

where dept_name = Biology )
except
(select T.course_id
from takes as T

where S.ID = T.ID));

■ Note that X – Y = Ø Û X Í Y

■ Note: Cannot write this query using = all and its variants
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Test for Absence of Duplicate Tuples

■ The unique construct tests whether a subquery has any duplicate tuples 
in its result.

● (Evaluates to true on an empty set)

■ Find all courses that were offered at most once in 2009

select T.course_id
from course as T

where unique (select R.course_id
from section as R

where T.course_id= R.course_id 
and R.year = 2009);
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Correlated Subqueries in the From 

Clause
■ And yet another way to write it: lateral clause

select name, salary, avg_salary

from instructor I1,
lateral (select avg(salary) as avg_salary

from instructor I2

where I2.dept_name= I1.dept_name);

■ Lateral clause permits later part of the from clause (after the lateral 

keyword) to access correlation variables from the earlier part.

■ Note: lateral is part of the SQL standard, but is not supported on many 
database systems; some databases such as SQL Server offer 
alternative syntax
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With Clause

■ The with clause provides a way of defining a temporary view 
whose definition is available only to the query in which the with

clause occurs.

■ Find all departments with the maximum budget 

with max_budget (value) as 

(select max(budget)
from department)

select budget

from department, max_budget
where department.budget = max_budget.value;
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Complex Queries using With Clause

■ With clause is very useful for writing complex queries

■ Supported by most database systems, with minor syntax 
variations

■ Find all departments where the total salary is greater than the 
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor

group by dept_name),
dept_total_avg(value) as

(select avg(value)
from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value >= dept_total_avg.value;
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Scalar Subquery

■ Scalar subquery is one which is used where a single value is expected

■ E.g.   select dept_name, 
(select count(*) 

from instructor 

where department.dept_name = instructor.dept_name)
as num_instructors

from department;

■ E.g.  select name
from instructor
where salary * 10 > 

(select budget from department 
where department.dept_name = instructor.dept_name)

■ Runtime error if subquery returns more than one result tuple
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Query Features Recap - Syntax

■ An SQL query is either a Select-from-where block or a set operation

■ An SQL query block is structured like this:

SELECT [DISTINCT] select_list

[FROM from_list]

[WHERE where_condition]

[GROUP BY group_by_list]

[HAVING having_condition]

[ORDER BY order_by_list]

■ Set operations

[Query Block] set_op [Query Block]

set_op: [ALL] UNION | INTERSECT | EXCEPT
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Query Features Recap - Syntax

■ Almost all clauses are optional

■ Examples:

● SELECT * FROM r;

● SELECT 1;

4 Convention: returns single tuple 

● SELECT ‘ok’ FROM accounts HAVING sum(balance) = 0;

● SELECT 1 GROUP BY 1;

● SELECT 1 HAVING true;

● Let r be a relation with two attributes a and b 

4 SELECT a,b FROM r 

WHERE a IN (SELECT a FROM r) AND b IN (SELECT b FROM r)

GROUP BY a,b HAVING count(*) > 0;

■ Note:

● Not all systems support all of this “non-sense”
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Syntax - SELECT

■ SELECT [DISTINCT [ON (distinct_list)]] select_list

■ select_list

● List of projection expressions

4 [expr] [AS name]

● expr

4 Expression over attributes, constants, arithmetic operators, 
functions, CASE-construct, aggregation functions

■ distinct_list

● List of expressions

■ Examples:

● SELECT DISTINCT ON (a % 2) a FROM r;

● SELECT substring(a, 1,2) AS x FROM r;

● SELECT CASE WHEN a = 2 THEN a ELSE null END AS b FROM r;

● SELECT a = b AS is_a_equal_to_b FROM r;
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Syntax - FROM

■ FROM from_list

■ from_list

● List of from clause expressions

4 subquery | relation | constant_relation | join_expr [alias]

● subquery

4 Any valid SQL query – alias is not optional 

● relation

4 A relation in the database

● constant_relation

4 (VALUES tuples) – alias is not optional

● join_expr

4 joins between from_clause entries

● alias

4 [AS] b [(attribute_name_list)]
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Syntax – FROM (cont.)

■ Examples (relation r with attributes a and b):

● SELECT * FROM r;

● SELECT * FROM r AS g(v,w);

● SELECT * FROM r x;

● SELECT * FROM (VALUES (1,2), (3,1)) AS s(u,v);

● SELECT * FROM r NATURAL JOIN s, t;

● SELECT * FROM ((r JOIN s ON (r.a = s.c)) NATURAL JOIN
(SELECT * FROM t) AS new);

● SELECT * FROM (SELECT * FROM r) AS r;

● SELECT * FROM (SELECT * FROM (SELECT * FROM r) AS r) AS r;
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Syntax - WHERE

■ WHERE where_condition

■ where_condition: A boolean expression over

● Attributes

● Constants: e.g., true, 1, 0.5, ‘hello’

● Comparison operators: =, <, >, IS DISTINCT FROM, IS NULL, …

● Arithmetic operators: +,-,/,%

● Function calls

● Nested subquery expressions

■ Examples

● SELECT * FROM r WHERE a = 2;

● SELECT * FROM r WHERE true OR false;

● SELECT * FROM r WHERE NOT(a = 2 OR a = 3);

● SELECT * FROM r WHERE a IS DISTINCT FROM b;

● SELECT * FROM r WHERE a < ANY (SELECT c FROM s);

● SELECT * FROM r WHERE a = (SELECT count(*) FROM s);
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Syntax – GROUP BY

■ GROUP BY group_by_list

■ group_by_list

● List of expressions

4 Expression over attributes, constants, arithmetic operators, 
functions, CASE-construct, aggregation functions

■ Examples:

● SELECT sum(a), b FROM r GROUP BY b;

● SELECT sum(a), b, c FROM r GROUP BY b, c;

● SELECT sum(a), b/2 FROM r GROUP BY b/2;

● SELECT sum(a), b FROM r GROUP BY b > 5;

4 Incorrect, cannot select b, because it is not an expression in the 
group by clause

● SELECT sum(a), b FROM r GROUP BY b IN (SELECT c FROM s);
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Syntax – HAVING

■ HAVING having_condition

■ having_condition

● Like where_condition except that expressions over attributes have 
either to be in the GROUP BY clause or are aggregated

■ Examples:

● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) > 10;

● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) + 5 > 10;

● SELECT sum(a), b FROM r GROUP BY b HAVING true;

● SELECT sum(a), b FROM r GROUP BY b HAVING count(*) = 50;

● SELECT b FROM r GROUP BY b HAVING sum(a) > 10;
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Syntax – ORDER BY

■ ORDER BY order_by_list

■ order_by_list

● Like select_list minus renaming

● Optional [ASC | DESC] for each item

■ Examples:

● SELECT * FROM r ORDER BY a;

● SELECT * FROM r ORDER BY b, a;

● SELECT * FROM r ORDER BY a * 2;

● SELECT * FROM r ORDER BY a * 2, a;

● SELECT * FROM r ORDER BY a + (SELECT count(*) FROM s);
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Query Semantics

■ Evaluation Algorithm (you can do it manually – sort of)

1. Compute FROM clause

1. Compute cross product of all items in the FROM clause

4 Relations: nothing to do

4 Subqueries: use this algorithm to recursively compute the result of 
subqueries first

4 Join expressions: compute the join

2. Compute WHERE clause

1. For each tuple in the result of 1. evaluate the WHERE clause 
condition

3. Compute GROUP BY clause

1. Group the results of step 2. on the GROUP BY expressions

4. Compute HAVING clause

1. For each group (if any) evaluate the HAVING condition

©Silberschatz, Korth and Sudarshan4.81CS425 – Boris Glavic

Query Semantics (Cont.)

5. Compute SELECT clause

5. Project each result tuple from step 4 on the SELECT expressions

6. Compute ORDER BY clause

5. Order the result of step 5 on the ORDER BY expressions

■ If the WHERE, SELECT, GROUP BY, HAVING, ORDER BY clauses 
have any nested subqueries

● For each tuple t in the result of the FROM clause

4 Substitute the correlated attributes with values from t

4 Evaluate the resulting query

4 Use the result to evaluate the expression in the clause the 
subquery occurs in
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Query Semantics (Cont.)

■ For LATERAL subqueries in the FROM clause

● The FROM clause is evaluated from left to right as follows:

1. Evaluate the crossproduct up to the next LATERAL subquery

2. substitute values from the result of the crossproduct into the 
LATERAL query

3. Evaluate the resulting query

4. Compute the crossproduct of the current result with the result of 
the LATERAL subquery

5. If there are more items in the FROM clause continue with 1)
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Query Semantics (Cont.)

■ Equivalent relational algebra expression

● ORDER BY has no equivalent, because relations are unordered

● Nested subqueries: need to extend algebra (not covered here)

■ Each query block is equivalent to

■ Where Fi is the translation of the ith FROM clause item 

■ Note: we leave out the arguments

π(σ(G(π(σ(F1 × . . . Fn))))
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Modification of the Database

■ Deletion of tuples from a given relation

■ Insertion of new tuples into a given relation

■ Updating values in some tuples in a given relation
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Modification of the Database – Deletion

■ Delete all instructors

delete from instructor

■ Delete all instructors from the Finance department
delete from instructor

where dept_name= Finance ;

■ Delete all tuples in the instructor relation for those instructors 

associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name

from department

where building = Watson );
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Deletion (Cont.)

■ Delete all instructors whose salary is less than the average 
salary of instructors

delete from instructor
where salary < (select avg (salary) from instructor);

● Problem:  as we delete tuples from instructor, the average salary 
changes

● Solution used in SQL:

1.   First, compute avg salary and find all tuples to delete

2.   Next, delete all tuples found above (without recomputing avg or   
retesting the tuples)
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Modification of the Database – Insertion

■ Add a new tuple to course

insert into course
values ( CS-437 , Database Systems , Comp. Sci. , 4);

■ or equivalently
insert into course (course_id, title, dept_name, credits)

values ( CS-437 , Database Systems , Comp. Sci. , 4);

■ Add a new tuple to student with tot_creds set to null

insert into student

values ( 3003 , Green , Finance , null);
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Insertion (Cont.)

■ Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

■ The select from where statement is evaluated fully before any of 
its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems, if table1 did not have any primary key 

defined. 
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Modification of the Database – Updates

■ Increase salaries of instructors whose salary is over $100,000 by 
3%, and all others receive a 5% raise

● Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

● The order is important

● Can be done better using the case statement (next slide)
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Case Statement for Conditional Updates

■ Same query as before but with case statement

update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03
end
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Updates with Scalar Subqueries

■ Recompute and update tot_creds value for all students

update student S 

set tot_cred = ( select sum(credits)
from takes natural join course
where S.ID= takes.ID and 

takes.grade <> F and

takes.grade is not null);

■ Sets tot_creds to null for students who have not taken any course

■ Instead of sum(credits), use:

case 
when sum(credits) is not null then sum(credits)
else 0

end

■ Or COALESCE(sum(credits),0)

● COALESCE returns first non-null arguments
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Recap

■ SQL queries

● Clauses: SELECT, FROM , WHERE, GROUP BY, HAVING, 
ORDER BY

● Nested subqueries

● Equivalence with relational algebra

■ SQL update, inserts, deletes

● Semantics of referencing updated relation in WHERE

■ SQL DDL

● Table definition: CREATE TABLE
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End of Chapter 4
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Intermediate

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan4.95CS425 – Boris Glavic

Advanced SQL Features**

■ Create a table with the same schema as an existing table:

create table temp_account like account
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Figure 3.02
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Figure 3.03
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Figure 3.04
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Figure 3.05
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Figure 3.07
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Figure 3.08
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Figure 3.09
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Figure 3.10
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Figure 3.11
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Figure 3.12
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Figure 3.13
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Figure 3.16
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Figure 3.17
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Chapter 5:  Intermediate SQL

■ Views

■ Transactions

■ Integrity Constraints

■ SQL Data Types and Schemas

■ Access Control

Textbook: Chapter 4
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Views

■ In some cases, it is not desirable for all users to see the entire 
logical model (that is, all the actual relations stored in the 
database.)

■ Consider a person who needs to know an instructors name 
and department, but not the salary.  This person should see a 
relation described, in SQL, by 

select ID, name, dept_name

from instructor

■ A view provides a mechanism to hide certain data from the 
view of certain users. 

■ Any relation that is not of the conceptual model but is made 
visible to a user as a virtual relation is called a view.

©Silberschatz, Korth and Sudarshan5.4CS425 – Boris Glavic

View Definition

■ A view is defined using the create view statement which has 
the form

create view v as < query expression >

where <query expression> is any legal SQL expression.  The 
view name is represented by v.

■ Once a view is defined, the view name can be used to refer to 
the virtual relation that the view generates.

■ View definition is not the same as creating a new relation by 
evaluating the query expression

● Rather, a view definition causes the saving of an expression; 
the expression is substituted into queries using the view.
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Example Views

■ A view of instructors without their salary

create view faculty as

select ID, name, dept_name
from instructor

■ Find all instructors in the Biology department
select name

from faculty

where dept_name = Biology

■ Create a view of department salary totals
create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)
from instructor

group by dept_name;
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Views Defined Using Other Views

■ create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = Physics
and section.semester = Fall
and section.year = 2009 ;

■ create view physics_fall_2009_watson as

select course_id, room_number

from physics_fall_2009
where building= Watson ;
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View Expansion

■ Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number

from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = Physics
and section.semester = Fall
and section.year = 2009 )

where building= Watson ;
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Views Defined Using Other Views

■ One view may be used in the expression defining another view 

■ A view relation v1 is said to depend directly on a view relation 

v2 if v2 is used in the expression defining v1

■ A view relation v1 is said to depend on view relation v2 if either 
v1 depends directly to v2 or there is a path of dependencies 
from v1 to v2

■ A view relation v is said to be recursive if it depends on itself.
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View Expansion

■ A way to define the meaning of views defined in terms of other 
views.

■ Let view v1 be defined by an expression e1 that may itself 
contain uses of view relations.

■ View expansion of an expression repeats the following 
replacement step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

■ As long as the view definitions are not recursive, this loop will 
terminate
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Update of a View

■ Add a new tuple to faculty view which we defined earlier

insert into faculty values ( 30765 , Green , Music );

This insertion must be represented by the insertion of the tuple

( 30765 , Green , Music , null)

into the instructor relation

©Silberschatz, Korth and Sudarshan5.11CS425 – Boris Glavic

Some Updates cannot be Translated Uniquely

■ create view instructor_info as
select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

■ insert into instructor_info values ( 69987 , White , Taylor );

4which department, if multiple departments in Taylor?

4what if no department is in Taylor?

■ Most SQL implementations allow updates only on simple views

● The from clause has only one database relation.

● The select clause contains only attribute names of the 
relation, and does not have any expressions, aggregates, or 
distinct specification.

● Any attribute not listed in the select clause can be set to null

● The query does not have a group by or having clause.
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… and Some Not at All

■ create view history_instructors as

select *
from instructor

where dept_name= History ;

■ What happens if we insert ( 25566 , Brown , Biology , 
100000) into history_instructors?
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Materialized Views

■ Materializing a view: create a physical table containing all the tuples 
in the result of the query defining the view

■ If relations used in the query are updated, the materialized view result 
becomes out of date

● Need to maintain the view, by updating the view whenever the 
underlying relations are updated.
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Transactions

■ Unit of work

■ Atomic transaction

● either fully executed or rolled back as if it never occurred

■ Isolation from concurrent transactions

■ Transactions begin implicitly

● Ended by commit work or rollback work

■ But default on most databases: each SQL statement commits 
automatically

● Can turn off auto commit for a session (e.g. using API)

● In SQL:1999, can use:  begin atomic ….  end

4 Not supported on most databases
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Transactions Example

■ Example Atomicity (all-or-nothing)

● Recall example from the introduction

● Relation accounts(accID, cust, type, balance)

● A user want to transfer $100 from his savings (accID = 100) to his 
checking account (accID= 101)

UPDATE accounts SET balance = balance – 100 WHERE accID = 100;

UPDATE accounts SET balance = balance + 100 WHERE accID = 101;

● This can cause inconsistencies if the system crashes after the first 
update (user would loose money)

● Using a transaction either both or none of the statements are executed

BEGIN

UPDATE accounts SET balance = balance – 100 WHERE accID = 100;

UPDATE accounts SET balance = balance + 100 WHERE accID = 101;

COMMIT
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Transactions and Concurrency

■ Transactions are also used to isolate concurrent actions of different 
users

■ Recall from the introduction that if several users are modifying the 
database at the same time that can lead to inconsistencies

■ More on that later once we talk about concurrency control
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Integrity Constraints

■ Integrity constraints guard against accidental damage to the 
database, by ensuring that authorized changes to the 
database do not result in a loss of data consistency. 

● A checking account must have a balance greater than 
$10,000.00

● A salary of a bank employee must be at least $4.00 an 
hour

● A customer must have a (non-null) phone number
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Integrity Constraints on a Single Relation

■ not null

■ primary key

■ unique

■ check (P), where P is a predicate
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Not Null and Unique Constraints 

■ not null

● Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

■ unique ( A1, A2, …, Am)

● The unique specification states that the attributes A1, A2, … 
Am

form a candidate key.

● Candidate keys are permitted to be null (in contrast to primary 
keys).
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The check clause

■ check (P)

where P is a predicate

Example:  ensure that semester is one of fall, winter, spring 
or summer:

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4), 
primary key (course_id, sec_id, semester, year),
check (semester in ( Fall , Winter , Spring , 

Summer ))
);
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Referential Integrity

■ Ensures that a value that appears in one relation for a given 
set of attributes also appears for a certain set of attributes in 
another relation.

● Example:  If Biology is a department name appearing in 
one of the tuples in the instructor relation, then there exists 
a tuple in the department relation for Biology .

■ Let A be a set of attributes.  Let R and S be two relations that 
contain attributes A and where A is the primary key of S. A is 
said to be a  foreign key of R if for any values of A appearing 
in R these values also appear in S.

©Silberschatz, Korth and Sudarshan5.24CS425 – Boris Glavic

Cascading Actions in Referential Integrity

■ create table course (
course_id char(5) primary key,
title             varchar(20),
dept_name varchar(20) references department

)

■ create table course (
…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade

on update cascade,
. . . 

)

■ alternative actions to cascade:  set null, set default
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Integrity Constraint Violation During 
Transactions

■ E.g.

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,

foreign key mother references person)

■ How to insert a tuple without causing constraint violation ?

● insert father and mother of a person before inserting person

● OR, set father and mother to null initially, update after 
inserting all persons (not possible if father and mother 
attributes declared to be not null) 

● OR defer constraint checking (next slide)
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Complex Check Clauses

■ check (time_slot_id in (select time_slot_id from time_slot))

● why not use a foreign key here?

■ Every section has at least one instructor teaching the section.

● how to write this?

■ Unfortunately:  subquery in check clause not supported by 
pretty much any database

● Alternative: triggers (later)

■ create assertion <assertion-name> check <predicate>;

● Also not supported by anyone
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Indexes and User-Defined Types 

(UDTs)
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Built-in Data Types in SQL 

■ date: Dates, containing a (4 digit) year, month and date

● Example:  date 2005-7-27

■ time: Time of day, in hours, minutes and seconds.

● Example: time 09:00:30 time 09:00:30.75

■ timestamp: date plus time of day

● Example:  timestamp 2005-7-27 09:00:30.75

■ interval: period of time

● Example:   interval  1 day

● Subtracting a date/time/timestamp value from another gives 
an interval value

● Interval values can be added to date/time/timestamp values
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Index Creation

■ create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

■ create index studentID_index on student(ID)

■ Indices are data structures used to speed up access to records 
with specified values for index attributes

● e.g. select * 
from student

where ID = 12345

can be executed by using the index to find the required 
record, without looking at all records of student

More on indices later
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User-Defined Types

■ create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final 

● create table department

(dept_name varchar (20),
building varchar (15),
budget Dollars);
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Domains

■ create domain construct in SQL-92 creates user-defined 
domain types

create domain person_name char(20) not null

■ Types and domains are similar.  Domains can have 
constraints, such as not null, specified on them.

■ create domain degree_level varchar(10)
constraint degree_level_test

check (value in ( Bachelors , Masters , Doctorate ));
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Large-Object Types

■ Large objects (photos, videos, CAD files, etc.) are stored as a 
large object:

● blob: binary large object -- object is a large collection of 
uninterpreted binary data (whose interpretation is left to an 
application outside of the database system)

● clob: character large object -- object is a large collection of 
character data

● When a query returns a large object, a pointer is returned 
rather than the large object itself.
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Access Control
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Access Control

Forms of authorization on parts of  the database:

■ Read - allows reading, but not modification of data.

■ Insert - allows insertion of new data, but not modification of existing 
data.

■ Update - allows modification, but not deletion of data.

■ Delete - allows deletion of data.

Forms of authorization to modify the database schema

■ Index - allows creation and deletion of indices.

■ Resources - allows creation of new relations.

■ Alteration - allows addition or deletion of attributes in a relation.

■ Drop - allows deletion of relations.
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Authorization Specification in SQL

■ The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

■ <user list> is:

● a user-id

● public, which allows all valid users the privilege granted

● A role (more on this later)

■ Granting a privilege on a view does not imply granting any 
privileges on the underlying relations.

■ The grantor of the privilege must already hold the privilege on 
the specified item (or be the database administrator).
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Privileges in SQL

■ select: allows read access to relation,or the ability to query 
using the view

● Example: grant users U1, U2, and U3 select

authorization on the instructor relation:

grant select on instructor to U1, U2, U3

■ insert: the ability to insert tuples

■ update: the ability  to update using the SQL update 
statement

■ delete: the ability to delete tuples.

■ all privileges: used as a short form for all the allowable 
privileges
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Revoking Authorization in SQL

■ The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

■ Example:

revoke select on branch  from U1, U2, U3

■ <privilege-list> may be all to revoke all privileges the revokee 
may hold.

■ If <revokee-list> includes public, all users lose the privilege 
except those granted it explicitly.

■ If the same privilege was granted twice to the same user by 
different grantees, the user may retain the privilege after the 
revocation.

■ All privileges that depend on the privilege being revoked are 
also revoked.
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Roles

■ create role instructor;

■ grant instructor to Amit;

■ Privileges can be granted to roles:

● grant select on takes to instructor;

■ Roles can be granted to users, as well as to other roles

● create role teaching_assistant

● grant teaching_assistant to instructor;

4 Instructor inherits all privileges of teaching_assistant

■ Chain of roles

● create role dean;

● grant instructor to dean;

● grant dean to Satoshi;
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Authorization on Views

■ create view geo_instructor as

(select *
from instructor

where dept_name = Geology );

■ grant select on geo_instructor to geo_staff

■ Suppose that a  geo_staff member issues

● select *
from geo_instructor;

■ What if 

● geo_staff does not have permissions on instructor?

● creator of view did not have some permissions on 
instructor?
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Other Authorization Features

■ references privilege to create foreign key

● grant reference (dept_name) on department to Mariano;

● why is this required?

■ transfer of privileges

● grant select on department to Amit with grant option;

● revoke select on department from Amit, Satoshi cascade;

● revoke select on department from Amit, Satoshi restrict;

■ Etc.  read text book Section 4.6 for more details we have 
omitted here.
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Understanding RESTRICT/CASCADE

■ Bob grants right X on Y to Alice with grant option

■ Alice grants right X on Y to Peter

■ Abandoned right

● A right for which there is no justification anymore

■ revoke X on Y from Alice restrict

● With restrict fails if it would result in abandoned 
rights

■ revoke X on Y from Alice cascade

● Also revokes rights that would otherwise be 
abandoned

Bob

Alice

Peter
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Understanding RESTRICT/CASCADE

■ Bob grants right X on Y to Alice with grant option

■ Alice grants right X on Y to Peter

■ Bob grants right X on Y to Peter

■ Abandoned privilege

● A privilege for which there is no justification anymore

● Indirect justifications count

■ revoke X on Y from Alice restrict

● Fails: even though there exists additional justification 
for the privilege.

■ revoke X on Y from Alice cascade

● Revokes that right from Peter.

● Peter still has the right to do X on Y

Bob

Alice

Peter
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Recap

■ Views

● Virtual

● Materialized

● Updates

■ Integrity Constraints

● Not null, unique, check

● Foreign keys: referential integrity

■ Access control

● Users, roles

● Privileges

● GRANT / REVOKE

■ Data types

● Build-in types, Domains, Large Objects

● UDTs

● Indices
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter 5
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Figure 4.01
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Figure 4.02
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Figure 4.03
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Figure 4.04
This image cannot currently be displayed.
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Figure 4.05
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Figure 4.07

Taylor

©Silberschatz, Korth and Sudarshan5.52CS425 – Boris Glavic

Figure 4.06

Join types
inner join
le! outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A2, . . ., An)
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Figure 4.03
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Chapter 6:  Advanced SQL

■ Accessing SQL From a Programming Language

● Dynamic SQL

4 JDBC and ODBC

● Embedded SQL

■ Functions and Procedural Constructs

■ Triggers

Textbook: Chapter 5

©Silberschatz, Korth and Sudarshan5.3CS425 – Boris Glavic

Accessing SQL From a Programming 

Language 

©Silberschatz, Korth and Sudarshan5.4CS425 – Boris Glavic

JDBC and ODBC

■ API (application-program interface) for a program to interact 

with a database server

■ Application makes calls to

● Connect with the database server

● Send SQL commands to the database server

● Fetch tuples of result one-by-one into program variables

■ ODBC (Open Database Connectivity) works with C, C++, C#, 

and Visual Basic

● Other API s such as ADO.NET sit on top of ODBC

■ JDBC (Java Database Connectivity) works with Java

©Silberschatz, Korth and Sudarshan5.5CS425 – Boris Glavic

Native APIs

■ Most DBMS also define DBMS specific APIs

■ Oracle: OCI

■ Postgres: libpg

…

©Silberschatz, Korth and Sudarshan5.6CS425 – Boris Glavic

JDBC

■ JDBC is a Java API for communicating with database systems 

supporting SQL.

■ JDBC supports a variety of features for querying and updating 
data, and for retrieving query results.

■ JDBC also supports metadata retrieval, such as querying about 

relations present in the database and the names and types of 
relation attributes.

■ Model for communicating with the database:

● Open a connection

● Create a statement object

● Execute queries using the Statement object to send queries 
and fetch results

● Exception mechanism to handle errors
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JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd) 

{ 

try { 

Class.forName ("oracle.jdbc.driver.OracleDriver"); // load driver

Connection conn = DriverManager.getConnection(  // connect to server

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd); 

Statement stmt = conn.createStatement(); // create Statement object

… Do Actual Work ….

stmt.close(); // close Statement and release resources

conn.close(); // close Connection and release resources

}

catch (SQLException sqle) { 

System.out.println("SQLException : " + sqle); // handle exceptions

}

}

©Silberschatz, Korth and Sudarshan5.8CS425 – Boris Glavic

JDBC Code (Cont.)

■ Update to database

try {
stmt.executeUpdate(

"insert into instructor values( 77987 , Kim , Physics , 
98000)");
} catch (SQLException sqle)

{
System.out.println("Could not insert tuple. " + sqle);

}

■ Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)

from instructor
group by dept_name");

while (rset.next()) {

System.out.println(rset.getString("dept_name") + " " +
rset.getFloat(2));

}

©Silberschatz, Korth and Sudarshan5.9CS425 – Boris Glavic

JDBC Code Details       

■ Result stores the current row position in the result

● Pointing before the first row after executing the statement

● .next() moves to the next tuple

4Returns false if no more tuples

■ Getting result fields:

● rs.getString( dept_name ) and rs.getString(1)
equivalent if dept_name is the first attribute in select 

result.

■ Dealing with Null values

● int a = rs.getInt( a );

if (rs.wasNull()) Systems.out.println( Got null value );

©Silberschatz, Korth and Sudarshan5.10CS425 – Boris Glavic

Prepared Statement

■ PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");      pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");   pStmt.setInt(4, 125000);

pStmt.executeUpdate();    

pStmt.setString(1, "88878");
pStmt.executeUpdate();

■ For queries, use pStmt.executeQuery(), which returns a ResultSet

■ WARNING: always use prepared statements when taking an input 
from the user and adding it to a query

● NEVER create a query by concatenating strings which you 
get as inputs

● "insert into instructor values( " + ID + " , " + name + " , " +

" + dept name + " , " balance + 

")

● What if name is D Souza ?
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SQL Injection

■ Suppose query is constructed using

● "select * from instructor where name = " + name + " "

■ Suppose the user, instead of entering a name, enters:

● X or Y = Y

■ then the resulting statement becomes:

● "select * from instructor where name = " + "X or Y = Y" + 
" "

● which is:

4 select * from instructor where name = X or Y = Y

● User could have even used

4X ; update instructor set salary = salary + 10000; --

■ Prepared statement internally uses:
"select * from instructor where name = X\ or \ Y\ = \ Y

● Always use prepared statements, with user inputs as 
parameters

©Silberschatz, Korth and Sudarshan5.12CS425 – Boris Glavic

Metadata Features

■ ResultSet metadata

■ E.g., after executing query to get a ResultSet rs:

● ResultSetMetaData rsmd = rs.getMetaData();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

■ How is this useful?
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Metadata (Cont)

■ Database metadata

■ DatabaseMetaData dbmd = conn.getMetaData();

ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

// and Column-Pattern

// Returns: One row for each column; row has a number of attributes

// such as COLUMN_NAME, TYPE_NAME

while( rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),

rs.getString("TYPE_NAME");

}

■ And where is this useful?

©Silberschatz, Korth and Sudarshan5.14CS425 – Boris Glavic

Transaction Control in JDBC

■ By default, each SQL statement is treated as a separate 

transaction that is committed automatically

● bad idea for transactions with multiple updates

■ Can turn off automatic commit on a connection

● conn.setAutoCommit(false);

■ Transactions must then be committed or rolled back explicitly

● conn.commit(); or

● conn.rollback();

■ conn.setAutoCommit(true) turns on automatic commit.

©Silberschatz, Korth and Sudarshan5.15CS425 – Boris Glavic

Other JDBC Features

■ Calling functions and procedures

● CallableStatement cStmt1 = conn.prepareCall("{? = call some 

function(?)}");

● CallableStatement cStmt2 = conn.prepareCall("{call some 

procedure(?,?)}");

■ Handling large object types

● getBlob() and getClob() that are similar to the getString() 

method, but return objects of type Blob and Clob, respectively

● get data from these objects by getBytes()

● associate an open stream with Java Blob or Clob object to 

update large objects

4blob.setBlob(int parameterIndex, InputStream inputStream).

©Silberschatz, Korth and Sudarshan5.16CS425 – Boris Glavic

SQLJ

■ JDBC is dynamic, errors cannot be caught by compiler

■ SQLJ: embedded SQL in Java

● #sql iterator deptInfoIter ( String dept name, int avgSal);

deptInfoIter iter = null;

#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };

while (iter.next()) {

String deptName = iter.dept_name();

int avgSal = iter.avgSal();

System.out.println(deptName + " " + avgSal);

}

iter.close();

©Silberschatz, Korth and Sudarshan5.17CS425 – Boris Glavic

ODBC

■ Open DataBase Connectivity(ODBC) standard

● standard for application program to communicate with a 

database server.

● application program interface (API) to

4open a connection with a database,

4 send queries and updates,

4get back results.

■ Applications such as GUI, spreadsheets, etc. can use ODBC

■ Was defined originally for Basic and C, versions available for 

many languages.

©Silberschatz, Korth and Sudarshan5.18CS425 – Boris Glavic

ODBC  (Cont.)

■ Each database system supporting ODBC provides a "driver" 

library that must be linked with the client program.

■ When client program makes an ODBC API call, the code in the 
library communicates with the server to carry out the requested 

action, and fetch results.

■ ODBC program first allocates an SQL environment, then a 
database connection handle.

■ Opens database connection using SQLConnect().  Parameters for 
SQLConnect:

● connection handle,

● the server to which to connect

● the user identifier, 

● password 

■ Must also specify types of arguments:

● SQL_NTS denotes previous argument is a null-terminated string.
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ODBC Code

■ int ODBCexample()

{

RETCODE error;

HENV    env;     /* environment */ 

HDBC    conn;  /* database connection */ 

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, db.yale.edu", SQL_NTS, "avi", SQL_NTS, 
"avipasswd", SQL_NTS); 

{ …. Do actual work … }

SQLDisconnect(conn); 

SQLFreeConnect(conn); 

SQLFreeEnv(env); 

}

©Silberschatz, Korth and Sudarshan5.20CS425 – Boris Glavic

ODBC Code (Cont.)

■ Program sends SQL commands to database by using SQLExecDirect

■ Result tuples are fetched using SQLFetch()

■ SQLBindCol() binds C language variables to attributes of the query 
result

● When a tuple is fetched, its attribute values are automatically stored in 
corresponding C variables.

● Arguments to SQLBindCol()

4 ODBC stmt variable, attribute position in query result

4 The type conversion from SQL to C.  

4 The address of the variable. 

4 For variable-length types like character arrays, 

– The maximum length of the variable 

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null 
value

■ Good programming requires checking results of every function call for 
errors; we have omitted most checks for brevity.
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ODBC Code (Cont.)

■ Main body of program

char deptname[80];

float salary;
int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)
from instructor

group by dept_name";

SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2);

while (SQLFetch(stmt) == SQL_SUCCESS) {

printf (" %s %g\n", deptname, salary);
}

}

SQLFreeStmt(stmt, SQL_DROP);
©Silberschatz, Korth and Sudarshan5.22CS425 – Boris Glavic

ODBC Prepared Statements

■ Prepared Statement

● SQL statement prepared: compiled at the database

● Can have placeholders:  E.g.  insert into account values(?,?,?)

● Repeatedly executed with actual values for the placeholders

■ To prepare a statement
SQLPrepare(stmt, <SQL String>);

■ To bind parameters 

SQLBindParameter(stmt, <parameter#>, 
… type information and value omitted for simplicity..)

■ To execute the statement

retcode = SQLExecute( stmt); 

■ To avoid SQL injection security risk, do not create SQL strings 

directly using user input; instead use prepared statements to bind 

user inputs
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More ODBC Features

■ Metadata features

● finding all the relations in the database and

● finding the names and types of columns of a query result or a 
relation in the database.

■ By default, each SQL statement is treated as a separate 
transaction that is committed automatically.

● Can turn off automatic commit on a connection

4SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)} 

● Transactions must then be committed or rolled back explicitly by 

4SQLTransact(conn, SQL_COMMIT) or

4SQLTransact(conn, SQL_ROLLBACK)

©Silberschatz, Korth and Sudarshan5.24CS425 – Boris Glavic

ODBC Conformance Levels

■ Conformance levels specify subsets of the functionality defined 

by the standard.

● Core

● Level 1 requires support for metadata querying

● Level 2 requires ability to send and retrieve arrays of 
parameter values and more detailed catalog information.

■ SQL Call Level Interface (CLI) standard similar to ODBC 

interface, but with some minor differences.
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ADO.NET

■ API designed for Visual Basic .NET and C#, providing database access 

facilities similar to JDBC/ODBC

● Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient; 

SqlConnection conn = new SqlConnection(

“Data Source=<IPaddr>, Initial Catalog=<Catalog>”);
conn.Open();

SqlCommand cmd = new SqlCommand(“select * from students”, 

conn);
SqlDataReader rdr = cmd.ExecuteReader();

while(rdr.Read()) {

Console.WriteLine(rdr[0], rdr[1]); /* Prints result attributes 1 & 2 */
}

rdr.Close(); conn.Close();

■ Can also  access non-relational data sources such as 

● OLE-DB, XML data, Entity framework

©Silberschatz, Korth and Sudarshan5.26CS425 – Boris Glavic

Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

code

DBMS

Compiler

Library

binary

Code with embeded SQL

DBMS

Preprocessor

Library

code

Compiler

binary

©Silberschatz, Korth and Sudarshan5.27CS425 – Boris Glavic

Embedded SQL

■ The SQL standard defines embeddings of SQL in a variety of 

programming languages such as C, Java, and Cobol.

■ A language to which SQL queries are embedded is referred to as 
a host language, and the SQL structures permitted in the host 
language comprise embedded SQL.

■ The basic form of these languages follows that of the System R 
embedding of SQL into PL/I.

■ EXEC SQL statement is used to identify embedded SQL request 
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding 

uses    # SQL { …. }; )
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Example Query

■ Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for 

select ID, name
from student

where tot_cred > :credit_amount

END_EXEC

■ From within a host language, find the ID and name of 

students who have completed more than the number of 

credits stored in variable credit_amount.

©Silberschatz, Korth and Sudarshan5.29CS425 – Boris Glavic

Embedded SQL (Cont.)

■ The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

■ The fetch statement causes the values of one tuple in the query 
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

■ A variable called SQLSTATE in the SQL communication area 

(SQLCA) gets set to 02000 to indicate no more data is 
available

■ The close statement causes the database system to delete the 

temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language.  For example, the Java              

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.30CS425 – Boris Glavic

Updates Through Cursors

■ Can update tuples fetched by cursor by declaring that the cursor 

is for update

declare c cursor for

select *
from instructor

where dept_name = Music

for update

■ To update tuple at the current location of cursor c

update instructor
set salary = salary + 100

where current of c
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Procedural Constructs in SQL

©Silberschatz, Korth and Sudarshan5.32CS425 – Boris Glavic

Procedural Extensions and Stored Procedures

■ SQL provides a module language

● Permits definition of procedures in SQL, with if-then-else 

statements, for and while loops, etc.

■ Stored Procedures

● Can store procedures in the database

● then execute them using the call statement

● permit external applications to operate on the database 

without knowing about internal details

■ Object-oriented aspects of these features are covered in Chapter 

22 (Object Based Databases) in the textbook
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Why have procedural extensions?

■ Shipping data between a database server and application 

program (e.g., through network connection) is costly

■ Converting data from the database internal format into a format 
understood by the application programming language is costly

■ Example:

● Use Java to retrieve all users and their friend-relationships from a 
friends relation representing a world-wide social network with 

10,000,000 users

● Compute the transitive closure

4 All pairs of users connects through a path of friend relationships. 
E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend 

of Magret

● Return pairs of users from Chicago – say 4000 pairs

● 1) cannot be expressed (efficiently) as SQL query, 2) result is small

4 -> save by executing this on the DB server
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Functions and Procedures

■ SQL:1999 supports functions and procedures

● Functions/procedures can be written in SQL itself, or in an 

external programming language.

● Functions are particularly useful with specialized data types such 

as images and geometric objects.

4Example: functions to check if polygons overlap, or to 

compare images for similarity.

● Some database systems support table-valued functions, which 
can return a relation as a result.

■ SQL:1999 also supports a rich set of imperative constructs, including

● Loops, if-then-else, assignment

■ Many databases have proprietary procedural extensions to SQL that 

differ from SQL:1999.
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SQL Functions

■ Define a function that, given the name of a department, returns 

the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer

begin
declare d_count integer;

select count (* ) into d_count
from instructor

where instructor.dept_name = dept_name;

return d_count;
end

■ Find the department name and budget of all departments with 
more that 12 instructors.

select dept_name, budget

from department
where dept_count (dept_name ) > 1

©Silberschatz, Korth and Sudarshan5.36CS425 – Boris Glavic

Table Functions

■ SQL:2003 added functions that return a relation as a result

■ Example: Return all accounts owned by a given customer

create function instructors_of (dept_name char(20)

returns table ( ID varchar(5),

name varchar(20),

dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor

where instructor.dept_name = instructors_of.dept_name)

■ Usage

select *
from table (instructors_of ( Music ))
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SQL Procedures

■ The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20), 
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

■ Procedures can be invoked either from an SQL procedure or from 
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc( Physics , d_count);

Procedures and functions can be invoked also from dynamic SQL

■ SQL:1999 allows more than one function/procedure of the same 
name (called name overloading), as long as the number of 
arguments differ, or at least the types of the arguments differ
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Procedural Constructs

■ Warning: most database systems implement their own variant of the 
standard syntax below

● read your system manual to see what works on your system

■ Compound statement: begin … end, 

● May contain multiple SQL statements between begin and end.

● Local variables can be declared within a compound statements

■ While and repeat statements :

declare n integer default 0;

while n < 10 do

set n = n + 1

end while

repeat

set n = n  – 1

until n = 0

end repeat

©Silberschatz, Korth and Sudarshan5.39CS425 – Boris Glavic

Procedural Constructs (Cont.)

■ For loop

● Permits iteration over all results of a query

● Example: 

declare n  integer default 0;

for r  as
select budget from department

where dept_name = Music

do
set n = n - r.budget

end for
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Procedural Constructs (cont.)

■ Conditional statements  (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

■ Example procedure: registers student after ensuring classroom capacity 
is not exceeded

● Returns 0 on success and -1 if capacity is exceeded

● See book for details

■ Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats
begin

…
..  signal out_of_classroom_seats

end

● The handler here is exit -- causes enclosing begin..end to be exited

● Other actions possible on exception
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External Language Functions/Procedures

■ SQL:1999 permits the use of functions and procedures written in 

other languages such as C or C++

■ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)
language C

external name /usr/avi/bin/dept_count_proc

create function dept_count(dept_name varchar(20))

returns integer

language C
external name /usr/avi/bin/dept_count

©Silberschatz, Korth and Sudarshan5.42CS425 – Boris Glavic

External Language Routines (Cont.)

■ Benefits of external language functions/procedures:  

● more efficient for many operations, and more expressive 

power.

■ Drawbacks

● Code to implement function may need to be loaded into 

database system and executed in the database system s 
address space.

4 risk of accidental corruption of database structures

4 security risk, allowing users access to unauthorized data

● There are alternatives, which give good security at the cost of 

potentially worse performance.

● Direct execution in the database system s space is used 

when efficiency is more important than security.
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Security with External Language Routines

■ To deal with security problems

● Use sandbox techniques

4E.g., use a safe language like Java, which cannot be 
used to    access/damage other parts of the database 

code.

● Or, run external language functions/procedures in a 

separate process, with no access to the database process

memory.

4Parameters and results communicated via inter-process 

communication

■ Both have performance overheads

■ Many database systems support both above approaches as 

well as direct executing in database system address space.
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Triggers
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Triggers

■ A trigger is a statement that is executed automatically by 

the system as a side effect of a modification to the 

database.

■ To design a trigger mechanism, we must:

● Specify the conditions under which the trigger is to be 

executed.

● Specify the actions to be taken when the trigger 

executes.

■ Triggers introduced to SQL standard in SQL:1999, but 

supported even earlier using non-standard syntax by 

most databases.

● Syntax illustrated here may not work exactly on your 

database system; check the system manuals
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Trigger Example 

■ E.g. time_slot_id is not a primary key of timeslot, so we cannot 
create a foreign key constraint from section to timeslot.

■ Alternative: use triggers on section and timeslot to enforce integrity 

constraints

create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row
when (nrow.time_slot_id not in (

select time_slot_id

from time_slot)) /* time_slot_id not present in time_slot */

begin

rollback
end;
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Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot
referencing old row as orow

for each row
when (orow.time_slot_id not in (

select time_slot_id

from time_slot)

/* last tuple for time slot id deleted from time slot */
and orow.time_slot_id in (

select time_slot_id

from section)) /* and time_slot_id still referenced from section*/

begin

rollback
end;
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Triggering Events and Actions in SQL

■ Triggering event can be insert, delete or update

■ Triggers on update can be restricted to specific attributes

● E.g., after update of takes on grade

■ Values of attributes before and after an update can be 
referenced

● referencing old row as : for deletes and updates

● referencing new row as  : for inserts and updates

■ Triggers can be activated before an event, which can serve as 
extra constraints.  E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = )
begin atomic

set nrow.grade = null;
end;
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Trigger to Maintain credits_earned value

■ create trigger credits_earned after update of takes on 
(grade)

referencing new row as nrow

referencing old row as orow

for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)

begin atomic
update student

set tot_cred= tot_cred + 
(select credits

from course

where course.course_id= nrow.course_id)
where student.id = nrow.id;

end;
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Statement Level Triggers

■ Instead of executing a separate action for each affected 

row, a single action can be executed for all rows affected by 

a transaction

● Use     for each statement      instead of    for each row

● Use     referencing old table or   referencing new 
table to refer to temporary tables  (called transition 

tables) containing the affected rows

● Can be more efficient when dealing with SQL 
statements that update a large number of rows
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When Not To Use Triggers

■ Triggers were used earlier for tasks such as 

● maintaining summary data (e.g., total salary of each department)

● Replicating databases by recording changes to special relations 
(called change or delta relations) and having a separate process 

that applies the changes over to a replica 

■ There are better ways of doing these now:

● Databases today provide built in materialized view facilities to 

maintain summary data

● Databases provide built-in support for replication

■ Encapsulation facilities can be used instead of triggers in many cases

● Define methods to update fields

● Carry out actions as part of the update methods instead of 

through a trigger 
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When Not To Use Triggers

■ Risk of unintended execution of triggers, for example, when

● loading data from a backup copy

● replicating updates at a remote site

● Trigger execution can be disabled before such actions.

■ Other risks with triggers:

● Error leading to failure of critical transactions that set off the 

trigger

● Cascading execution

©Silberschatz, Korth and Sudarshan5.53CS425 – Boris Glavic

Recursive Queries
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Recursion in SQL

■ SQL:1999 permits recursive view definition

■ Example: find which courses are a prerequisite, whether 

directly or indirectly, for a specific course 

with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id

from prereq

union
select rec_prereq.course_id, prereq.prereq_id, 

from rec_rereq, prereq

where rec_prereq.prereq_id = prereq.course_id
)

select ∗
from rec_prereq;

This example view, rec_prereq, is called the transitive closure

of the prereq relation
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Recursion in SQL - Syntax

■ General form

with recursive R as (

init_query

union

recusive_step)

select ∗
from R;

■ init_query returns the initial content of R

■ recursive_step is a query that mentions R exactly once in the 
FROM clause
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Recursion in SQL - Semantics

■ General form

with recursive R as (

init_query

union

recusive_step)

select ∗
from R;

■ Fixpoint computation

● R0 = result of init_query

● In step i: Ri is computed as 

4Ri-1 union recursive_step(Ri-1)

● The computation stops when recursive_step(Ri-1) is 

the empty set, i.e., Ri-1 = Ri
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The Power of Recursion

■ Recursive views make it possible to write queries, such as 

transitive closure queries, that cannot be written without recursion 

or iteration.

● Intuition:  Without recursion, a non-recursive non-iterative 
program can perform only a fixed number of joins of prereq

with itself

4This can give only a fixed number of levels of managers

4Given a fixed non-recursive query, we can construct a 
database with a greater number of levels of prerequisites on 

which the query will not work

4Alternative: write a procedure to iterate as many times as 
required

– See procedure findAllPrereqs in book
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The Power of Recursion

■ Computing transitive closure using iteration, adding successive 
tuples to rec_prereq

● The next slide shows a prereq relation

● Each step of the iterative process constructs an extended 
version of rec_prereq from its recursive definition.  

● The final result is called the fixed point of the recursive view 

definition.

■ Recursive views are monotonic.  That is, 

● if we add tuples to prereq the view rec_prereq contains all of 

the tuples it contained before, plus possibly more
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Example of Fixed-Point Computation
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Another Recursion Example

■ Given relation 
manager(employee_name, manager_name)

■ Find all employee-manager pairs, where the employee reports to the 

manager directly or indirectly (that is manager s manager, manager s 
manager s manager, etc.)

with recursive empl (employee_name, manager_name ) as (
select employee_name, manager_name

from manager

union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select * 
from empl

This example view, empl, is the transitive closure of the manager 

relation
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Recap

■ Programming Language Interfaces for Databases

● Dynamic SQL (e.g., JDBC, ODBC)

● Embedded SQL

● SQL Injection

■ Procedural Extensions of SQL

● Functions and Procedures

■ External Functions/Procedures

● Written in programming language (e.g., C)

■ Triggers

● Events (insert, …)

● Conditions (WHEN)

● per statement / per row

● Accessing old/new table/row versions

■ Recursive Queries
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design – ER model

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Chapter 7:  Entity-Relationship Model
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Chapter 7:  Entity-Relationship Model

■ Design Process

■ Modeling

■ Constraints

■ E-R Diagram 

■ Design Issues 

■ Weak Entity Sets 

■ Extended E-R Features

■ Design of the Bank Database

■ Reduction to Relation Schemas

■ Database Design

■ UML
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Database Design

World

Relational DB schema

???
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Database Design

n First: need  to develop a “mind”-model based on a requirement analysis

World

Relational DB schema

???

“Mind” Model

Requirement Analysis

English (e.g.)
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Requirement Analysis Example

Zoo

■ The zoo stores information about animals, cages, and zoo keepers.

■ Animals are of a certain species and have a name. For each animal 
we want to record its weight and age.

■ Each cage is located in a section of the zoo. Cages can house 
animals, but there may be cages that are currently empty. Cages have 
a size in square meter.

■ Zoo keepers are identified by their social security number. We store a 
first name, last name, and for each zoo keeper. Zoo keepers are 
assigned to cages they have to take care of (clean, …). Each cage 
that is not empty has a zoo keeper assigned to it. A zoo keeper can 
take care of several cages. Each zoo keeper takes care of at least one 
cage.
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Requirement Analysis Example

Music Collection

■ Let’s do it!
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Database Design

n Second: Formalize this model by developing a conceptual model

World

Relational DB schema

“Mind” Model

Requirement Analysis

English (e.g.)

Conceptual Model ER model

???

Conceptual modeling
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Database Design

n Second: Formalize this model by developing a conceptual model

World

Relational DB schema

“Mind” Model

Requirement Analysis

English (e.g.)

Conceptual Model ER model

Conceptual modeling

Logical modeling (possibly automated)

SQL (e.g.)
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Modeling – ER model

■ A database can be modeled as:

● a collection of entities,

● relationship among entities.

■ An entity is an object that exists and is distinguishable from other 
objects.

● Example:  specific person, company, event, plant

■ Entities have attributes

● Example: people have names and addresses

■ An entity set is a set of entities of the same type that share the same 
properties.

● Example: set of all persons, companies, trees, holidays
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Entity Sets instructor and student

instructor_ID  instructor_name                                    student-ID   student_name

instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345

98988

76653

23121

00128

76543

Shankar

Tanaka

Aoi

Chavez

Peltier

Zhang

Brown

44553
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Relationship Sets

■ A relationship is an association among several entities

Example:
44553 (Peltier) advisor 22222 (Einstein)
student entity relationship set instructor entity

■ A relationship set is a mathematical relation among n ³ 2 entities, each 
taken from entity sets

{(e1, e2, … en) | e1 Î E1, e2 Î E2, …, en Î En}

where (e1, e2, …, en) is a relationship

● Example: 

(44553,22222) Î advisor

©Silberschatz, Korth and Sudarshan7.12CS425 – Fall 2016 – Boris Glavic

Relationship Set advisor

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

76653

23121

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier
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Relationship Sets (Cont.)

■ An attribute can also be property of a relationship set.

■ For instance, the advisor relationship set between entity sets 
instructor and student may have the attribute date which tracks when 
the student started being associated with the advisor

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121
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Degree of a Relationship Set

■ binary relationship

● involve two entity sets (or degree two). 

■ Relationships between more than two entity sets are rare.  Most 
relationships are binary. (More on this later.)

4 Example: students work on research projects under the 
guidance of an instructor. 

4 relationship proj_guide is a ternary relationship between 
instructor, student, and project
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Attributes

■ An entity is represented by a set of attributes, that are descriptive 
properties possessed by all members of an entity set.

● Example: 

instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)

■ Domain – the set of permitted values for each attribute 

■ Attribute types:

● Simple and composite attributes.

● Single-valued and multivalued attributes

4 Example: multivalued attribute: phone_numbers

● Derived attributes

4 Can be computed from other attributes

4 Example:  age, given date_of_birth
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Composite Attributes

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes
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Mapping Cardinality Constraints

■ Express the number of entities to which another entity can be 
associated via a relationship set.

■ For a binary relationship set the mapping cardinality must be one of 
the following types:

● One to one (1-1)

● One to many (1-N)

● Many to one (N-1)

● Many to many (N-M)

©Silberschatz, Korth and Sudarshan7.18CS425 – Fall 2016 – Boris Glavic

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any 

elements in the other set
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Mapping Cardinalities Example

One to one One to many

Note: Some elements in A and B may not be mapped to any 

elements in the other set

Person Birth certificate Advisor Student
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Mapping Cardinalities 

Many to 
one

Many to many

Note: Some elements in A and B may not be mapped to any 

elements in the other set
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Mapping Cardinalities Example 

Many to 
one

Many to many

Note: Some elements in A and B may not be mapped to any 

elements in the other set

Employee Department Student Course
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Mapping Cardinality Constraints Cont.

■ What if we allow some elements to not be mapped to another 
element?

● E.g., 0:1 – 1 

■ For a binary relationship set the mapping cardinality must be one of 
the following types:

■ 1-1

● 1-1

● 0:1-1

● 1-0:1

● 0:1-0:1

■ 1-N

● 0:1-N

● 0:1-0:N

● 1-N

● 1-0:N

■ N-1

● N-1

● N-0:1

● 0:N-1

● 0:N-0:1

■ N-M

● N-M

● N-0:M

● 0:N-M

● 0:N-0:M
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Mapping Cardinality Constraints Cont.

■ Typical Notation

● (0:1) – (1:N) 
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Keys

■ A super key of an entity set is a set of one or more attributes 
whose values uniquely determine each entity.

■ A candidate key of an entity set is a minimal super key

● ID is candidate key of instructor

● course_id is candidate key of course

■ Although several candidate keys may exist, one of the candidate 
keys is selected to be the primary key.

■ Note: Basically the same as for relational model
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Keys for Relationship Sets

■ The combination of primary keys of the participating entity sets 
forms a super key of a relationship set.

● (s_id, i_id) is the super key of advisor

● NOTE:  this means a pair of entities can have at most one 
relationship in a particular relationship set.

4 Example: if we wish to track multiple meeting dates between 
a student and her advisor, we cannot assume a relationship 
for each meeting.  We can use a multivalued attribute 
though or model meeting as a separate entity

■ Must consider the mapping cardinality of the relationship set when 
deciding what are the candidate keys

■ Need to consider semantics of relationship set in selecting the 
primary key  in case of more than one candidate key
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Keys for Relationship Sets Cont.

■ Must consider the mapping cardinality of the relationship set when 
deciding what are the candidate keys

● 1-1: both primary keys are candidate keys

4 Example: hasBc: (Person-Birthcertificate)

● N-1: the N side is the candidate key

4 Example: worksFor: (Instructor-Department)

● N-M: the combination of both primary keys

4 Example: takes: (Student-Course)
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Redundant Attributes

■ Suppose we have entity sets

● instructor, with attributes including dept_name

● department

and a relationship

● inst_dept relating instructor and department

■ Attribute dept_name in entity instructor is redundant since there is an 
explicit relationship inst_dept which relates instructors to departments

● The attribute replicates information present in the relationship, and 
should be removed from instructor

● BUT: when converting back to tables, in some cases the attribute 
gets reintroduced, as we will see.
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E-R Diagrams

■ Rectangles represent entity sets.

■ Diamonds represent relationship sets.

■ Attributes listed inside entity rectangle

■ Underline indicates primary key attributes

instructor

ID
name
salary

student

ID
name
tot_cred

advisor
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Entity With Composite, Multivalued, and Derived 

Attributes

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )
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Entity With Composite, Multivalued, and Derived 

Attributes

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )

composite

Multi-valued

derived
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Relationship Sets with Attributes

ID
name
salary

ID
name
tot_cred

date

instructor student

advisor
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Roles

■ Entity sets of a relationship need not be distinct

● Each occurrence of an entity set plays a role in the relationship

■ The labels course_id and prereq_id are called roles.

course

course_id
title
credits

course_id

prereq_id
prereq
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Cardinality Constraints

■ We express cardinality constraints by drawing either a directed line 
(®), signifying one, or an undirected line (—), signifying many,
between the relationship set and the entity set.

■ One-to-one relationship:

● A student is associated with at most one instructor via the 
relationship advisor

● A student is associated with at most one department via 
stud_dept

©Silberschatz, Korth and Sudarshan7.34CS425 – Fall 2016 – Boris Glavic

One-to-One Relationship

■ one-to-one relationship between an instructor and a student

● an instructor is associated with at most one student via advisor

● and a student is associated with at most one instructor via 
advisor

instructor student

ID
name
salary

ID
name
tot_cred

advisor
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One-to-Many Relationship

■ one-to-many relationship between an instructor and a student

● an instructor is associated with several (including 0) students  
via advisor 

● a student is associated with at most one instructor via advisor, 

instructor

ID
name
salary

student

ID
name
tot_cred

advisor
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Many-to-One Relationships

■ In a many-to-one relationship between an instructor and a student, 

● an instructor is associated with at most one student via 
advisor, 

● and a student is associated with several (including 0) 
instructors via advisor

instructor

ID
name
salary

student

ID
name
tot_cred

advisor
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Many-to-Many Relationship

■ An instructor is associated with several (possibly 0) students via 
advisor

■ A student is associated with several (possibly 0) instructors via 
advisor

instructor

ID
name
salary

student

ID
name
tot_cred

advisor
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Participation of an Entity Set in a 
Relationship Set

■ Total participation (indicated by double line):  every entity in the 
entity set participates in at least one relationship in the relationship 
set

● E.g., participation of section in sec_course is total

4 every section must have an associated course

■ Partial participation:  some entities may not participate in any 
relationship in the relationship set

● Example: participation of instructor in advisor is partial

course

course_id

title
credits

section

sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan7.39CS425 – Fall 2016 – Boris Glavic

Alternative Notation for Cardinality Limits

■ Cardinality limits can also express participation constraints

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*
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Alternative Notation for Cardinality Limits

■ Alternative Notation

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*

(0,n) (1,1)
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E-R Diagram with a Ternary Relationship

instructor

ID

name

salary

student

ID

name

tot_cred

. . .

project

proj_guide
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Cardinality Constraints on Ternary 

Relationship

■ We allow at most one arrow out of a ternary (or greater degree) 
relationship to indicate a cardinality constraint

■ E.g., an arrow from proj_guide to instructor indicates each student has 
at most one guide for a project

■ If there is more than one arrow, there are two ways of defining the 
meaning.  

● E.g., a ternary relationship R between A, B and C with arrows to B 
and C could mean

1.  each A entity is associated with a unique entity from B and C or 

2.  each pair of entities from (A, B) is associated with a unique C 
entity, and each pair (A, C) is associated with a unique B

● Each alternative has been used in different formalisms

● To avoid confusion we outlaw more than one arrow

■ Better to use cardinality constraints such as (0,n)
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Let’s design an ER-model

for

parts of the university database
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Lets design an ER-model

for

parts of the university database

1) Identify Entities

2) Identify Relationship

3) Determine Attributes

4) Determine Cardinality 

Constraints
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Weak Entity Sets

■ An entity set that does not have a primary key is referred to as a 
weak entity set.

■ The existence of a weak entity set depends on the existence of a 
identifying entity set

● It must relate to the identifying entity set via a total, one-to-many 
relationship set from the identifying to the weak entity set

● Identifying relationship depicted using a double diamond

■ The discriminator (or partial key) of a weak entity set is the set of 
attributes that distinguishes among all the entities of a weak entity 
set that are associated with the same entity of the identifying entity 
set

■ The primary key of a weak entity set is formed by the primary key of 
the strong entity set on which the weak entity set is existence 
dependent, plus the weak entity set’s discriminator.
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Weak Entity Sets (Cont.)

■ We underline the discriminator of a weak entity set  with a dashed 
line.

■ We put the identifying relationship of a weak entity in a double 
diamond. 

■ Primary key for section – (course_id, sec_id, semester, year) 

course

course_id

title
credits

section

sec_id
semester
year

sec_course
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Weak Entity Sets (Cont.)

■ Note: the primary key of the strong entity set is not explicitly stored 
with the weak entity set, since it is implicit in the identifying 
relationship.

■ If course_id were explicitly stored, section could be made a strong 
entity, but then the relationship between section and course would 
be duplicated by an implicit relationship defined by the attribute 
course_id common to course and section
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E-R Diagram for a University Enterprise

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity
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Reduction to Relational Schemas
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Reduction to Relation Schemas

■ Entity sets and relationship sets can be expressed uniformly as 
relation schemas that represent the contents of the database.

■ A database which conforms to an E-R diagram can be represented by 
a collection of relation schemas.

■ For each entity set and relationship set there is a unique relation 
schema that is assigned the name of the corresponding entity set or 
relationship set.
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Representing Entity Sets With Simple 
Attributes

■ A strong entity set reduces to a schema with the same attributes
student(ID, name, tot_cred)

■ A weak entity set becomes a table that includes a column for the primary 
key of the identifying strong entity set 
section ( course_id, sec_id, sem, year )

course

course_id

title
credits

section

sec_id
semester
year

sec_course
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Representing Relationship Sets

■ A many-to-many relationship set is represented as a schema with 
attributes for the primary keys of the two participating entity sets, and any 
descriptive attributes of the relationship set. 

■ Example: schema for relationship set advisor

advisor = (s_id, i_id)

instructor

ID
name
salary

student

ID
name
tot_cred

advisor
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Redundancy of Schemas

■ Many-to-one and one-to-many relationship sets that are total on the 
many-side can be represented by adding an extra attribute to the 
many side, containing the primary key of the one side

■ Example: Instead of creating a schema for relationship set inst_dept, 
add an attribute dept_name to the schema arising from entity set 
instructor

student

ID
name
salary

ID
name
tot_cred

advisor

inst_dept stud_dept

instructor

department

dept_name
building
budget

course_dept
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Redundancy of Schemas (Cont.)

■ For one-to-one relationship sets, either side can be chosen to act 
as the many side

● That is, extra attribute can be added to either of the tables 
corresponding to the two entity sets

● If the relationship is total in both sides, the relation schemas 
from the two sides can be merged into one schema 

■ If participation is partial on the many side, replacing a schema by 
an extra attribute in the schema corresponding to the many side 
could result in null values

■ The schema corresponding to a relationship set linking a weak 
entity set to its identifying strong entity set is redundant.

● Example: The section schema already contains the attributes 
that would appear in the sec_course schema
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Composite and Multivalued Attributes

■ Composite attributes are flattened out by creating a 
separate attribute for each component attribute

● Example: given entity set instructor with 
composite attribute name with component 
attributes first_name and last_name the schema 
corresponding to the entity set has two attributes 
name_first_name and name_last_name

4 Prefix omitted if there is no ambiguity

■ Ignoring multivalued attributes, extended instructor 
schema is

● instructor(ID, 
first_name, middle_initial,  last_name,
street_number, street_name,  

apt_number, city, state, zip_code,  
date_of_birth)

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )
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Composite and Multivalued Attributes

■ A multivalued attribute M of an entity E is represented by a separate 
schema EM

● Schema EM has attributes corresponding to the primary key of E
and an attribute corresponding to multivalued attribute M

● Example:  Multivalued attribute phone_number of instructor is 
represented by a schema:

inst_phone= ( ID, phone_number)

● Each value of the multivalued attribute maps to a separate tuple of 
the relation on schema EM

4 For example, an instructor entity with primary key  22222 and 
phone numbers 456-7890 and 123-4567 maps to two tuples:   

(22222, 456-7890) and (22222, 123-4567)
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Multivalued Attributes (Cont.)

■ Special case:entity time_slot has only one attribute other than the 
primary-key attribute, and that attribute is multivalued

● Optimization: Don’t create the relation corresponding to the entity, 
just create the one corresponding to the multivalued attribute

● time_slot(time_slot_id, day, start_time, end_time)

● Caveat: time_slot attribute of section (from sec_time_slot) cannot be 
a foreign key due to this optimization

time_slot

time_slot_id
{ day
start_time
end_time

}

sec_time_slot

section

sec_id
semester
year

sec_class
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Design Issues

■ Use of entity sets vs. attributes

■ Designing phone as an entity allow for primary key constraints for phone

■ Designing phone as an entity allow phone numbers to be used in 
relationships with other entities (e.g., student)

■ Use of phone as an entity allows extra information about phone numbers

instructor

ID
name
salary

phone

phone_number
location

instructor

ID
name
salary
phone_number

inst_phone
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Design Issues

■ Use of entity sets vs. relationship sets

● Possible guideline is to designate a relationship set to describe an 
action that occurs between entities

● Possible hint: the relationship only relates entities, but does not have an 
existence by itself. E.g., hasAddress: (department-address)

registration
...

...

...

section

sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg
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Design Issues

■ Binary versus n-ary relationship sets

● Although it is possible to replace any nonbinary (n-ary, for n > 2) 
relationship set by a number of distinct binary relationship sets + an 
aritifical entity set, a n-ary relationship set shows more clearly that 

several entities participate in a single relationship.

■ Placement of relationship attributes

● e.g., attribute date as attribute of advisor or as attribute of student

● Does not work for N-M relationships!
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Binary Vs. Non-Binary Relationships

■ Some relationships that appear to be non-binary may be better 
represented using binary relationships

● E.g.,  A ternary relationship parents, relating a child to his/her 
father and mother, is best replaced by two binary relationships,  
father and mother

4 Using two binary relationships allows partial information (e.g., 
only mother being know)

● But there are some relationships that are naturally non-binary

4 Example: proj_guide
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Converting Non-Binary Relationships to Binary Form

■ In general, any non-binary relationship can be represented using 
binary relationships by creating an artificial entity set.

● Replace R between entity sets A, B and C by an entity set E, and 
three relationship sets: 

1. RA, relating E and A        2.  RB, relating E and B      
3. RC, relating E and C

● Create a special identifying attribute for E

● Add any attributes of R to E 

● For each relationship (ai , bi , ci) in R, create 

1. a new entity ei in the entity set E       2. add (ei , ai ) to RA

3. add (ei , bi ) to RB 4. add (ei , ci ) to RC

B R C

A

CB E

A

R
A

R
B

R
C

(a) (b)
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Converting Non-Binary Relationships 

(Cont.)

■ Also need to translate constraints

● Translating all constraints may not be possible

● There may be instances in the translated schema that
cannot correspond to any instance of R

4 Exercise: add constraints to the relationships RA, RB and 
RC to ensure that a newly created entity corresponds to 
exactly one entity in each of entity sets A, B and C

● We can avoid creating an identifying attribute by making E a 
weak entity set (described shortly) identified by the three 
relationship sets 
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Converting Non-Binary Relationships:

Is the New Entity Set E Necessary?

■ Yes, because a non-binary relation ship stores more information that 
any number of binary relationships

● Consider again the example (a) below

● Replace R with three binary relationships:

1. RAB, relating A and B 2.  RBC, relating B and C
3. RAC, relating A and C

● For each relationship (ai , bi , ci) in R, create 

4 1. add (ai , bi ) to RAB

4 2. add (bi , ci ) to RBC

4 3. add (ai , ci ) to RAC

● Consider R = order, A = supplier, B = item, C = customer

(Gunnar, chainsaw, Bob) – Bob ordered a chainsaw from Gunnar

-> 

(Gunnar, chainsaw), (chainsaw, Bob), (Gunnar, Bob)

Gunnar supplies chainsaws, Bob ordered a chainsaw, Bob ordered 
something from Gunnar. E.g., we do not know what Bob ordered from 
Gunnar.

B R C

A

(a)
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ER-model to Relational Summary

■ Rule 1) Strong entity E

● Create relation with attributes of E 

● Primary key is equal to the PK of E

■ Rule 2) Weak entity W identified by E through relationship R

● Create relation with attributes of W and R and PK(E). 

● Set PK to discriminator attributes combined with PK(E). PK(E) is a 
foreign key to E.

■ Rule 3) Binary relationship R between A and B: one-to-one

● If no side is total add PK of A to as foreign key in B or the other 
way around. Add any attributes of the relationship R to A 
respective B.

● If one side is total add PK of the other-side as foreign key. Add any 
attributes of the relationship R to the total side.

● If both sides are total merge the two relation into a new relation E 
and choose either PK(A) as PK(B) as the new PK. Add any 
attributes of the relationship R to the new relation E.
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ER-model to Relational Summary (Cont.)

■ Rule 4) Binary relationship R between A and B: one-to-many/many-to-
one

● Add PK of the “one” side as foreign key to the “many” side. 

● Add any attributes of the relationship R to the “many” side.

■ Rule 5) Binary relationship R between A and B: many-to-many

● Create a new relation R. 

● Add PK’s of A and B as attributes + plus all attributes of R. 

● The primary key of the relationship is PK(A) + PK(B). The PK 
attributes of A/B form a foreign key to A/B

■ Rule 6) N-ary relationship R between E1 … En

● Create a new relation. 

● Add all the PK’s of E1 … En. Add all attributes of R to the new 
relation.

● The primary key or R is PK(E1) … PK(En). Each PK(Ei) is a foreign 
key to the corresponding relation. 
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ER-model to Relational Summary (Cont.)

■ Rule 7) Entity E with multi-valued attribute A

● Create new relation. Add A and PK(E) as attributes.

● PK is all attributes. PK(E) is a foreign key.
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E-R Diagram for a University Enterprise

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity
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Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 1) Strong Entities

● department(dept_name, building, budget)

● instructor(ID, name, salary)

● student(ID, name, tot_cred)

● course(course_id, title, credits)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

■ Rule 2) Weak Entities

● section(course_id, sec_id, semester, year)
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Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 3) Relationships one-to-one

● None exist

■ Rule 4) Relationships one-to-many

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year, room_building, 

room_number, time_slot_id)
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Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 5) Relationships many-to-many

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year, 

room_building, room_number, time_slot_id)

● prereq(course_id, prereq_id)

● teaches(ID, course_id, sec_id, semester, year)

● takes(ID, course_id, sec_id, semester, year, grade)

■ Rule 6) N-ary Relationships

● none exist
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Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 7) Multivalued attributes

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● time_slot_day(time_slot_id, start_time, end_time)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year, 

room_building, room_number, time_slot_id)

● prereq(course_id, prereq_id)

● teaches(ID, course_id, sec_id, semester, year)

● takes(ID, course_id, sec_id, semester, year, grade)
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Extended ER Features
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Extended E-R Features: Specialization

■ Top-down design process; we designate subgroupings within an entity set 
that are distinctive from other entities in the set.

■ These subgroupings become lower-level entity sets that have attributes or 
participate in relationships that do not apply to the higher-level entity set.

■ Depicted by a triangle component labeled ISA (E.g., instructor is a
person).

■ Attribute inheritance – a lower-level entity set inherits all the attributes 
and relationship participation of the higher-level entity set to which it is 
linked.
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Specialization Example

person

ID
name
address

student

instructor

rank

secretary

hours_per_week

employee

salary tot_credits
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Extended ER Features: Generalization

■ A bottom-up design process – combine a number of entity sets 
that share the same features into a higher-level entity set.

■ Specialization and generalization are simple inversions of each 
other; they are represented in an E-R diagram in the same way.

■ The terms specialization and generalization are used 
interchangeably.
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Specialization and Generalization (Cont.)

■ Can have multiple specializations of an entity set based on different 
features.  

■ E.g., permanent_employee vs. temporary_employee, in addition to 
instructor vs. secretary

■ Each particular employee would be 

● a member of one of permanent_employee or temporary_employee, 

● and also a member of one of instructor, secretary

■ The ISA relationship also referred to as superclass - subclass
relationship
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Design Constraints on a 

Specialization/Generalization

■ Constraint on which entities can be members of a given lower-level entity 
set.

● condition-defined

4 Example: all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA  person.

● user-defined

■ Constraint on whether or not entities may belong to more than one lower-
level entity set within a single generalization.

● Disjoint

4 an entity can belong to only one lower-level entity set

4 Noted in E-R diagram by having multiple lower-level entity sets link 
to the same triangle

● Overlapping

4 an entity can belong to more than one lower-level entity set
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Specialization Example

person

ID
name
address

student

instructor

rank

secretary

hours_per_week

employee

salary tot_credits

Disjoint, employees 

are either instructors or 

secretaries 

Overlapping, a 

person can be 

both an employee 

and a student
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Design Constraints on a 

Specialization/Generalization (Cont.)

■ Completeness constraint -- specifies whether or not an entity in 
the higher-level entity set must belong to at least one of the lower-
level entity sets within a generalization.

● total: an entity must belong to one of the lower-level entity sets

● partial: an entity need not belong to one of the lower-level 
entity sets
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Aggregation

■ Consider the ternary relationship proj_guide, which we saw earlier

■ Suppose we want to record evaluations of a student by a guide on a 
project

project

evaluation

instructor student

eval_ for

proj_ guide
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Aggregation (Cont.)

■ Relationship sets eval_for and proj_guide represent overlapping 
information

● Every eval_for relationship corresponds to a proj_guide
relationship

● However, some proj_guide relationships may not correspond to 
any eval_for relationships 

4 So we can’t discard the proj_guide relationship

■ Eliminate this redundancy via aggregation

● Treat relationship as an abstract entity

● Allows relationships between relationships 

● Abstraction of relationship into new entity
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Aggregation (Cont.)

■ Without introducing redundancy, the following diagram represents:

● A student is guided by a particular instructor on a particular project 

● A student, instructor, project combination may have an associated 
evaluation

evaluation

proj_ guide
instructor student

eval_ for

project
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Representing Specialization via 

Schemas

■ Method 1: 

● Form a relation schema for the higher-level entity 

● Form a relation schema for each lower-level entity set, include 
primary key of higher-level entity set and local attributes

schema attributes
person ID, name, street, city  
student ID, tot_cred
employee ID, salary

● Drawback:  getting information about, an employee requires 
accessing two relations, the one corresponding to the low-level 
schema and the one corresponding to the high-level schema
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Representing Specialization as Schemas 

(Cont.)

■ Method 2:  

● Form a single relation schema for each entity set with all local and 
inherited attributes

schema attributes
person ID, name, street, city
student ID, name, street, city, tot_cred
employee ID, name, street, city, salary

● If specialization is total, the schema for the generalized entity set 
(person) not required to store information

4 Can be defined as a view relation containing union of 
specialization relations

4 But explicit schema may still be needed for foreign key constraints

● Drawback:  name, street and city may be stored redundantly for people 
who are both students and employees
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Representing Specialization as Schemas 

(Cont.)

■ Method 3:  

● Form a single relation schema for each entity set with all local and 
inherited attributes

4 For total and disjoint specialization add a single “type” attribute that 
stores the type of an entity

4 For partial and/or overlapping specialization add multiple boolean
“type” attributes

● Drawback:  large number of NULL values, potentially large relation

schema attributes

person ID, type, name, street, city, tot_cred, salary

schema attributes

person ID, isEmployee, isStudent, name, street, city, tot_cred, salary
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Schemas Corresponding to Aggregation

■ To represent aggregation, create a schema containing

● primary key of the aggregated relationship,

● the primary key of the associated entity set

● any descriptive attributes
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Schemas Corresponding to 

Aggregation (Cont.)
■ For example, to represent aggregation manages between 

relationship works_on and entity set manager, create a schema

eval_for (s_ID, project_id, i_ID, evaluation_id)

evaluation

proj_ guide
instructor student

eval_ for

project
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ER-model to Relational Summary (Cont.)

■ Rule 8) Specialization of E into S1, … ,Sn (method 1)

● Create a relation for E with all attributes of E. The PK of E is the 
PK.

● For each Si create a relation with PK(E) as PK and foreign key to 
relation for E. Add all attributes of Si that do not exist in E.

■ Rule 9) Specialization of E into S1, … ,Sn (method 2)

● Create a relation for E with all attributes of E. The PK of E is the 
PK.

● For each Si create a relation with PK(E) as PK and foreign key to 
relation for E. Add all attributes of Si.

■ Rule 10) Specialization of E into S1, … ,Sn (method 3)

● Create a new relation with all attributes from E and S1, … ,Sn. 

● Add single attribute type or a boolean type attribute for each Si

● The primary key is PK(E)
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ER-model to Relational Summary (Cont.)

■ Rule 11) Aggregation: Relationship R1 relates entity sets E1, …, En. 
This is related by relationship A to an entity set B

● Create a relation for A with attributes PK(E1) … PK(En) + all 
attributes from A + PK(B). PK are all attributes except the ones 
from A
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ER Design Decisions

■ The use of an attribute or entity set to represent an object.

■ Whether a real-world concept is best expressed by an entity set or 
a relationship set.

■ The use of a ternary relationship versus a pair of binary 
relationships.

■ The use of a strong or weak entity set.

■ The use of specialization/generalization – contributes to modularity 
in the design.

■ The use of aggregation – can treat the aggregate entity set as a 
single unit without concern for the details of its internal structure.

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
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How about doing another ER design 

interactively on the board?
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Summary of Symbols Used in E-R Notation

E

R

R

A1

A2

A2.1

A2.2

{A3}

A4

E
entity set

relationship set

identifying
relationship set
for weak entity set primary key

discriminating
a!ribute of
weak entity set

total participation
of entity set in
relationship

a!ributes:
simple (A1),
composite (A2) and
multivalued (A3)
derived (A4)

A1

E

A1

E
R E

()
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Symbols Used in ER Notation (Cont.)

R

R

R

role-
name

R

E

R
l..h E

E1

E2 E3

E1

E2 E3

E1

E2 E3

many-to-many
relationship

many-to-one
relationship

one-to-one
relationship

cardinality
limits

ISA: generalization
or specialization

disjoint
generalization

total (disjoint)
generalization

role indicator

total
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Alternative ER Notations

■ Chen, IDE1FX, …

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

A1
A2

A3

A2.1 A2.2

A4E

generalization ISA ISAtotal
generalizationweak entity set
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Alternative ER Notations

Chen                      IDE1FX (Crows feet notation)

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

R
many-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

R
E1 E2

RE1 E2
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UML

■ UML: Unified Modeling Language

■ UML has many components to graphically model different aspects 
of an entire software system

■ UML Class Diagrams correspond to E-R Diagram, but several 
differences.

©Silberschatz, Korth and Sudarshan7.98CS425 – Fall 2016 – Boris Glavic

ER vs. UML Class Diagrams

*Note reversal of position in cardinality constraint depiction

–A1

+M1

E

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes:  +  =  public,
– =  private, # = protected)

A1

M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1

role1 role2

relationship
a!ributes E2E1

role1 role2

A1

R

R
cardinality
constraints

E2E1
R

E2E1
0.. * 0..1 0..1 0.. *

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1
role1 role2

A1

() ()

©Silberschatz, Korth and Sudarshan7.99CS425 – Fall 2016 – Boris Glavic

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arrows independent
of disjoint/overlapping

E2 E3

E1

E2 E3

E1

E2 E3

overlapping
generalization

disjoint
generalization

R
E3

E1

E2

R
E3

E1

E2
n-ary
relationships

E1

E2 E3

overlapping

disjoint

E1
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UML Class Diagrams (Cont.)

■ Binary relationship sets are represented in UML by just drawing a 
line connecting the entity sets. The relationship set name is written 
adjacent to the line.  

■ The role played by an entity set in a relationship set may also be 
specified by writing the role name on the line, adjacent to the entity 
set. 

■ The relationship set name may alternatively be written in a box, 
along with attributes of the relationship set, and the box is 
connected, using a dotted line, to the line depicting the  relationship 
set.
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Recap

■ ER-model

● Entities

4 Strong

4 Weak

● Attributes

4 Simple vs. Composite

4 Single-valued vs. Multi-valued

● Relationships

4 Degree (binary vs. N-ary)

● Cardinality constraints

● Specialization/Generalization

4 Total vs. partial

4 Disjoint vs. overlapping

● Aggregation
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Recap Cont.

■ ER-Diagrams 

● Alternative notations

■ UML-Diagrams

■ Design decisions

● Multi-valued attribute vs. entity

● Entity vs. relationship

● Binary vs. N-ary relationships

● Placement of relationship attributes

● Total 1-1 vs. single entity

■ ER to relational model

● Translation rules
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End of Chapter 7
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Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design – Database modelling

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization
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Figure 7.02
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Figure 7.03
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Figure 7.04
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Figure 7.05
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Figure 7.06
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Figure 7.07
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Figure 7.08
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Figure 7.09
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Figure 7.10
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Figure 7.11
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Figure 7.12

course

course_id
title
credits

course_id

prereq_id
prereq

©Silberschatz, Korth and Sudarshan7.117CS425 – Fall 2016 – Boris Glavic

Figure 7.13
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Figure 7.14
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Figure 7.15
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Figure 7.17
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Figure 7.18
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Figure 7.19
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Figure 7.20
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Figure 7.21
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Figure 7.22
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Figure 7.23
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Figure 7.24
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Figure 7.25
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Figure 7.26
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Figure 7.27
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Figure 7.28
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Chapter 8:  Relational Database Design
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Chapter 8:  Relational Database Design

■ Features of Good Relational Design

■ Atomic Domains and First Normal Form

■ Decomposition Using Functional Dependencies

■ Functional Dependency Theory

■ Algorithms for Functional Dependencies

■ Decomposition Using Multivalued Dependencies 

■ More Normal Form

■ Database-Design Process

■ Modeling Temporal Data
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What is Good Design?

1) Easier: What is Bad Design?
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Combine Schemas?

■ Suppose we combine instructor and department into inst_dept

● (No connection to relationship set inst_dept)

■ Result is possible repetition of information

©Silberschatz, Korth and Sudarshan8.5CS425 – Fall 2016 – Boris Glavic

Redundancy is Bad!

■ Update Physics Department

● multiple tuples to update

● Efficiency + potential for errors

■ Delete Physics Department 

● update multiple tuples

● Efficiency + potential for errors

■ Departments without instructor or instructors without departments

● Need dummy department and dummy instructor

● Makes aggregation harder and error prone. 

©Silberschatz, Korth and Sudarshan8.6CS425 – Fall 2016 – Boris Glavic

A Combined Schema Without Repetition

■ Combining is not always bad!

■ Consider combining relations 

● sec_class(sec_id, building, room_number) and 

● section(course_id, sec_id, semester, year) 

into one relation

● section(course_id, sec_id, semester, year, 
building, room_number)

■ No repetition in this case
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What About Smaller Schemas?

■ Suppose we had started with inst_dept.  How would we know to split up 
(decompose) it into instructor and department?

■ Write a rule if there were a schema (dept_name, building, budget), then 
dept_name would be a candidate key

■ Denote as a functional dependency: 

dept_name ® building, budget

■ In inst_dept, because dept_name is not a candidate key, the building 

and budget of a department may have to be repeated.  

● This indicates the need to decompose inst_dept

■ Not all decompositions are good.  Suppose we decompose
employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

■ The next slide shows how we lose information -- we cannot reconstruct 
the original employee relation -- and so, this is a lossy decomposition.
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A Lossy Decomposition
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Example of Lossless-Join Decomposition

■ Lossless join decomposition

■ Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)

A B

a
b

1
2

A

a
b

B

1
2

r ÕB,C(r)

ÕA,B (r)     ÕB,C (r)
A B

a
b

1
2

C

A
B

B

1
2

C

A
B

C

A
B

ÕA,B(r)
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Goals of Lossless-Join Decomposition

■ Lossless-Join decomposition means splitting a table in a way so 
that we do not loose information

● That means we should be able to reconstruct the original 
table from the decomposed table using joins

A B

a
b

1
2

A

a
b

B

1
2

r ÕB,C(r)

ÕA (r)     ÕB (r)
A B

a
b

1
2

C

A
B

B

1
2

C

A
B

C

A
B

ÕA,B(r)
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Goal — Devise a Theory for the Following

■ Decide whether a particular relation R is in good form.

■ In the case that a relation R is not in good form, decompose it into a 
set of relations {R1, R2, ..., Rn} such that 

● each relation is in good form 

● the decomposition is a lossless-join decomposition

■ Our theory is based on:

● 1) Models of dependency between attribute values

4 functional dependencies

4 multivalued dependencies

● 2) Concept of lossless decomposition

● 3) Normal Forms Based On

4 Atomicity of values

4 Avoidance of redundancy

4 Lossless decomposition
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Modeling Dependencies between 

Attribute Values:

Functional Depedencies

Multivalued Depedencies
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Functional Dependencies

■ Constraints on the set of legal instances for a relation schema.

■ Require that the value for a certain set of attributes determines 
uniquely the value for another set of attributes.

■ A functional dependency is a generalization of the notion of a key.

● Thus, every key is a functional dependency
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Functional Dependencies (Cont.)

■ Let R be a relation schema

a Í R  and  b Í R

■ The functional dependency

a® b
holds on R if and only if for any legal relations r(R), whenever any 
two tuples t1 and t2 of r agree on the attributes a, they also agree 
on the attributes b. That is, 

t1[a] = t2 [a]   Þ t1[b ]  = t2 [b ] 

■ Example:  Consider r(A,B ) with the following instance of r.

■ On this instance, A ® B does NOT hold, but  B ® A does hold. 

1 4
1     5
3     7
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Functional Dependencies (Cont.)

■ Let R be a relation schema

a Í R  and  b Í R

■ The functional dependency

a® b
holds on R if and only if for any legal relations r(R), whenever any 
two tuples t1 and t2 of r agree on the attributes a, they also agree 
on the attributes b. That is, 

t1[a] = t2 [a]   Þ t1[b ]  = t2 [b ] 

■ Example:  Consider r(A,B ) with the following instance of r.

■ On this instance, A ® B does NOT hold, but  B ® A does hold. 

1 4
1     5
3     7

A = 1 and B = 4

A = 1 and B = 5
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Functional Dependencies (Cont.)

■ K is a superkey for relation schema R if and only if K ® R

■ K is a candidate key for R if and only if 

● K ® R, and

● for no a Ì K, a® R

■ Functional dependencies allow us to express constraints that cannot be 
expressed using superkeys.  Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget ).

We expect these functional dependencies to hold:

dept_name® building

and              ID à building

but would not expect the following to hold: 

dept_name ® salary
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Use of Functional Dependencies

■ We use functional dependencies to:

● test relations to see if they are legal under a given set of functional 
dependencies. 

4 If a relation r is legal under a set F of functional dependencies, we 
say that r satisfies F.

● specify constraints on the set of legal relations

4 We say that F holds on R if all legal relations on R satisfy the set 
of functional dependencies F.

■ Note:  A specific instance of a relation schema may satisfy a functional 
dependency even if the functional dependency does not hold on all legal 
instances.  

● For example, a specific instance of instructor may, by chance, satisfy 
name ® ID.
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Functional Dependencies (Cont.)

■ A functional dependency is trivial if it is satisfied by all instances of a 
relation

● Example:

4 ID, name ® ID

4 name ® name

● In general, a® b is trivial if b Í a
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Closure of a Set of Functional 

Dependencies

■ Given a set F of functional dependencies, there are certain other 
functional dependencies that are logically implied by F.

● For example:  If  A ® B and  B ® C,  then we can infer that A ®
C

■ The set of all functional dependencies logically implied by F is the 
closure of F.

■ We denote the closure of F by F+.

■ F+ is a superset of F.
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Functional-Dependency Theory

■ We now consider the formal theory that tells us which functional 
dependencies are implied logically by a given set of functional 
dependencies.

■ How do we get the initial set of FDs?

● Semantics of the domain we are modelling

● Has to be provided by a human (the designer)

■ Example:

● Relation Citizen(SSN, FirstName, LastName, Address)

● We know that SSN is unique and a person has a a unique SSN

● Thus, SSN ® FirstName, LastName
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Closure of a Set of Functional 

Dependencies

■ We can find F+, the closure of F, by repeatedly applying 
Armstrong’s Axioms:

● if b Í a, then a® b (reflexivity)

● if a® b, then g a ® g b (augmentation)

● if a® b, and b® g, then a® g (transitivity)

■ These rules are 

● sound (generate only functional dependencies that actually hold),  
and 

● complete (generate all functional dependencies that hold).
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Example

■ R = (A, B, C, G, H, I)
F = {  A ® B

A ® C
CG ® H
CG ® I

B ® H}

■ some members of F+

● A ® H        

4 by transitivity from A ® B and B ® H

● AG ® I       

4 by augmenting A ® C with G, to get AG ® CG 
and then transitivity with CG ® I 

● CG ® HI     

4 by augmenting CG ® I to infer CG ® CGI, 

and augmenting of CG ® H to infer CGI ® HI, 

and then transitivity
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Prove Additional Implications

■ Prove or disprove the following rules from Amstrong’s axioms

● 1) A ® B, C implies A ® B and A ® C 

● 2) A ® B and A ® C implies A ® B, C

● 3) A, B ® B, C implies A ® C 

● 4) A ® B and C ® D implies A, C ® B, D
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Procedure for Computing F+

■ To compute the closure of a set of functional dependencies F:

F + = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F +

until F + does not change any further

NOTE:  We shall see an alternative more efficient procedure for this task 
later
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Closure of Functional Dependencies 

(Cont.)

■ Additional rules:

● If a® b holds and a® g holds,  then a® b g holds (union)

● If a® b g holds, then a® b holds and a® g holds 
(decomposition)

● If a® b holds and g b® d holds, then a g ® d holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.
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Closure of Attribute Sets

■ Given a set of attributes a, define the closure of a under F (denoted 
by a+) as the set of attributes that are functionally determined by a
under F

■ Algorithm to compute a+, the closure of a under F

result := a;
while (changes to result) do

for each b ® g in F do
begin

if b Í result then result := result È g
end
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Example of Attribute Set Closure

■ R = (A, B, C, G, H, I)

■ F = {A ® B
A ® C 
CG ® H
CG ® I
B ® H}

■ (AG)+

1. result = AG

2. result = ABCG (A ® C and A ® B)

3. result = ABCGH (CG ® H and CG Í AGBC)

4. result = ABCGHI (CG ® I and CG Í AGBCH)

■ Is AG a candidate key?  

1. Is AG a super key?

1. Does AG ® R? == Is (AG)+ Ê R

2. Is any subset of AG a superkey?

1. Does A ® R? == Is (A)+ Ê R

2. Does G ® R? == Is (G)+ Ê R
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Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

■ Testing for superkey:

● To test if a is a superkey, we compute a+, and check if a+ contains 
all attributes of R.

■ Testing functional dependencies

● To check if a functional dependency a® b holds (or, in other 
words, is in F+), just check if b Í a+. 

● That is, we compute a+ by using attribute closure, and then check 
if it contains b. 

● Is a simple and cheap test, and very useful

■ Computing closure of F

● For each g Í R, we find the closure g+, and for each S Í g+, we 
output a functional dependency g ® S.
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O(n) Algorithm for Attribute Closure

■ Data Structures

● Enumerate the FDs and attributes

● int[] c: an integer array with one element per FD that is initialized 
to the size of the LHS of the FD

● list<int>[] rhs: an array of lists with one element per FD. The 
element stores the numeric ID of the attributes of the FDs RHS

● list<int>[] lhs: an array of lists of integers, one element per 
attribute. The element for each attribute stores the numeric IDs of 
the FDs that have the attribute in its LHS

● set<int> aplus: a set storing the attributes currently established to 
be implied by A

● stack<int> todo: a stack of attributes to be processed next
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O(n) Algorithm for Attribute Closure

■ Algorithm

● Initialize c, rhs, lhs, aplus to the emptyset, todo to A

while(!todo.isEmpty) {

curA = todo.pop();

aplus.add(curA); // add curA to result

for fd in lhs[curA]  { // update how many attribute found for 
LHS

c[fd]--; // found a LHS attr for fd

if (c[fd] == 0) {

remove(lhs[curA], fd); // avoid firing twice

for newA in rhs[fd] { // add implied attributes

if (!aplus[newA]) // if attribute is new add to todo

todo.push(newA);

aplus.add(newA);

}

}

}

}



6

©Silberschatz, Korth and Sudarshan8.31CS425 – Fall 2016 – Boris Glavic

Canonical Cover

■ Sets of functional dependencies may have redundant dependencies 
that can be inferred from the others

● For example:  A ® C is redundant in:   {A ® B,   B ® C, A ® C}

● Parts of a functional dependency may be redundant

4 E.g.: on RHS:   {A ® B,   B ® C,   A ® CD}  can be simplified 
to 

{A ® B,   B ® C,   A ® D} 

4 E.g.: on LHS:    {A ® B,   B ® C,   AC ® D}  can be simplified 
to 

{A ® B,   B ® C,   A ® D} 

■ Intuitively, a canonical cover of F is a minimal set of functional 
dependencies equivalent to F, having no redundant dependencies or 
redundant parts of dependencies 
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Extraneous Attributes

■ Consider a set F of functional dependencies and the functional 
dependency a® b in F.

● Attribute A is extraneous in a if A Î a
and F logically implies (F – {a® b}) È {(a – A) ®b}.

● Attribute A is extraneous in b if A Î b
and the set of functional dependencies 
(F – {a® b}) È {a®(b – A)} logically implies F.

■ Note: implication in the opposite direction is trivial in each of the 
cases above, since a stronger functional dependency always 
implies a weaker one

■ Example: Given F = {A ® C, AB ® C }

● B is extraneous in AB ® C because {A ® C, AB ® C} logically 
implies A ® C (I.e. the result of dropping B from AB ® C).

■ Example:  Given F = {A ® C, AB ® CD}

● C is extraneous in AB ® CD since  AB ® C can be inferred even 
after deleting C
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Testing if an Attribute is Extraneous

■ Consider a set F of functional dependencies and the functional 
dependency a® b in F.

■ To test if attribute A Î a is extraneous in a

1. compute ({a} – A)+ using the dependencies in F

2. check that ({a} – A)+ contains b; if it does, A is extraneous in a

■ To test if attribute A Î b is extraneous in b

1. compute a+ using only the dependencies in  
F’ = (F – {a® b}) È {a®(b – A)}, 

2. check that a+ contains A; if it does, A is extraneous in b
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Canonical Cover

■ A canonical cover for F is a set of dependencies Fc such that 

● F logically implies all dependencies in Fc, and 

● Fc logically implies all dependencies in F, and

● No functional dependency in Fc contains an extraneous attribute, and

● Each left side of functional dependency in Fc is unique.

■ To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
a1 ®b1 and a1 ®b2 with a1 ®b1 b2

Find a functional dependency a® b with an 
extraneous attribute either in a or in b
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from a® b
until F does not change

■ Note: Union rule may become applicable after some extraneous attributes 
have been deleted, so it has to be re-applied
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Computing a Canonical Cover

■ R = (A, B, C)

F = {A ® BC

B ® C

A ® B

AB ® C}

■ Combine A ® BC and A ® B into A ® BC

● Set is now {A ® BC, B ® C, AB ® C}

■ A is extraneous in AB ® C

● Check if the result of deleting A from  AB ® C  is implied by the other 

dependencies

4 Yes: in fact,  B ® C is already present!

● Set is now {A ® BC, B ® C}

■ C is extraneous in A ® BC

● Check if A ® C is logically implied by A ® B and the other dependencies

4 Yes: using transitivity on A ® B  and B ® C. 

– Can use attribute closure of A in more complex cases

■ The canonical cover is: A ® B

B ® C

modified from:

Database System Concepts, 6th Ed.
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Lossless Join-Decomposition

Dependency Preservation
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So Far

■ Theory of dependencies

■ What is missing?

● When is a decomposition loss-less

4 Lossless-join decomposition

4 Dependencies on the input are preserved

■ What else is missing?

● Define what constitutes a good relation

4 Normal forms

● How to check for a good relation

4 Test normal forms

● How to achieve a good relation

4 Translate into normal form

4 Involves decomposition
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Lossless-join Decomposition

■ For the case of R = (R1, R2), we require that for all possible relation 
instances r on schema R

r = ÕR1 (r )    ÕR2 (r ) 

■ A decomposition of R into R1 and R2 is lossless join if at least one of 
the following dependencies is in F+:

● R1 Ç R2 ® R1

● R1 Ç R2 ® R2

■ The above functional dependencies are a sufficient condition for 
lossless join decomposition; the dependencies are a necessary
condition only if all constraints are functional dependencies
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Example

■ R = (A, B, C)
F = {A ® B, B ® C)

● Can be decomposed in two different ways

■ R1 = (A, B),   R2 = (B, C)

● Lossless-join decomposition:

R1  Ç R2 = {B} and B ® BC

● Dependency preserving

■ R1 = (A, B),   R2 = (A, C)

● Lossless-join decomposition:

R1  Ç R2 = {A} and A ® AB

● Not dependency preserving 
(cannot check B ® C without computing R1 R2)
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Dependency Preservation

■ Let Fi be the set of dependencies F + that include only attributes in 
Ri. 

4 A  decomposition is dependency preserving,  if

(F1 È F2 È … È Fn )+ = F +

4 If it is not, then checking updates for violation of functional 
dependencies may require computing joins, which is 
expensive.
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Testing for Dependency Preservation

■ To check if a dependency a® b is preserved in a decomposition 
of R into R1, R2, …, Rn we apply the following test (with attribute 
closure done with respect to F)

● result = a
while (changes to result) do

for each Ri in the decomposition
t = (result Ç Ri)+ Ç Ri

result  =  result  È t

● If result contains all attributes in b, then the functional 

dependency 
a® b is preserved.

■ We apply the test on all dependencies in F to check if a 
decomposition is dependency preserving

■ This procedure (attribute closure) takes polynomial time, instead of 
the exponential time required to compute F+ and (F1 È F2 È … È
Fn)+
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Example

■ R = (A, B, C )
F = {A ® B

B ® C}
Key = {A}

■ Decomposition R1 = (A, B),  R2 = (B, C)

● Lossless-join decomposition

● Dependency preserving
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Normal Forms
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So Far

■ Theory of dependencies

■ Decompositions and ways to check whether they are “good”

● Lossless

● Dependency preserving

■ What is missing?

● Define what constitutes a good relation

4 Normal forms

● How to check for a good relation

4 Test normal forms

● How to achieve a good relation

4 Translate into normal form

4 Involves decomposition
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Goals of Normalization

■ Let R be a relation scheme with a set F of functional dependencies.

■ Decide whether a relation scheme R is in good form.

■ In the case that a relation scheme R is not in good form, 
decompose it into a set of relation scheme  {R1, R2, ..., Rn} such that 

● each relation scheme is in good form 

● the decomposition is a lossless-join decomposition

● Preferably, the decomposition should be dependency preserving.
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First Normal Form

■ A domain is atomic if its elements are considered to be indivisible units

● Examples of non-atomic domains:

4 Set of names, composite attributes

4 Identification numbers like CS101  that can be broken up into 
parts

■ A relational schema R is in first normal form if the domains of all 
attributes of R are atomic

■ Non-atomic values complicate storage and encourage redundant 
(repeated) storage of data

● Example:  Set of accounts stored with each customer, and set of 
owners stored with each account

● We assume all relations are in first normal form

● (revisited in Chapter 22 of the textbook: Object Based Databases)
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First Normal Form (Cont’d)

■ Atomicity is actually a property of how the elements of the domain are 
used.

● Example: Strings would normally be considered indivisible 

● Suppose that students are given roll numbers which are strings of 
the form CS0012 or EE1127

● If the first two characters are extracted to find the department, the 
domain of roll numbers is not atomic.

● Doing so is a bad idea: leads to encoding of information in 
application program rather than in the database.
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Second Normal Form

■ A relation schema R in 1NF is in second normal form (2NF) iff

● No non-prime attribute depends on parts of a candidate key

● An attribute is non-prime if it does not belong to any candidate key for 
R



9

©Silberschatz, Korth and Sudarshan8.49CS425 – Fall 2016 – Boris Glavic

Second Normal Form Example

■ R(A,B,C,D)

● A,B ® C,D

● A ® C

● B ® D

■ {A,B} is the only candidate key

■ R is not in 2NF, because A->C where A is part of a candidate key and C 
is not part of a candidate key

■ Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID, 
InstrName, StudentName)

● Indication that we are putting stuff together that does not belong 
together
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Second Normal Form Interpretation

■ Why is a dependency on parts of a candidate key bad?

● That is why is a relation that is not in 2NF bad?

■ 1) A dependency on part of a candidate key indicates potential for 
redudancy

● Advisor(InstrSSN, StudentCWID, InstrName, StudentName)

● StudentCWID ® StudentName

● If a student is advised by multiple instructors we record his name 
several times

■ 2) A dependency on parts of a candidate key shows that some 
attributes are unrelated to other parts of a candidate key

● That means the table should be split
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2NF is What We Want?

■ Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

● A ® B,C,D

● C ® D

■ {Name} is the only candidate key

■ I is in 2NF

■ However, as we have seen before I still has update redundancy that can 
cause update anomalies 

● We repeat the budget of a department if there is more than one 
instructor working for that department
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Third Normal Form

■ A relation schema R is in third normal form (3NF) if for all:

a® b in F+

at least one of the following holds:

● a® b is trivial (i.e., b Î a)

● a is a superkey for R

● Each attribute A in b – a is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

Alternatively,

● Every attribute depends directly on a candidate key, i.e., for every 
attribute A there is a dependency X ® A, but no dependency Y ® A 
where Y is not a candidate key
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3NF Example

■ Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

● A ® B,C,D

● C ® D

■ {Name} is the only candidate key

■ I is in 2NF

■ I is not in 3NF
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Testing for 3NF

■ Optimization: Need to check only FDs in F, need not check all FDs in 
F+.

■ Use attribute closure to check for each dependency a® b, if a is a 
superkey.

■ If a is not a superkey, we have to verify if each attribute in b is 
contained in a candidate key of R

● this test is rather more expensive, since it involve finding 
candidate keys

● testing for 3NF has been shown to be NP-hard

● Interestingly, decomposition into third normal form (described 
shortly) can be done in polynomial time
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3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency a® b in Fc do
if none of the schemas Rj, 1 £ j £ i contains  a b

then begin
i := i  + 1;
Ri := a b

end
if none of the schemas Rj, 1 £ j £ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
/* Optionally, remove redundant relations */

repeat
if any schema Rj is contained in another schema Rk

then /* delete Rj */
Rj = R;;
i=i-1;

return (R1, R2, ..., Ri)
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3NF Decomposition Algorithm (Cont.)

■ Above algorithm ensures:

● each relation schema Ri is in 3NF

● decomposition is dependency preserving and lossless-join

● Proof of correctness is at end of this presentation (click here)
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3NF Decomposition: An Example

■ Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type )

■ The functional dependencies for this relation schema are:

1. customer_id, employee_id ® branch_name, type

2. employee_id ® branch_name

3. customer_id, branch_name ® employee_id

■ We first compute a canonical cover

● branch_name is extraneous in the r.h.s. of the 1st dependency

● No other attribute is extraneous, so we get FC =

customer_id, employee_id ® type
employee_id ® branch_name
customer_id, branch_name ® employee_id
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3NF Decompsition Example (Cont.)

■ The for loop generates following 3NF schema:

(customer_id, employee_id, type )

(employee_id, branch_name)

(customer_id, branch_name, employee_id)

● Observe that (customer_id, employee_id, type ) contains a 
candidate key of the original schema, so no further relation schema 
needs be added

■ At end of for loop, detect and delete schemas, such as  (employee_id, 
branch_name), which are subsets of other schemas

● result will not depend on the order in which FDs are considered

■ The resultant simplified 3NF schema is:

(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)
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Another 3NF Example

■ Relation dept_advisor:

● dept_advisor (s_ID, i_ID, dept_name)
F = {s_ID, dept_name ® i_ID,  

i_ID ® dept_name}

● Two candidate keys:  s_ID, dept_name, and i_ID, s_ID

● R is in 3NF

4 s_ID, dept_name ® i_ID s_ID

– dept_name is a superkey

4 i_ID ® dept_name

– dept_name is contained in a candidate key
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Redundancy  in 3NF

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

■ repetition of information (e.g., the relationship l1, k1) 

l (i_ID, dept_name)

■ need to use null values (e.g., to represent the relationship
l2, k2 where there is no corresponding value for J).

l (i_ID, dept_nameI) if there is no separate relation mapping 
instructors to departments

■ There is some redundancy in this schema dept_advisor (s_ID, i_ID, 
dept_name)

■ Example of problems due to redundancy in 3NF

● R = (J, K, L)
F = {JK ® L, L ® K }
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Boyce-Codd Normal Form

■ a® b is trivial (i.e., b Í a)

■ a is a superkey for R

A relation schema R is in BCNF with respect to a set F of 
functional  dependencies if for all functional dependencies in F+ of 
the form 

a® b

where a Í R and b Í R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget )

because dept_name® building, budget
holds on instr_dept, but dept_name is not a superkey
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BCNF and Dependency Preservation

■ If a relation is in BCNF it is in 3NF

■ Constraints, including functional dependencies, are costly to check in 
practice unless they pertain to only one relation

■ Because it is not always possible to achieve both BCNF and 
dependency preservation, we usually consider normally third normal 
form.
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Testing for BCNF

■ To check if a non-trivial dependency a®b causes a violation of BCNF

1.  compute a+ (the attribute closure of a), and 

2.  verify that it includes all attributes of R, that is, it is a superkey of R.

■ Simplified test: To check if a relation schema R is in BCNF, it suffices 
to check only the dependencies in the given set F for violation of BCNF, 
rather than checking all dependencies in F+.

● If none of the dependencies in F causes a violation of BCNF, then 
none of the dependencies in F+ will cause a violation of BCNF 
either.

■ However, simplified test using only F is incorrect when testing a 
relation in a decomposition of R

● Consider R = (A, B, C, D, E), with F = { A ® B, BC ® D}

4 Decompose R into R1 = (A,B) and R2 = (A,C,D, E) 

4 Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies 
BCNF.  

4 In fact, dependency AC ® D in F+ shows R2 is not in BCNF.
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Testing Decomposition for BCNF

■ To check if a relation Ri in a decomposition of R is in BCNF, 

● Either test Ri for BCNF with respect to the restriction of F to Ri

(that is, all FDs in F+ that contain only attributes from Ri)

● or use the original set of dependencies F that hold on R, but with 
the following test:

– for every set of attributes a Í Ri, check that a+ (the 
attribute closure of a) either includes no attribute of Ri- a, 
or includes all attributes of Ri.

4 If the condition is violated by some a® b in F, the 
dependency

a® (a+ - a) Ç Ri

can be shown to hold on Ri, and Ri violates BCNF.

4 We use above dependency to decompose Ri
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Decomposing a Schema into BCNF

■ Suppose we have a schema R and a non-trivial dependency a®b
causes a violation of BCNF.

We decompose R into:

• (a U b )

• ( R - ( b - a ) )

■ In our example, 

● a = dept_name

● b = building, budget

and inst_dept is replaced by

● (a U b ) = ( dept_name, building, budget )

● ( R - ( b - a ) ) = ( ID, name, salary, dept_name )
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BCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let a® b be a nontrivial functional dependency that 
holds on Ri such that a® Ri is not in F +, 

and a Ç b = Æ;
result := (result – Ri ) È (Ri – b) È (a, b );

end
else done := true; 

Note:  each Ri is in BCNF, and decomposition is lossless-join.
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Example of BCNF Decomposition

■ R = (A, B, C )
F = {A ® B

B ® C}
Key = {A}

■ R is not in BCNF (B ® C but B is not  superkey)

■ Decomposition

● R1 = (B, C)

● R2 = (A,B)
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Example of BCNF Decomposition

■ class (course_id, title, dept_name, credits, sec_id, semester, year, 
building, room_number, capacity, time_slot_id)

■ Functional dependencies:

● course_id→ title, dept_name, credits

● building, room_number→capacity

● course_id, sec_id, semester, year→building, room_number, 
time_slot_id

■ A candidate key {course_id, sec_id, semester, year}.

■ BCNF Decomposition:

● course_id→ title, dept_name, credits  holds

4 but course_id is not a superkey.

● We replace class by:

4 course(course_id, title, dept_name, credits)

4 class-1 (course_id, sec_id, semester, year, building,           
room_number, capacity, time_slot_id)
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BCNF Decomposition (Cont.)

■ course is in BCNF

● How do we know this?

■ building, room_number→capacity  holds on class-1

● but {building, room_number} is not a superkey for class-1.

● We replace class-1 by:

4 classroom (building, room_number, capacity)

4 section (course_id, sec_id, semester, year, building, 
room_number, time_slot_id)

■ classroom and section are in BCNF.
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BCNF and Dependency Preservation

■ R = (J, K, L )
F = {JK ® L

L ® K }
Two candidate keys = JK and JL

■ R is not in BCNF

■ Any decomposition of R will fail to preserve

JK ® L

This implies that testing for JK ® L requires a join

It is not always possible to get a BCNF decomposition that is 
dependency preserving
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How good is BCNF?

■ There are database schemas in BCNF that do not seem to be 
sufficiently normalized 

■ Consider a relation 

inst_info (ID, child_name, phone)

● where an instructor may have more than one phone and can have 
multiple children

ID child_name phone

99999
99999
99999
99999

David

David

William

Willian

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_info
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■ There are no non-trivial functional dependencies and therefore the 
relation is in BCNF 

■ Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, 
we need to add two tuples

(99999, David,   981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)
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■ Therefore, it is better to decompose inst_info into:

This suggests the need for higher normal forms, such as Fourth 
Normal Form (4NF), which we shall see later.

How good is BCNF? (Cont.)

ID child_name

99999
99999
99999
99999

David

David

William

Willian

inst_child

ID phone

99999
99999
99999
99999

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_phone
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Comparison of BCNF and 3NF

■ It is always possible to decompose a relation into a set of  relations 
that are in 3NF such that:

● the decomposition is lossless

● the dependencies are preserved

■ It is always possible to decompose a relation into a set of relations 
that are in BCNF such that:

● the decomposition is lossless

● it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan8.75CS425 – Fall 2016 – Boris Glavic

Summary Normal Forms

■ BCNF -> 3NF -> 2NF -> 1NF

■ 1NF

● atomic attributes

■ 2NF

● no non-trivial dependencies of non-prime attributes on parts of the 
key

■ 3NF

● no transitive non-trivial dependencies on the key

■ BCNF

● only non-trivial dependencies on a superkey
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Design Goals Revisited

■ Goal for a relational database design is:

● BCNF.

● Lossless join.

● Dependency preservation.

■ If we cannot achieve this, we accept one of

● Lack of dependency preservation 

● Redundancy due to use of 3NF

■ Interestingly, SQL does not provide a direct way of specifying functional 
dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test, (and 
currently not supported by any of the widely used databases!)

■ Even if we had a dependency preserving decomposition, using SQL we 
would not be able to efficiently test a functional dependency whose left 
hand side is not a key.
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Multivalued Dependencies and 4NF, 

5NF
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Multivalued Dependencies

■ Suppose we record names of children, and phone numbers for 
instructors:

● inst_child(ID, child_name)

● inst_phone(ID, phone_number)

■ If we were to combine these schemas to get

● inst_info(ID, child_name, phone_number)

● Example data:
(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

■ This relation is in BCNF

● Why?
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Multivalued Dependencies (MVDs)

■ Let R be a relation schema and let a Í R and b Í R. The 
multivalued dependency

a®® b

holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2
in r such that t1[a] = t2 [a], there exist tuples t3 and t4 in r such that: 

t1[a] = t2 [a] = t3 [a] = t4 [a] 
t3[b]         =  t1 [b] 
t3[R  – b] =  t2[R  – b] 
t4 [b]         =  t2[b] 
t4[R  – b] =  t1[R  – b] 
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MVD (Cont.)

■ Tabular representation of a®® b
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Example

■ Let R be a relation schema with a set of attributes that are partitioned 
into 3 nonempty subsets.

Y, Z, W

■ We say that Y ®® Z (Y multidetermines Z )
if and only if for all possible relations r (R )

< y1, z1, w1 > Î r and < y1, z2, w2 > Î r

then

< y1, z1, w2 > Î r and < y1, z2, w1 > Î r

■ Note that since the behavior of Z and W are identical it follows that 

Y ®® Z if Y ®® W 
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Example (Cont.)

■ In our example:

ID ®® child_name
ID ®® phone_number

■ The above formal definition is supposed to formalize the notion that given 
a particular value of Y (ID) it has associated with it a set of values of Z 
(child_name) and a set of values of W (phone_number), and these two 
sets are in some sense independent of each other.

■ Note: 

● If Y ® Z then  Y ®® Z

● Indeed we have (in above notation) Z1 = Z2

The claim follows.
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Use of Multivalued Dependencies

■ We use multivalued dependencies in two ways: 

1. To test relations to determine whether they are legal under a 
given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations.  We shall 
thus concern ourselves only with relations that satisfy a given 
set of functional and multivalued dependencies.

■ If a relation r fails to satisfy a given multivalued dependency, we can 
construct a relations r¢ that does satisfy the multivalued 
dependency by adding tuples to r. 
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Theory of MVDs

■ From the definition of multivalued dependency, we can derive the 
following rule:

● If a® b, then a®® b

That is, every functional dependency is also a multivalued dependency

■ The closure D+ of D is the set of all functional and multivalued 
dependencies logically implied by D. 

● We can compute D+ from D, using the formal definitions of 

functional dependencies and multivalued dependencies.

● We can manage with such reasoning for very simple multivalued 
dependencies, which seem to be most common in practice

● For complex dependencies, it is better to reason about sets of 
dependencies using a system of inference rules (see Appendix C).
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Fourth Normal Form

■ A relation schema R is in 4NF with respect to a set D of functional and 
multivalued dependencies if for all multivalued dependencies in D+ of 
the form a®® b, where a Í R and b Í R, at least one of the following 
hold:

● a®® b is trivial (i.e., b Í a or a È b = R)

● a is a superkey for schema R

■ If a relation is in 4NF it is in BCNF
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Restriction of Multivalued Dependencies

■ The restriction of  D to Ri is the set Di consisting of

● All functional dependencies in D+ that include only attributes of Ri

● All multivalued dependencies of the form

a®® (b Ç Ri)

where a Í Ri and  a®® b is in D+
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4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done) 
if (there is a schema Ri in result that is not in 4NF) then

begin

let a®® b be a nontrivial multivalued dependency that holds
on Ri such that a® Ri  is not in Di, and aÇb=f; 

result :=  (result - Ri) È (Ri - b)  È (a, b); 
end

else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join
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Example

■ R =(A, B, C, G, H, I)

F ={ A ®® B

B ®® HI

CG ®® H }

■ R is not in 4NF since A ®® B and A is not a superkey for R

■ Decomposition

a) R1 = (A, B) (R1 is in 4NF)

b) R2 = (A, C, G, H, I)  (R2 is not in 4NF, decompose into R3 and R4)

c) R3 = (C, G, H) (R3 is in 4NF)

d) R4 = (A, C, G, I)  (R4 is not in 4NF, decompose into R5 and R6)

● A ®® B and B ®® HI è A ®® HI, (MVD transitivity), and

● and hence A ®® I (MVD restriction to R4)

e) R5 = (A, I)  (R5 is in 4NF)

f)R6 = (A, C, G)  (R6 is in  4NF)
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Further Normal Forms

■ Join dependencies generalize multivalued dependencies

● lead to project-join normal form (PJNF) (also called fifth normal 
form)

■ A class of even more general constraints, leads to a normal form 
called domain-key normal form.

■ Problem with these generalized constraints:  are hard to reason with, 
and no set of sound and complete set of inference rules exists.

■ Hence rarely used
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Final Thoughts on Design Process
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Overall Database Design Process

■ We have assumed schema R is given

● R could have been generated when converting an ER diagram to a 
set of tables.

● R could have been a single relation containing all attributes that are 
of interest (called universal relation).

● Normalization breaks R into smaller relations.

● R could have been the result of some ad hoc design of relations, 

which we then test/convert to normal form.
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ER Model and Normalization

■ When an ER diagram is carefully designed, identifying all entities 
correctly, the tables generated from the ER diagram should not need 
further normalization.

■ However, in a real (imperfect) design, there can be functional 
dependencies from non-key attributes of an entity to other attributes of 
the entity

● Example: an employee entity with attributes 
department_name and building, 

and  a functional dependency 
department_name® building

● Good design would have made department an entity

■ Functional dependencies from non-key attributes of a relationship set 
possible, but rare --- most relationships are binary 
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Denormalization for Performance

■ May want to use non-normalized schema for performance

■ For example, displaying prereqs along with course_id, and title requires 
join of course with prereq

■ Alternative 1:  Use denormalized relation containing attributes of course
as well as prereq with all above attributes

● faster lookup

● extra space and extra execution time for updates

● extra coding work for programmer and possibility of error in extra code

■ Alternative 2: use a materialized view defined as
course prereq

● Benefits and drawbacks same as above, except no extra coding work 
for programmer and avoids possible errors
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Other Design Issues

■ Some aspects of database design are not caught by normalization

■ Examples of bad database design, to be avoided: 

Instead of earnings (company_id, year, amount ), use 

● earnings_2004, earnings_2005, earnings_2006, etc., all on the 
schema (company_id, earnings).

4 Above are in BCNF, but make querying across years difficult and 
needs new table each year

● company_year (company_id, earnings_2004, earnings_2005,  
earnings_2006)

4 Also in BCNF, but also makes querying across years difficult and 
requires new attribute each year.

4 Is an example of a crosstab, where values for one attribute 
become column names

4 Used in spreadsheets, and in data analysis tools
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Recap

■ Functional and Multi-valued Dependencies

● Axioms

● Closure

● Minimal Cover

● Attribute Closure

■ Redundancy and lossless decomposition

■ Normal-Forms

● 1NF, 2NF, 3NF

● BCNF

● 4NF, 5NF
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Proof of Correctness of 3NF 

Decomposition Algorithm

©Silberschatz, Korth and Sudarshan8.98CS425 – Fall 2016 – Boris Glavic

Correctness of 3NF Decomposition 

Algorithm

■ 3NF decomposition algorithm is dependency preserving (since there 
is a relation for every FD in Fc)

■ Decomposition is lossless

● A candidate key (C ) is in one of the relations Ri in decomposition

● Closure of candidate key under Fc must contain all attributes in 
R.  

● Follow the steps of attribute closure algorithm to show there is 
only one tuple in the join result for each tuple in Ri
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Correctness of 3NF Decomposition 

Algorithm (Cont’d.)

Claim: if a relation Ri is in the decomposition generated by the 

above algorithm, then Ri satisfies 3NF.

■ Let Ri be generated from the dependency a® b

■ Let g ® B be any non-trivial functional dependency on Ri. (We need only 
consider FDs whose right-hand side is a single attribute.)

■ Now, B can be in either b or a but not in both. Consider each case 
separately.
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Correctness of 3NF Decomposition 

(Cont’d.)
■ Case 1: If B in b:

● If g is a superkey, the 2nd condition of 3NF is satisfied

● Otherwise a must contain some attribute not in g

● Since g ® B is in F+ it must be derivable from Fc, by using attribute 
closure on g.

● Attribute closure not have used a®b.  If it had been used, a must 
be contained in the attribute closure of g, which is not possible, since 
we assumed g is not a superkey.

● Now, using a® (b- {B}) and g ® B, we can derive a®B

(since g Í a b, and B Ï g since g ® B is non-trivial)

● Then, B is extraneous in the right-hand side of a®b; which is not 
possible since a®b is in Fc.

● Thus, if B is in b then g must be a superkey, and the second 
condition of 3NF must be satisfied.
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Correctness of 3NF Decomposition 

(Cont’d.)
■ Case 2:  B is in a.

● Since a is a candidate key, the third alternative in the definition of 
3NF is trivially satisfied.

● In fact, we cannot show that g is a superkey.

● This shows exactly why the third alternative is present in the 
definition of 3NF.

Q.E.D.
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Figure 8.02
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Figure 8.03
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Figure 8.04
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Figure 8.05
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Figure 8.06
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Figure 8.14
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Figure 8.15
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Figure 8.17
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Chapter 9: Transactions 
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Chapter 9:  Transactions

■ Transaction Concept

■ Transaction State

■ Concurrent Executions

■ Serializability

■ Recoverability

■ Implementation of Isolation

■ Transaction Definition in SQL

■ Testing for Serializability.
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Transaction Concept

■ A transaction is a unit of program execution that accesses and  
possibly updates various data items.

■ E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Two main issues to deal with:

● Recovery: Failures of various kinds, such as hardware failures 
and system crashes

● Concurrent: execution of multiple transactions
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Example of Fund Transfer

■ Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Atomicity requirement

● if the transaction fails after step 3 and before step 6, money will be lost
leading to an inconsistent database state

4 Failure could be due to software or hardware

● the system should ensure that updates of a partially executed transaction 
are not reflected in the database

■ Durability requirement — once the user has been notified that the transaction 
has completed (i.e., the transfer of the $50 has taken place), the updates to the 
database by the transaction must persist even if there are software or 
hardware failures.
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Example of Fund Transfer (Cont.)

■ Transaction to transfer $50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Consistency requirement in above example:

● the sum of A and B is unchanged by the execution of the transaction

■ In general, consistency requirements include 

4 Explicitly specified integrity constraints such as primary keys and foreign 
keys

4 Implicit integrity constraints

– e.g. sum of balances of all accounts, minus sum of loan amounts 
must equal value of cash-in-hand

● A transaction must see a consistent database.

● During transaction execution the database may be temporarily inconsistent.

● When the transaction completes successfully the database must be 
consistent

4 Erroneous transaction logic can lead to inconsistency
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Example of Fund Transfer (Cont.)

■ Isolation requirement — if between steps 3 and 6, another 
transaction T2 is allowed to access the partially updated database, it 
will see an inconsistent database (the sum  A + B will be less than it 
should be).

T1                                        T2
1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

■ Isolation can be ensured trivially by running transactions serially

● that is, one after the other.   

■ However, executing multiple transactions concurrently has significant 
benefits, as we will see later.
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ACID Properties

■ Atomicity. Either all operations of the transaction are properly reflected 
in the database or none are.

■ Consistency. Execution of a transaction in isolation preserves the 
consistency of the database.

■ Isolation. Although multiple transactions may execute concurrently, 
each transaction must be unaware of other concurrently executing 
transactions.  Intermediate transaction results must be hidden from other 
concurrently executed transactions.  

● That is, for every pair of transactions Ti and Tj, it appears to Ti that 
either Tj, finished execution before Ti started, or Tj started execution 
after Ti finished.

■ Durability.  After a transaction completes successfully, the changes it 
has made to the database persist, even if there are system failures. 

A  transaction is a unit of program execution that accesses and possibly 
updates various data items.To preserve the integrity of data the database 
system must ensure:
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Transaction State

■ Active – the initial state; the transaction stays in this state while it is 
executing

■ Partially committed – after the final statement has been executed.

■ Failed -- after the discovery that normal execution can no longer 
proceed.

■ Aborted – after the transaction has been rolled back and the 
database restored to its state prior to the start of the transaction.  
Two options after it has been aborted:

● restart the transaction

4 can be done only if no internal logical error

● kill the transaction

■ Committed – after successful completion.
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Transaction Model

■ Operations

● Read(A) – read value of data item A

● Write(A) – write a new value of data item A

● Commit – commit changes of the transaction

● Abort – Revert changes made by the transaction

■ Data Items

● Objects in the data base

● Usually we consider tuples (rows) or disk pages
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Transaction State (Cont.)

active

failed

partially
commi!ed

commi!ed

aborted
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Concurrent Executions

■ Multiple transactions are allowed to run concurrently in the system.  
Advantages are:

● increased processor and disk utilization, leading to better 
transaction throughput

4 E.g. one transaction can be using the CPU while another is 
reading from or writing to the disk

4 In multi-processor systems each statement can use one or 
more CPUs

● reduced average response time for transactions: short 
transactions need not wait behind long ones.

■ Concurrency control schemes – mechanisms  to achieve isolation

● that is, to control the interaction among the concurrent 
transactions in order to prevent them from destroying the 
consistency of the database
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Schedules

■ Schedule – a sequences of instructions that specify the chronological 
order in which instructions of concurrent transactions are executed

● a schedule for a set of transactions must consist of all instructions 
of those transactions

● must preserve the order in which the instructions appear in each 
individual transaction.

■ A transaction that successfully completes its execution will have a 
commit instructions as the last statement 

● by default transaction assumed to execute commit instruction as its 
last step

■ A transaction that fails to successfully complete its execution will have 
an abort instruction as the last statement 



3

©Silberschatz, Korth and Sudarshan9.13CS425 – Fall 2016 – Boris Glavic

Schedule 1

■ Let T1 transfer $50 from A to B, and T2 transfer 10% of the 
balance from A to B.

■ A serial schedule in which T1 is followed by T2 :

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit
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Schedule 2

• A serial schedule where T2 is followed by T1

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit
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Schedule 3

■ Let T1 and T2 be the transactions defined previously. The 
following schedule is not a serial schedule, but it is equivalent
to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.

T1 T2

read (A)
A := A – 50

write (A)

read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)

read (B)
B := B + temp
write (B)
commit
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Schedule 4

■ The following concurrent schedule does not preserve the 
value of (A + B ).

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)

B := B + temp
write (B)
commit
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Serializability

■ Basic Assumption – Each transaction preserves database 
consistency.

■ Thus serial execution of a set of transactions preserves 
database consistency.

■ A (possibly concurrent) schedule is serializable if it is 
equivalent to a serial schedule.  Different forms of schedule 
equivalence give rise to the notions of:

1. conflict serializability

2. view serializability
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Simplified view of transactions

● We ignore operations other than read and write
instructions

● We assume that transactions may perform arbitrary 
computations on data in local buffers in between reads 
and writes.  

● Our simplified schedules consist of only read and write 
instructions.
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Conflicting Instructions 

■ Instructions li and lj of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both li and lj, 
and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q).   li and lj don’t conflict.
2. li = read(Q),  lj = write(Q).  They conflict.
3. li = write(Q), lj = read(Q).   They conflict
4. li = write(Q), lj = write(Q).  They conflict

■ Intuitively, a conflict between li and lj forces a (logical) temporal 
order between them.  

● If li and lj are consecutive in a schedule and they do not 
conflict, their results would remain the same even if they had 
been interchanged in the schedule.
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Conflict Serializability

■ If a schedule S can be transformed into a schedule S´ by a series of 
swaps of non-conflicting instructions, we say that S and S´ are 
conflict equivalent.

● That is the order of each pair of conflicting operations in S and S` 
is the same

■ We say that a schedule S is conflict serializable if it is conflict 
equivalent to a serial schedule

©Silberschatz, Korth and Sudarshan9.21CS425 – Fall 2016 – Boris Glavic

Conflict Serializability (Cont.)

■ Schedule 3 can be transformed into Schedule 6, a serial 

schedule where T2 follows T1, by series of swaps of non-

conflicting instructions.  Therefore Schedule 3 is conflict 
serializable.

Schedule 3 Schedule 6

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)
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Conflict Serializability (Cont.)

■ Example of a schedule that is not conflict serializable:

■ We are unable to swap instructions in the above schedule to 
obtain either the serial schedule < T3, T4 >, or the serial 
schedule < T4, T3 >.

T
3

T4

read (Q)

write (Q)

write (Q)
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View Serializability

■ Let S and S´ be two schedules with the same set of transactions.  S
and S´ are view equivalent if the following three conditions are met, 
for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in 
schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value 
was produced by transaction Tj (if any), then in schedule S’ also 
transaction Ti must read the value of Q that was produced by the 
same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation 
in schedule S must also perform the final write(Q) operation in 
schedule S’.

As can be seen, view equivalence is also based purely on reads and 
writes alone.
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View Serializability (Cont.)

■ A schedule S is view serializable if it is view equivalent to a serial 
schedule.

■ Every conflict serializable schedule is also view serializable.

■ Below is a schedule which is view-serializable but not conflict 
serializable.

■ What serial schedule is above equivalent to?

■ Every view serializable schedule that is not conflict serializable has 
blind writes.

T27 T28 T29

read (Q)

write (Q)

write (Q)

write (Q)



5

©Silberschatz, Korth and Sudarshan9.25CS425 – Fall 2016 – Boris Glavic

Other Notions of Serializability

■ The schedule below produces same outcome as the serial 
schedule < T1, T5 >, yet is not conflict equivalent or view 
equivalent to it.

■ Determining such equivalence requires analysis of operations 
other than read and write.

T
1

T
5

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

read (B)

B := B 10

write (B)

read (A)

A := A + 10

write (A)
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Testing for Serializability

■ Consider some schedule of a set of transactions T1, T2, ..., Tn

■ Precedence graph — a directed graph where the vertices 
are the transactions (names).

■ We draw an arc from Ti to Tj if the two transaction conflict, 
and Ti accessed the data item on which the conflict arose 
earlier.

■ We may label the arc by the item that was accessed.

■ Example 1

T
1

T
2
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Test for Conflict Serializability

■ A schedule is conflict serializable if and only 
if its precedence graph is acyclic.

■ Cycle-detection algorithms exist which take 
order n2 time, where n is the number of 

vertices in the graph.  

● (Better algorithms take order n + e
where e is the number of edges.)

■ If precedence graph is acyclic, the 
serializability order can be obtained by a 
topological sorting of the graph. 

● This is a linear order consistent with the 
partial order of the graph.

● For example, a serializability order for 
Schedule A would be
T5 ® T1 ® T3 ® T2 ® T4

4 Are there others?
(b) (c)

(a)

Tm

Tk

Tk

Tk

Tj

Ti

Tm

Tj

Ti

Tm

Ti

Tj
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Test for View Serializability

■ The precedence graph test for conflict serializability cannot be used 
directly to test for view serializability.

● Extension to test for view serializability has cost exponential in the 
size of the precedence graph.

■ The problem of checking if a schedule is view serializable falls in the 
class of NP-complete problems. 

● Thus existence of an efficient algorithm is extremely unlikely.

■ However practical algorithms that just check some sufficient
conditions for view serializability can still be used.
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Recoverable Schedules

■ Recoverable schedule — if a transaction Tj reads a data item 
previously written by a transaction Ti , then the commit operation of Ti

appears before the commit operation of Tj.

■ The following schedule (Schedule 11) is not recoverable if T9 commits 

immediately after the read

■ If T8 should abort, T9 would have read (and possibly shown to the user) 
an inconsistent database state.  Hence, database must ensure that 
schedules are recoverable.

Need to address the effect of transaction failures on concurrently 
running transactions.

T
8

T
9

read (A)

write (A)

read (B)

read (A)

commit
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Cascading Rollbacks

■ Cascading rollback – a single transaction failure leads to a 
series of transaction rollbacks.  Consider the following schedule 
where none of the transactions has yet committed (so the 
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

■ Can lead to the undoing of a significant amount of work

T
10

T
11

T
12

read (A)

read (B)

write (A)

abort

read (A)

write (A)

read (A)
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Cascadeless Schedules

■ Cascadeless schedules — cascading rollbacks cannot occur; for 
each pair of transactions Ti and Tj such that Tj reads a data item 
previously written by Ti, the commit operation of Ti appears before the 
read operation of Tj.

■ Every cascadeless schedule is also recoverable

■ It is desirable to restrict the schedules to those that are cascadeless
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Concurrency Control

■ A database must provide a mechanism that will ensure that all possible 
schedules are 

● either conflict or view serializable, and 

● are recoverable and preferably cascadeless

■ A policy in which only one transaction can execute at a time generates 
serial schedules, but provides a poor degree of concurrency

● Are serial schedules recoverable/cascadeless?

■ Testing a schedule for serializability after it has executed is a little too 
late!

■ Goal – to develop concurrency control protocols that will assure 
serializability.
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Concurrency Control (Cont.)

■ Schedules must be conflict or view serializable, and recoverable, 
for the sake of database consistency, and preferably cascadeless.

■ A policy in which only one transaction can execute at a time 
generates serial schedules, but provides a poor degree of 
concurrency.

■ Concurrency-control schemes tradeoff between the amount of 
concurrency they allow and the amount of overhead that they 
incur.

■ Some schemes allow only conflict-serializable schedules to be 
generated, while others allow  view-serializable schedules that are 
not conflict-serializable.
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Concurrency Control vs. Serializability Tests

■ Concurrency-control protocols allow concurrent schedules, but ensure 
that the schedules are conflict/view serializable, and are recoverable 
and cascadeless .

■ Concurrency control protocols generally do not examine the 
precedence graph as it is being created

● Instead a protocol imposes a discipline that avoids nonseralizable
schedules.

● We study such protocols in Chapter 10.

■ Different concurrency control protocols provide different tradeoffs 
between the amount of concurrency they allow and the amount of 
overhead that they incur.

■ Tests for serializability help us understand why a concurrency control 
protocol is correct.   
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Weak Levels of Consistency

■ Some applications are willing to live with weak levels of consistency, 
allowing schedules that are not serializable

● E.g. a read-only transaction that wants to get an approximate total 
balance of all accounts 

● E.g. database statistics computed for query optimization can be 
approximate (why?)

● Such transactions need not be serializable with respect to other 
transactions

■ Tradeoff accuracy for performance
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Levels of Consistency in SQL-92

■ Serializable — default

■ Repeatable read — only committed records to be read, repeated 
reads of same record must return same value.  However, a 
transaction may not be serializable – it may find some records 
inserted by a transaction but not find others.

■ Read committed — only committed records can be read, but 
successive reads of a record may return different (but committed) 
values.

■ Read uncommitted — even uncommitted records may be read. 

■ Lower degrees of consistency useful for gathering approximate
information about the database 

■ Warning: some database systems do not ensure serializable
schedules by default

● E.g. Oracle and PostgreSQL by default support a level of 
consistency called snapshot isolation (not part of the SQL 
standard)
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Transaction Definition in SQL

■ Data manipulation language must include a construct for 
specifying the set of actions that comprise a transaction.

■ In SQL, a transaction begins implicitly.

■ A transaction in SQL ends by:

● Commit work commits current transaction and begins a new 
one.

● Rollback work causes current transaction to abort.

■ In almost all database systems, by default, every SQL statement 
also commits implicitly if it executes successfully

● Implicit commit can be turned off by a database directive

4 E.g. in JDBC,     connection.setAutoCommit(false);

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter 10
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Recap

■ Transactions

● ACID – Properties

■ Schedules

● Serial

● Equivalence

4 Conflict-equivalent

4 View-equivalent

● Serializability

4 = Equivalent to a serial schedule

● Recoverable

● Cascading Aborts

■ Transactions in SQL
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Figure 14.01

active

failed

partially
commi!ed

commi!ed

aborted
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Figure 14.02

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit
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Figure 14.03

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit
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Figure 14.04

T1 T2

read (A)
A := A – 50

write (A)

read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)

read (B)
B := B + temp
write (B)
commit
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Figure 14.05

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)

B := B + temp
write (B)
commit
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Figure 14.06

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)
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Figure 14.07

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)
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Figure 14.08

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

©Silberschatz, Korth and Sudarshan9.48CS425 – Fall 2016 – Boris Glavic

Figure 14.09

T
3

T4

read (Q)

write (Q)

write (Q)
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Figure 14.10

(a) (b)

T1 T2 T2 T1
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Figure 14.11

T
1

T
2
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Figure 14.12

(b) (c)

(a)

Tm

Tk

Tk

Tk

Tj

Ti

Tm

Tj

Ti

Tm

Ti

Tj
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Figure 14.13

T
1

T
5

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

read (B)

B := B 10

write (B)

read (A)

A := A + 10

write (A)
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Figure 14.14

T
8

T
9

read (A)

write (A)

read (B)

read (A)

commit
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Figure 14.15

T
10

T
11

T
12

read (A)

read (B)

write (A)

abort

read (A)

write (A)

read (A)
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Figure 14.16

T
1

T
4

T
5

T
3

T
2
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Chapter 10 : Concurrency Control 
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Chapter 10: Concurrency Control

■ Lock-Based Protocols

■ Timestamp-Based Protocols

■ Validation-Based Protocols

■ Multiple Granularity

■ Multiversion Schemes

■ Insert and Delete Operations

■ Concurrency in Index Structures
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Intuition of Lock-based Protocols

■ Transactions have to acquire locks on data items before accessing them

■ If a lock is hold by one transaction on a data item this restricts the ability 
of other transactions to acquire locks for that data item

■ By locking a data item we want to ensure that no access to that data 
item is possible that would lead to non-serializable schedules

■ The trick is to design a lock model and protocol that guarantees that

■ Lock-based concurrency protocols are a form of pessimistic 
concurrency control mechanism

● We avoid ever getting into a state that can lead to a non-serializable
schedule

■ Alternative concurrency control mechanism do not avoid conflicts, but 
determine later on (at commit time) whether committing a transaction 
would cause a non-serializable schedule to be generated

● Optimistic concurrency control mechanism
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Lock-Based Protocols

■ A lock is a mechanism to control concurrent access to a data item

■ Data items can be locked in two modes :

1.  exclusive (X) mode. Data item can be both read as well as   
written. X-lock is requested using lock-X instruction.

2.  shared (S) mode. Data item can only be read. S-lock is          
requested using lock-S instruction.

■ Lock requests are made to concurrency-control manager. 

● Transaction do not access data items before having acquired a lock on 

that data item

● Transactions release their locks on a data item only after they have 
accessed a data item
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Lock-Based Protocols (Cont.)

■ Lock-compatibility matrix

■ A transaction may be granted a lock on an item if the requested lock is 
compatible with locks already held on the item by other transactions

■ Any number of transactions can hold shared locks on an item, 

● but if any transaction holds an exclusive lock on the item no other 
transaction may hold any lock on the item.

■ If a lock cannot be granted, the requesting transaction is made to wait till 
all incompatible locks held by other transactions have been released.  
The lock is then granted.

S X

S true false

X false false
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Lock-Based Protocols (Cont.)

■ Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

■ Locking as above is not sufficient to guarantee serializability — if A and B
get updated in-between the read of A and B, the displayed sum would be 
wrong.

■ A  locking protocol is a set of rules followed by all transactions while 
requesting and releasing locks. Locking protocols restrict the set of 
possible schedules.
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Pitfalls of Lock-Based Protocols

■ Consider the partial schedule

■ Neither T3 nor T4 can make progress — executing  lock-S(B) causes T4

to wait for T3 to release its lock on B, while executing  lock-X(A) causes 
T3 to wait for T4 to release its lock on A.

■ Such a situation is called a deadlock. 

● To handle a deadlock one of T3 or T4 must be rolled back 
and its locks released.
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Pitfalls of Lock-Based Protocols (Cont.)

■ The potential for deadlock exists in most locking protocols. Deadlocks 
are a necessary evil.

■ Starvation is also possible if the concurrency control manager is 
badly designed. For example:

● A transaction may be waiting for an X-lock on an item, while a 
sequence of other transactions request and are granted an S-lock 
on the same item.  

● The same transaction is repeatedly rolled back due to deadlocks.

■ Concurrency control managers can be designed to prevent starvation.
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The Two-Phase Locking Protocol

■ This is a protocol which ensures conflict-serializable schedules.

■ Phase 1: Growing Phase

● transaction may obtain locks 

● transaction may not release locks

■ Phase 2: Shrinking Phase

● transaction may release locks

● transaction may not obtain locks

■ The protocol assures serializability. It can be proved that the 

transactions can be serialized in the order of their lock points (i.e. 

the point where a transaction acquired its final lock). 
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The Two-Phase Locking Protocol (Cont.)

■ Two-phase locking does not ensure freedom from deadlocks

■ Cascading roll-back is possible under two-phase locking. To avoid 

this, follow a modified protocol called strict two-phase locking 
(S2PL). Here a transaction must hold all its exclusive locks till it 

commits/aborts.

■ Rigorous two-phase locking (SS2PL) is even stricter: here all locks 
are held till commit/abort. In this protocol transactions can be 

serialized in the order in which they commit.
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The Two-Phase Locking Protocol (Cont.)

■ There can be conflict serializable schedules that cannot be obtained if 
two-phase locking is used.  

■ However, in the absence of extra information (e.g., ordering of  access 
to data), two-phase locking is needed for conflict serializability in the 
following sense:

Given a transaction Ti that does not follow two-phase locking, we can 
find a transaction Tj that uses two-phase locking, and a schedule for Ti

and Tj that is not conflict serializable.
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Lock Conversions

■ Two-phase locking with lock conversions:

– First Phase:        

● can acquire a lock-S on item

● can acquire a lock-X on item

● can convert a lock-S to a lock-X (upgrade)

– Second Phase:

● can release a lock-S

● can release a lock-X

● can convert a lock-X to a lock-S  (downgrade)

■ This protocol assures serializability. But still relies on the programmer to 
insert the various  locking instructions.
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Automatic Acquisition of Locks

■ A transaction Ti issues the standard read/write instruction, without 
explicit locking calls.

■ The operation read(D) is processed as:

if Ti has a lock on D

then

read(D) 

else begin

if necessary wait until no other  

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end
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Automatic Acquisition of Locks (Cont.)

■ write(D) is processed as:

if Ti has a  lock-X on D
then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D
then

upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

■ All locks are released after commit or abort
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Implementation of Locking

■ A lock manager can be implemented as a separate process to which 
transactions send lock and unlock requests

■ The lock manager replies to a lock request by sending a lock grant 
messages (or a message asking the transaction to roll back, in case of  
a deadlock)

■ The requesting transaction waits until its request is answered

■ The lock manager maintains a data-structure called a lock table to 
record granted locks and pending requests

■ The lock table is usually implemented as an in-memory hash table 
indexed on the name of the data item being locked
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Lock Table

■ Black rectangles indicate granted locks, 

white ones indicate waiting requests

■ Lock table also records the type of lock 

granted or requested

■ New request is added to the end of the 

queue of requests for the data item, and 

granted if it is compatible with all earlier 

locks

■ Unlock requests result in the request 

being deleted, and later requests are 

checked to see if they can now be 

granted

■ If transaction aborts, all waiting or 

granted requests of the transaction are 

deleted 

● lock manager may keep a list of 

locks held by each transaction, to 

implement this efficientlygranted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912
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Deadlock Handling

■ Consider the following two transactions:

T1:     write (X)               T2:    write(Y)

write(Y)                         write(X)

■ Schedule with deadlock
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Deadlock Handling

■ System is deadlocked if there is a set of transactions such that every 
transaction in the set is waiting for another transaction in the set.

■ Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :

● Require that each transaction locks all its data items before it 
begins execution (predeclaration).

4 Not practical

● Impose partial ordering of all data items and require that a 
transaction can lock data items only in the order specified by the 
partial order (graph-based protocol).
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More Deadlock Prevention Strategies

■ Following schemes use transaction timestamps for the sake of deadlock 
prevention alone.

● Preemptive: Transaction holding a lock is aborted to make lock 
available

■ wait-die scheme — non-preemptive

● older transaction may wait for younger one to release data item. 
Younger transactions never wait for older ones; they are rolled back 
instead.

● a transaction may die several times before acquiring needed data 
item

■ wound-wait scheme — preemptive

● older transaction wounds (forces rollback) of younger transaction 
instead of waiting for it. Younger transactions may wait for older 
ones.

● may be fewer rollbacks than wait-die scheme.
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Deadlock prevention (Cont.)

■ Both in wait-die and in wound-wait schemes, a rolled back 
transactions is restarted with its original timestamp. Older transactions 
thus have precedence over newer ones, and starvation is hence 
avoided.

■ Timeout-Based Schemes:

● a transaction waits for a lock only for a specified amount of time. 
After that, the wait times out and the transaction is rolled back.

● thus deadlocks are not possible

● simple to implement; but starvation is possible. Also difficult to 
determine good value of the timeout interval.
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Deadlock Detection

■ Deadlocks can be described as a wait-for graph, which consists of a 
pair G = (V,E), 

● V is a set of vertices (all the transactions in the system)

● E is a set of edges; each element is an ordered pair Ti ®Tj.  

■ If Ti ® Tj is in E, then there is a directed edge from Ti to Tj, implying 
that Ti is waiting for Tj to release a data item.

■ When Ti requests a data item currently being held by Tj, then the edge 
Ti Tj is inserted in the wait-for graph. This edge is removed only when 
Tj is no longer holding a data item needed by Ti.

■ The system is in a deadlock state if and only if the wait-for graph has a 
cycle.  Must invoke a deadlock-detection algorithm periodically to look 
for cycles.
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Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle
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Deadlock Recovery

■ When deadlock is  detected :

● Some transaction will have to rolled back (made a victim) to break 
deadlock.  Select that transaction as victim that will incur minimum 
cost.

● Rollback -- determine how far to roll back transaction

4 Total rollback: Abort the transaction and then restart it.

4 More effective to roll back transaction only as far as necessary 
to break deadlock.

● Starvation happens if same transaction is always chosen as 
victim. Include the number of rollbacks in the cost factor to avoid 
starvation
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Weak Levels of Consistency

■ Degree-two consistency: differs from two-phase locking in that S-locks 
may be released at any time, and locks may be acquired at any time

● X-locks must be held till end of transaction

● Serializability is not guaranteed, programmer must ensure that no 
erroneous database state will occur]

■ Cursor stability: 

● For reads, each tuple is locked, read, and lock is immediately 
released

● X-locks are held till end of transaction

● Special case of degree-two consistency
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Weak Levels of Consistency in SQL

■ SQL allows non-serializable executions

● Serializable: is the default

● Repeatable read: allows only committed records to be read, and 
repeating a read should return the same value (so read locks should 
be retained)

4 However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see 
others inserted by T2

● Read committed:  same as degree two consistency, but most 
systems implement it as cursor-stability

● Read uncommitted: allows even uncommitted data to be read

■ In many database systems, read committed is the default consistency 
level

● has to be explicitly changed to serializable when required

4 set isolation level serializable
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Recap

■ Concurrency Control

● Pessimistic: Prevent bad things from happening

4 Locking Protocols

● Optimistic: Detect that bad things have happened and resolve the 

problem

■ Two-Phase Locking (2PL)

● Two types of locks:

4 Shared (S) locks for read-only access

4 Exclusive (X) locks for write + read access

● Lock compatibility

● Transactions cannot acquire locks after they have released a lock

4 Divides transaction into growing and shrinking phase

● Ensures conflict-serializability

● Cascading rollbacks are possible

● Deadlocks are possible
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Recap

■ Strict Two-Phase Locking (S2PL)

● Exclusive locks are held until transaction commit

● Prevents cascading rollbacks

● Deadlocks are still possible

■ Strict Strong Two-Phase Locking (SS2PL)

● All locks are held until transaction commit

● Enables serializablility in commit order

■ Deadlocks

● Deadlock Prevention

4 Wait-die: Younger transaction that waits for older is rolled back

4 Wound-wait: If older waits for younger, then younger is rolled back

● Deadlock Detection

4 Cycle Detection in Waits-for graph

– Expensive

4 Timeout modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot 
Isolation examples
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Multiple Granularity

■ Allow  data items to be of various sizes and define a hierarchy of data 
granularities, where the small granularities are nested within larger 
ones

■ Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

■ When a transaction locks a node in the tree explicitly, it implicitly locks 
all the node's descendents in the same mode.

■ Granularity of locking (level in tree where locking is done):

● fine granularity (lower in tree): high concurrency, high locking 
overhead

● coarse granularity (higher in tree): low locking overhead, low 

concurrency
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Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

● database

● area 

● file

● record
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Intention Lock Modes

■ In addition to S and X lock modes, there are three additional lock 
modes with multiple granularity:

● intention-shared (IS): indicates explicit locking at a lower level of 
the tree but only with shared locks.

● intention-exclusive (IX): indicates explicit locking at a lower level 
with exclusive or shared locks

● shared and intention-exclusive (SIX): the subtree rooted by that 
node is locked explicitly in shared mode and explicit locking is 
being done at a lower level with exclusive-mode locks.

■ intention locks allow a higher level node to be locked in S or X mode 
without having to check all descendent nodes.
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Compatibility Matrix with Intention Lock Modes

■ The compatibility matrix for all lock modes is: 

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false
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Multiple Granularity Locking Scheme

■ Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any 
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q
is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent 
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node 
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently 
locked by Ti.

■ Observe that locks are acquired in root-to-leaf order, whereas they are 
released in leaf-to-root order.

■ Lock granularity escalation: in case there are too many locks at a 
particular level, switch to higher granularity S or X lock
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Timestamp-Based Protocols

■ Each transaction is issued a timestamp when it enters the system. If an old 
transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj). 

■ The protocol manages concurrent execution such that the time-stamps 
determine the serializability order.

■ In order to assure such behavior, the protocol maintains for each data Q two 

timestamp values:

● W-timestamp(Q) is the largest time-stamp of any transaction that 

executed write(Q) successfully.

● R-timestamp(Q) is the largest time-stamp of any transaction that 
executed read(Q) successfully.

©Silberschatz, Korth and Sudarshan10.35CS425 – Fall 2016 – Boris Glavic

Timestamp-Based Protocols (Cont.)

■ The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

■ Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) £ W-timestamp(Q), then Ti needs to read a value of Q
that was already overwritten.

■ Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti)³ W-timestamp(Q), then the read operation is executed, 
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).
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Timestamp-Based Protocols (Cont.)

■ Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 
producing was needed previously, and the system assumed that 
that value would never be produced. 

■ Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. 

■ Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) 
is set to TS(Ti).
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Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5
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Correctness of Timestamp-Ordering Protocol

■ The timestamp-ordering protocol guarantees serializability since all 
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

■ Timestamp protocol ensures freedom from deadlock as no 
transaction ever waits.  

■ But the schedule may not be cascade-free, and may  not even be 
recoverable.
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Recoverability and Cascade Freedom

■ Problem with timestamp-ordering protocol:

● Suppose Ti aborts, but Tj has read a data item written by  Ti

● Then Tj must abort; if Tj had been allowed to commit earlier, the 
schedule is not recoverable.

● Further, any transaction that has read a data item written by Tj must 
abort

● This can lead to cascading rollback --- that is, a chain of rollbacks 

■ Solution 1:

● A transaction is structured such that its writes are all performed at 
the end of its processing

● All writes of a transaction form an atomic action; no transaction may 
execute while a transaction is being written

● A transaction that aborts is restarted with a new timestamp

■ Solution 2: Limited form of locking: wait for data to be committed before 
reading it

■ Solution 3: Use commit dependencies to ensure recoverability
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Thomas’ Write Rule

■ Modified version of the timestamp-ordering protocol in which obsolete 
write operations may be ignored under certain circumstances.

■ When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), 
then Ti is attempting to write an obsolete value of {Q}. 

● Rather than rolling back Ti as the timestamp ordering protocol 
would have done, this {write} operation can be ignored.

■ Otherwise this protocol is the same as the timestamp ordering 
protocol.

■ Thomas' Write Rule allows greater potential concurrency. 

● Allows some view-serializable schedules that are not conflict-

serializable.
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Validation-Based Protocol

■ Execution of transaction Ti is done in three phases.

1.  Read and execution phase: Transaction Ti writes only to         
temporary local variables

2.  Validation phase: Transaction Ti performs a ``validation test'' 
to determine if local variables can be written without violating         
serializability.

3.  Write phase: If Ti is validated, the updates are applied to the 
database; otherwise, Ti is rolled back.

■ The three phases of concurrently executing transactions can be    
interleaved, but each transaction must go through the three phases in 
that order.

● Assume for simplicity that the validation and write phase occur 
together, atomically and serially

4 I.e., only one transaction executes validation/write at a time. 

■ Also called as optimistic concurrency control since transaction 
executes fully in the hope that all will go well during validation
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Validation-Based Protocol (Cont.)

■ Each transaction Ti has 3 timestamps

● Start(Ti) : the time when Ti started its execution

● Validation(Ti): the time when Ti entered its validation phase

● Finish(Ti) : the time when Ti finished its write phase

■ Serializability order is determined by timestamp given at validation 
time,  to increase concurrency. 

● Thus TS(Ti) is given the value of Validation(Ti).

■ This protocol is useful and gives greater degree of concurrency if 
probability of conflicts is low. 

● because the serializability order is not pre-decided, and

● relatively few transactions will have to be rolled back.
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Validation Test for Transaction Tj

■ If for all Ti with TS (Ti) < TS (Tj) either one of the following condition 
holds:

● finish(Ti) < start(Tj) 

● start(Tj) < finish(Ti) < validation(Tj) and the set of data items 
written by Ti does not intersect with the set of data items read by 
Tj.  

then validation succeeds and Tj can be committed.  Otherwise, 
validation fails and Tj is aborted.

■ Justification:  Either the first condition is satisfied, and there is no 
overlapped execution, or the second condition is satisfied and

■ the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.

■ the writes of Ti do not affect reads of Tj since Tj does not read  
any item written by Ti.
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Schedule Produced by Validation

■ Example of schedule produced using validation
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Multiversion Schemes

■ Multiversion schemes keep old versions of data item to increase 
concurrency.

● Multiversion Timestamp Ordering

● Multiversion Two-Phase Locking

■ Each successful write results in the creation of a new version of the 
data item written.

■ Use timestamps to label versions.

■ When a read(Q) operation is issued, select an appropriate version of 
Q based on the timestamp of the transaction, and return the value of 
the selected version.  

■ reads never have to wait as an appropriate version is returned 
immediately.
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Multiversion Timestamp Ordering

■ Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each 
version Qk contains three data fields:

● Content -- the value of version Qk.

● W-timestamp(Qk) -- timestamp of the transaction that created 
(wrote) version Qk

● R-timestamp(Qk) -- largest timestamp of a transaction that 
successfully read version Qk

■ when a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti). 

■ R-timestamp of Qk is updated whenever a transaction Tj reads Qk, and 
TS(Tj) > R-timestamp(Qk).
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Multiversion Timestamp Ordering (Cont)

■ Suppose that transaction Ti issues a read(Q) or write(Q) operation.  Let 
Qk denote the version of Q whose write timestamp is the largest write 
timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the       

content of version Qk.

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back. 

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. else a new version of Q is created.

■ Observe that

● Reads always succeed

● A write by Ti is rejected if some other transaction Tj that (in the 
serialization order defined by the timestamp values) should read 
Ti's write, has already read a version created by a transaction older 
than Ti.

■ Protocol guarantees serializability
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Multiversion Two-Phase Locking

■ Differentiates between read-only transactions and update transactions

■ Update transactions acquire read and write locks, and hold all locks up 
to the end of the transaction. That is, update transactions follow rigorous 
two-phase locking.

● Each successful write results in the creation of a new version of the 
data item written.

● each version of a data item has a single timestamp whose value is 
obtained from a counter ts-counter that is incremented during 
commit processing.

■ Read-only transactions are assigned a timestamp by reading the current 
value of  ts-counter before they start execution; they follow the 
multiversion timestamp-ordering protocol for performing reads.
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Multiversion Two-Phase Locking (Cont.)

■ When an update transaction wants to read a data item:

● it obtains a shared lock on it, and reads the latest version. 

■ When it wants to write an item

● it obtains X lock on; it then creates a new version of the item and 
sets this version's timestamp to ¥.

■ When update transaction Ti completes, commit processing occurs:

● Ti sets timestamp on the versions it has created to ts-counter + 1

● Ti increments  ts-counter by 1

■ Read-only transactions that start after Ti increments ts-counter will see 
the values updated by Ti. 

■ Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

■ Only serializable schedules are produced.
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MVCC: Implementation Issues

■ Creation of multiple versions increases storage overhead

● Extra tuples

● Extra space in each tuple for storing version information

■ Versions can, however, be garbage collected

● E.g. if Q has two versions Q5 and Q9, and the oldest active 
transaction has timestamp > 9, than Q5 will never be required 
again
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Snapshot Isolation

■ Motivation: Decision support queries that read large amounts of data 
have concurrency conflicts with OLTP transactions that update a few 
rows

● Poor performance results

■ Solution 1:  Give logical snapshot of database state to read only 
transactions, read-write transactions use normal locking

● Multiversion 2-phase locking

● Works well, but how does system know a transaction is read only?

■ Solution 2: Give snapshot of database state to every transaction, 
updates alone use 2-phase locking to guard against concurrent 
updates

● Problem: variety of anomalies such as lost update can result

● Partial solution: snapshot isolation level (next slide)

4 Proposed by Berenson et al, SIGMOD 1995

4 Variants implemented in many database systems 

– E.g. Oracle, PostgreSQL, SQL Server 2005
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Snapshot Isolation

■ A transaction T1 executing with Snapshot 

Isolation

● takes snapshot of committed data at 

start

● always reads/modifies data in its own 

snapshot

● updates of concurrent transactions are 

not visible to T1 

● writes of T1 complete when it commits

● First-committer-wins rule:

4 Commits only if no other concurrent 

transaction has already written data 

that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) à 0

R(Y)à 1

W(X:=2)

W(Z:=3)

Commit

R(Z) à 0

R(Y) à 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back
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Snapshot Read
■ Concurrent updates invisible to snapshot read
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Snapshot Write: First Committer Wins

● Variant: First-updater-wins

4 Check for concurrent updates when write occurs by locking item

– But lock should be held till all concurrent transactions have finished

4 (Oracle uses this plus some extra features)

4 Differs only in when abort occurs, otherwise equivalent 
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Benefits of SI

■ Reading is never blocked, 

● and also doesn’t block other txns activities

■ Performance similar to Read Committed

■ Avoids the usual anomalies

● No dirty read

● No lost update

● No non-repeatable read

● Predicate based selects are repeatable (no phantoms)

■ Problems with SI

● SI does not always give serializable executions

4 Serializable: among two concurrent txns, one sees the effects 
of the other

4 In SI: neither sees the effects of the other

● Result: Integrity constraints can be violated
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Snapshot Isolation

■ E.g. of problem with SI

● T1: x:=y

● T2: y:= x

● Initially x = 3 and y = 17

4 Serial execution:  x = ??, y = ??

4 if both transactions start at the same time, with snapshot 
isolation:  x = ?? , y = ??

■ Called skew write

■ Skew also occurs with inserts

● E.g:

4 Find max order number among all orders

4 Create a new order with order number = previous max + 1
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Snapshot Isolation Anomalies

■ SI breaks serializability when txns modify different items, each based on a 

previous state of the item the other modified

● Not very common in practice

4 E.g., the TPC-C benchmark runs correctly under SI

4 when txns conflict due to modifying different data, there is usually also 

a shared item they both modify too (like a total quantity) so SI will abort 

one of them

● But does occur

4 Application developers should be careful about write skew

■ SI can also cause a read-only transaction anomaly, where read-only 

transaction may see an inconsistent state even if updaters are serializable

● We omit details

■ Using snapshots to verify primary/foreign key integrity can lead to 

inconsistency

● Integrity constraint checking usually done outside of snapshot
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SI In Oracle and PostgreSQL

■ Warning: SI used when isolation level is set to serializable, by Oracle, and
PostgreSQL versions prior to 9.1

● PostgreSQL’s implementation of SI (versions prior to 9.1) described in 
Section 26.4.1.3

● Oracle implements first updater wins rule (variant of first committer 
wins )

4 concurrent writer check is done at time of write, not at commit time

4 Allows transactions to be rolled back earlier

4 Oracle and PostgreSQL < 9.1 do not support true serializable
execution

● PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot 
Isolation” (SSI)

4 Which guarantees true serializabilty including handling predicate 
reads (coming up)
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SI In Oracle and PostgreSQL

■ Can sidestep SI for specific queries by using select .. for update in Oracle 
and PostgreSQL

● E.g., 

1. select max(orderno) from orders for update

2. read value into local variable maxorder

3. insert into orders (maxorder+1, …)

● Select for update (SFU) treats all data read by the query as if it were 
also updated, preventing concurrent updates

● Does not always ensure serializability since phantom phenomena can 
occur (coming up)

■ In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks 
when the transaction completes, even if other concurrent transactions are 
active

● Not quite same as SFU in Oracle, which keeps locks until all

● concurrent transactions have completed
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Insert and Delete Operations

■ If two-phase locking is used :

● A  delete operation may be performed only if the transaction 
deleting the tuple has an exclusive lock on the tuple to be deleted.

● A transaction that inserts a new tuple into the database is given an 
X-mode lock on the tuple

■ Insertions and deletions can lead to the phantom phenomenon.

● A transaction that scans a relation 

4 (e.g., find sum of balances of all accounts in Perryridge) 

and a transaction that inserts a tuple in the relation 

4 (e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any tuple in 
common.

● If only tuple locks are used, non-serializable schedules can result

4 E.g. the scan transaction does not see the new account, but 
reads some other tuple written by the update transaction
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Insert  and Delete Operations (Cont.)

■ The transaction scanning the relation is reading  information that indicates 
what tuples the relation contains, while a transaction inserting a tuple 
updates the same information.

● The conflict should be detected, e.g. by locking the information.

■ One solution: 

● Associate a data item with the relation, to represent the information 
about what tuples the relation contains.

● Transactions scanning the relation acquire a shared lock in the data 
item, 

● Transactions inserting or deleting a tuple acquire an exclusive lock on 
the data item. (Note: locks on the data item do not conflict with locks on 
individual tuples.)

■ Above protocol provides very low concurrency for insertions/deletions.

■ Index locking protocols provide higher concurrency while 
preventing the phantom phenomenon, by requiring locks 
on certain index buckets. 
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Index Locking Protocol

■ Index locking protocol:

● Every relation must have at least one index. 

● A transaction can access tuples only after finding them through one or 
more indices on the relation

● A transaction Ti that performs a lookup must lock all the index leaf 
nodes that it accesses, in S-mode

4 Even if the leaf node does not contain any tuple satisfying the index 
lookup (e.g. for a range query, no tuple in a leaf is in the range)

● A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

4 must update all indices to r

4 must obtain exclusive locks on all index leaf nodes affected by the 
insert/update/delete

● The rules of the two-phase locking protocol must be observed

■ Guarantees that phantom phenomenon won’t occur
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Next-Key Locking

■ Index-locking protocol to prevent phantoms required locking entire leaf

● Can result in poor concurrency if there are many inserts

■ Alternative: for an index lookup

● Lock all values that satisfy index lookup (match lookup value, or 
fall in lookup range)

● Also lock next key value in index

● Lock mode: S for lookups, X for insert/delete/update

■ Ensures that range queries will conflict with inserts/deletes/updates

● Regardless of which happens first, as long as both are concurrent
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Concurrency in Index Structures

■ Indices are unlike other database items in that their only job is to help in 
accessing data.

■ Index-structures are typically accessed very often, much more than 
other database items. 

● Treating index-structures like other database items, e.g. by 2-phase 
locking of index nodes can lead to low concurrency.   

■ There are several index concurrency protocols where locks on internal 
nodes are released early, and not in a two-phase fashion.

● It is acceptable to have nonserializable concurrent access to an 
index as long as the accuracy of the index is maintained.

4 In particular, the exact values read in an internal node of a 
B+-tree are irrelevant so long as we land up in the correct leaf 
node.
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Concurrency in Index Structures (Cont.)

■ Example of index concurrency protocol:

■ Use crabbing instead of two-phase locking on the nodes of the B+-tree, as 

follows.  During search/insertion/deletion:

● First lock the root node in shared mode.

● After locking all required children of a node in shared mode, release the lock 

on the node.

● During insertion/deletion, upgrade leaf node locks to exclusive mode.

● When splitting or coalescing requires changes to a parent, lock the parent in 

exclusive mode.

■ Above protocol can cause excessive deadlocks

● Searches coming down the tree deadlock with updates going up the tree

● Can abort and restart search, without affecting transaction

■ Better protocols are available; see Section 16.9 for one such protocol, the B-link 

tree protocol

● Intuition: release lock on parent before acquiring lock on child

4 And deal with changes that may have happened between lock release 

and acquire

©Silberschatz, Korth and Sudarshan10.66CS425 – Fall 2016 – Boris Glavic

Figure 15.01

S X

S true false

X false false
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Figure 15.04
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Figure 15.07

©Silberschatz, Korth and Sudarshan10.69CS425 – Fall 2016 – Boris Glavic

Figure 15.08
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Figure 15.09
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Figure 15.10
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Figure 15.11

A

CB

F

E

IH

J

D

G



13

©Silberschatz, Korth and Sudarshan10.73CS425 – Fall 2016 – Boris Glavic

Figure 15.12
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Figure 15.13
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Figure 15.14
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Figure 15.15
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Figure 15.16

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

©Silberschatz, Korth and Sudarshan10.78CS425 – Fall 2016 – Boris Glavic

Figure 15.17
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Figure 15.18
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Figure 15.19
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Figure 15.20
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Figure 15.21
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Figure 15.22
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Figure 15.23
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Figure in-15.1
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Chapter 11:  Indexing and Storage!

■  DBMS Storage!

●  Memory hierarchy!

●  File Organization!

●  Buffering!

■  Indexing!

●  Basic Concepts!

●  B+-Trees!

●  Static Hashing!

●  Index Definition in SQL!

●  Multiple-Key Access!
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Memory Hierarchy!
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DBMS Storage!

■  Modern Computers have different types of memory!

●  Cache, Main Memory, Harddisk, SSD, …!

■  Memory types have different characteristics in terms of!

●  Persistent vs. volatile!

●  Speed (random vs. sequential access)!

●  Size!

●  Price – this usually determines size!

■  Database systems are designed to be use these different memory 
types effectively!

●  Need for persistent storage: the state of the database needs to be 
written to persistent storage !

! guarantee database content is not lost when the computer is 
shutdown!

●  Moving data between different types of memory!

! Want to use fast memory to speed-up operations!

! Need slower memory for the size!
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Storage Hierarchy!

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

S
iz

e
!

S
p

e
e

d
!

Persistent!

storage!
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Main Memory vs. Disk!

■  Why do we not only use main memory!

●  What if database does not fit into main memory?!

●  Main memory is volatile!

■  Main memory vs. disk!

●  Given available main memory when do we keep which part of the 
database in main memory!

! Buffer manager: Component of DBMS that decides when to 

move data between disk and main memory!

●  How do we ensure transaction property durability!

! Buffer manager needs to make sure data written by committed 
transactions is written to disk to ensure durability!
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Magnetic Hard Disk Mechanism!

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives!

track t

sector s

spindle

cylinder c

platter

arm

read–write
head

arm assembly

rotation
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Performance Measures of Disks!

■  Access time – the time it takes from when a read or write request is issued to 
when data transfer begins.  Consists of: !

●  Seek time – time it takes to reposition the arm over the correct track. !

!   Average seek time is 1/2 the worst case seek time.!

–  Would be 1/3 if all tracks had the same number of sectors, and we 
ignore the time to start and stop arm movement!

!  4 to 10 milliseconds on typical disks!

●  Rotational latency – time it takes for the sector to be accessed to appear 
under the head. !

!   Average latency is 1/2 of the worst case latency.!

!  4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)!

■  Data-transfer rate – the rate at which data can be retrieved from or stored to 
the disk.!

●  25 to 100 MB per second max rate, lower for inner tracks!

●  Multiple disks may share a controller, so rate that controller can handle is 
also important!

!  E.g. SATA: 150 MB/sec, SATA-II 3Gb (300 MB/sec)!

!  Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)!

!  Fiber Channel (FC2Gb or 4Gb): 256 to 512 MB/s!
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Random vs. Sequential Access!

■  Transfer of data from disk has a minimal size = 1 block!

●  Reading 1 byte is as fast as reading one block (e.g., 4KB)!

■  Random Access!

●  Read data from anywhere on the disk!

●  Need to get to the right track (seek time)!

●  Need to wait until the right sector is under the arm (on avg ½ time 
for one rotation) (rotational delay)!

●  Then can transfer data at  ~ transfer rate!

■  Sequential Access!

●  Read data that is on the current track + sector!

●  can transfer data at  ~ transfer rate!

■  Reading large number of small pieces of data randomly is very slow 
compared to sequential access!

●  Thus, try layout data on disk in a way that enables sequential 
access!
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File Organization!
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File Organization!

■  The database is stored as a collection of files.  Each file stores 
records (tuples from a table).  A record is a sequence of fields 

(the attributes of a tuple).!

■  Reading one record of a time from disk would be very slow 
(random access)!

●  Organize our database files in pages (size of block or larger)!

●  Read/write data in units of pages!

●  One page will usually contain several records!

■  One approach:!

●  assume record size is fixed!

●  each file has records of one particular type only !

●  different files are used for different relations!

This case is easiest to implement; will consider variable length 
records later.!
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Fixed-Length Records!

■  Simple approach:!

●  Store record i starting from byte n * (i – 1), where n is the size of 
each record. Put maximal P / n records on each page.!

●  Record access is simple but records may cross blocks!

! Modification: do not allow records to cross block boundaries!

!

■  Deletion of record i:  

alternatives:"

●  move records i + 1, . . ., n  
to i, . . . , n – 1!

●  move record n  to i!

●  do not move records, but  
link all free records on a  

free list!

Srinivasan Comp. Sci. 65000

Wu Finance 90000

Mozart Music 40000

Einstein Physics 95000

El Said History 60000

Gold Physics 87000

Katz Comp. Sci. 75000

Califieri History 62000

Singh Finance 80000

Crick Biology 72000

Brandt Comp. Sci. 92000

15151

10101

12121

22222

32343

33456

45565

58583

76543

76766

83821

98345 Kim Elec. Eng. 80000

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

record 9

record 10

record 11
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Free Lists!

■  Store the address of the first deleted record in the file header.!

■  Use this first record to store the address of the second deleted record, 
and so on!

■  Can think of these stored addresses as pointers since they point  to 
the location of a record.!

header

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

record 9

record 10

record 11

72000

92000

80000

65000

40000

95000

87000

62000

76766

83821

98345

10101

15151

22222

33456

58583

76543

Crick

Brandt

Kim

Srinivasan

Mozart

Einstein

Gold

Califieri

Singh

Biology

Elec. Eng.

Comp. Sci.

Comp. Sci.

Music

Physics

Physics

History

Finance 80000
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Variable-Length Records!

■  Variable-length records arise in database systems in several ways:!

●  Storage of multiple record types in a file.!

●  Record types that allow variable lengths for one or more fields such as 
strings (varchar)!

●  Record types that allow repeating fields (used in some older data 
models).!

■  Attributes are stored in order!

■  Variable length attributes represented by fixed size (offset, length), with 
actual data stored after all fixed length attributes!

■  Null values represented by null-value bitmap!

!

21, 5 26, 10 36, 10 65000 10101 Srinivasan Comp. Sci.

Bytes 0 4 8 12 20 21 26 36 45

0000
Null bitmap (stored in 1 byte)
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Variable-Length Records: Slotted Page Structure!

■  Slotted page header contains:!

●  number of record entries!

●  end of free space in the block!

●  location and size of each record!

■  Records can be moved around within a page to keep them contiguous 
with no empty space between them; entry in the header must be 
updated.!

■  Pointers should not point directly to record — instead they should 
point to the entry for the record in header.!

# EntriesSize
Location

Block Header Records

Free Space

End of Free Space
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Organization of Records in Files!

■  Heap – a record can be placed anywhere in the file where there 
is space!

●  Deletion efficient!

●  Insertion efficient!

●  Search is expensive!

! Example: Get instructor with name Glavic!

–  Have to search through all instructors!

■  Sequential – store records in sequential order, based on the 
value of some search key of each record!

●  Deletion expensive and/or waste of space!

●  Insertion expensive and/or waste of space!

●  Search is efficient (e.g., binary search)!

! As long as the search is on the search key we are 
ordering on!
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Buffering!
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Buffer Manager!

■  Buffer Manager!

●  Responsible for loading pages from disk and writing modified 
pages back to disk!

■  Handling blocks!

1.  If the block is already in the buffer, the buffer manager 
returns the address of the block in main memory!

2.  If the block is not in the buffer, the buffer manager!

1.  Allocates space in the buffer for the block!

1.  Replacing (throwing out) some other block, if required, 
to make space for the new block.!

2.  Replaced block written back to disk only if it was 
modified since the most recent time that it was written 

to/fetched from the disk.!

2.  Reads the block from the disk to the buffer, and returns 
the address of the block in main memory to requester. !
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Buffer-Replacement Policies!

■  Most operating systems replace the block least recently used 
(LRU strategy)!

■  Idea behind LRU – use past pattern of block references as a 
predictor of future references!

■  Queries have well-defined access patterns (such as sequential 

scans), and a database system can use the information in a user’s 
query to predict future references!

●  LRU can be a bad strategy for certain access patterns involving 
repeated scans of data!

! For example: when computing the join of 2 relations r and s 
by a nested loops  
  for each tuple tr of r do  

     for each tuple ts of s do  

       if the tuples tr and ts match …!

●  Mixed strategy with hints on replacement strategy provided  
by the query optimizer is preferable!
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Buffer-Replacement Policies (Cont.)!

■  Pinned block – memory block that is not allowed to be written 
back to disk. E.g., an operation still needs this block.!

■  Toss-immediate strategy – frees the space occupied by a block 
as soon as the final tuple of that block has been processed!

■  Most recently used (MRU) strategy –  system must pin the 

block currently being processed.  After the final tuple of that block 
has been processed, the block is unpinned, and it becomes the 

most recently used block.!

■  Buffer manager can use statistical information regarding the 

probability that a request will reference a particular relation!

●  E.g., the data dictionary is frequently accessed.  Heuristic:  
keep data-dictionary blocks in main memory buffer!

■  Buffer managers also support forced output of blocks for the 
purpose of recovery (more in Chapter 16 in the textbook)!
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Indexing and Hashing!
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Basic Concepts!

■  Indexing mechanisms used to speed up access to desired data.!

●  E.g., author catalog in library!

■  Search Key - attribute or set of attributes used to look up records in a 
file.!

■  An index file consists of records (called index entries) of the form 
 

!

■  Index files are typically much smaller than the original file !

■  Two basic kinds of indices:!

●  Ordered indices:  search keys are stored in some sorted order!

●  Hash indices:  search keys are distributed uniformly across 
buckets  using a hash function . !

search-key! pointer!
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Index Evaluation Metrics!

■  Access types supported efficiently.  E.g., !

●  records with a specified value in the attribute!

●  or records with an attribute value falling in a specified range of 
values.!

■  Access time!

■  Insertion time!

■  Deletion time!

■  Space overhead!
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Ordered Indices!

■  In an ordered index, index entries are stored sorted on the search key 
value.  E.g., author catalog in library.!

■  Primary index: in a sequentially ordered file, the index whose search 
key specifies the sequential order of the file.!

●  Also called clustering index!

●  The search key of a primary index is usually but not necessarily the 
primary key.!

■  Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called  
non-clustering index.!

■  Index-sequential file: ordered sequential file with a primary index.!
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Secondary Indices Example!

■  Index record points to a bucket that contains pointers to all the 

actual records with that particular search-key value.!

■  Secondary indices have to be dense!

Secondary index on salary field of instructor!

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

58583 Califieri History 62000

76543 Singh Finance 80000

76766 Crick Biology 72000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000
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Primary and Secondary Indices!

■  Indices offer substantial benefits when searching for records.!

■  BUT: Updating indices imposes overhead on database 
modification --when a file is modified, every index on the file 

must be updated, !

■  Sequential scan using primary index is efficient, but a 
sequential scan using a secondary index is expensive !

●  Each record access may fetch a new block from disk!

●  Block fetch requires about 5 to 10 milliseconds, versus 
about 100 nanoseconds for memory access!
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Multilevel Index!

■  If primary index does not fit in memory, access becomes 

expensive.!

■  Solution: treat primary index kept on disk as a sequential file 
and construct a sparse index on it.!

●  outer index – a sparse index of primary index!

●  inner index – the primary index file!

■  If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.!

■  Indices at all levels must be updated on insertion or deletion 

from the file.!
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Multilevel Index (Cont.)!

…

…
…

…

outer index

index

block 0

index

block 1

data

block 0

data

block 1

inner index
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Index Update:  Deletion!

■  Single-level index entry deletion:!

●  Dense indices – deletion of search-key is similar to file record 
deletion.!

●  Sparse indices –!

!  if an entry for the search key exists in the index, it is 

deleted by replacing the entry in the index with the next 

search-key value in the file (in search-key order).  !

! If the next search-key value already has an index entry, the 
entry is deleted instead of being replaced.!

10101
32343
76766

10101 Srinivasan

45565 Katz

58583 Califieri

76543 Singh

76766 Crick

83821 Brandt

98345 Kim

12121 Wu

15151 Mozart

22222 Einstein
32343 El Said

33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.

History

Finance

Biology

Elec. Eng.

Finance

Music

Physics
History

Physics

65000

75000

62000

80000

72000

92000

80000

90000

40000

95000
60000

87000
■  If deleted record was the 

only record in the file with its 

particular search-key value, 

the search-key is deleted 

from the index also.!
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Index Update:  Insertion!

■  Single-level index insertion:!

●  Perform a lookup using the search-key value appearing in 
the record to be inserted.!

●  Dense indices – if the search-key value does not appear in 
the index, insert it.!

●  Sparse indices – if index stores an entry for each block of 

the file, no change needs to be made to the index unless a 

new block is created.  !

! If a new block is created, the first search-key value 
appearing in the new block is inserted into the index.!

■  Multilevel insertion and deletion:  algorithms are simple 
extensions of the single-level algorithms!



6!

©Silberschatz, Korth and Sudarshan!11.31!CS425 – Fall 2013 – Boris Glavic!

Secondary Indices!

■  Frequently, one wants to find all the records whose values in 

a certain field (which is not the search-key of the primary 

index) satisfy some condition.!

●  Example 1: In the instructor relation stored sequentially by 
ID, we may want to find all instructors in a particular 

department!

●  Example 2: as above, but where we want to find all 
instructors with a specified salary or with salary in a 

specified range of values!

■  We can have a secondary index with an index record for 

each search-key value!
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B+-Tree Index!

■  Disadvantage of indexed-sequential files!

●  performance degrades as file grows, since many overflow 
blocks get created.  !

●  Periodic reorganization of entire file is required.!

■  Advantage of B+-tree index files:  !

●  automatically reorganizes itself with small, local, changes, 
in the face of insertions and deletions.  !

●  Reorganization of entire file is not required to maintain 
performance.!

■  (Minor) disadvantage of B+-trees: !

●  extra insertion and deletion overhead, space overhead.!

■  Advantages of B+-trees outweigh disadvantages!

●  B+-trees are used extensively!

B+-tree indices are an alternative to indexed-sequential files.!
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Example of B+-Tree!

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222

32343

33456

45565

58583

76543

76766

83821

98345 Kim Elec. Eng. 80000
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B+-Tree Index Files (Cont.)!

■  All paths from root to leaf are of the same length!

■  Each node that is not a root or a leaf has between ⎡n/2⎤ and 
n children.!

■  A leaf node has between ⎡(n–1)/2⎤ and n–1 values!

■  Special cases: !

●  If the root is not a leaf, it has at least 2 children.!

●  If the root is a leaf (that is, there are no other nodes in 
the tree), it can have between 0 and (n–1) values.!

A B+-tree is a rooted tree satisfying the following properties:!
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B+-Tree Node Structure!

■  Typical node  

 

 

!

●  Ki are the search-key values !

●  Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes).!

■  The search-keys in a node are ordered !

! ! K1 < K2 < K3 < . . . < Kn–1!

        (Initially assume no duplicate keys, address duplicates later)!

!

!

!

P1 K1 P2 Pn-1 Kn-1 Pn…
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Leaf Nodes in B+-Trees!

■  For i = 1, 2, . . ., n–1, pointer Pi points to a file record with 

search-key value Ki, !

■  If Li, Lj are leaf nodes and i < j, Li’s search-key values are less 
than or equal to Lj’s search-key values!

■  Pn points to next leaf node in search-key order!

Properties of a leaf node:!

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583

76543
76766
83821
98345 Kim Elec. Eng. 80000

leaf node

Pointer to next leaf nodeBrandt Califieri Crick
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Non-Leaf Nodes in B+-Trees!

■  Non leaf nodes form a multi-level sparse index on the leaf 

nodes.  For a non-leaf node with m pointers:!

●  All the search-keys in the subtree to which P1 points are 
less than K1 !

●  For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which 
Pi points have values greater than or equal to Ki–1 and less 

than Ki "

●  All the search-keys in the subtree to which Pn points have 

values greater than or equal to Kn–1!

P1 K1 P2 Pn-1 Kn-1 Pn…
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Example of B+-tree!

■  Leaf nodes must have between 3 and 5 values  

(⎡(n–1)/2⎤ and n –1, with n = 6).!

■  Non-leaf nodes other than root must have between 3 
and 6 children (⎡(n/2⎤ and n with n =6).!

■  Root must have at least 2 children.!

B+-tree for instructor file (n = 6)!

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart
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Observations about B+-trees!

■  Since the inter-node connections are done by pointers, 

logically  close blocks need not be physically  close.!

■  The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices.!

■  The B+-tree contains a relatively small number of levels!

! Level below root has at least 2* ⎡n/2⎤ values!

! Next level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values!

! .. etc.!

●  If there are K search-key values in the file, the tree height is 
no more than ⎡ log⎡n/2⎤(K)⎤!

●  thus searches can be conducted efficiently.!

■  Insertions and deletions to the main file can be handled 

efficiently, as the index can be restructured in logarithmic time 

(as we shall see).!
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Queries on B+-Trees!
■  Find record with search-key value V."

1.  C=root"

2.  While C is not a leaf node {!

1.  Let i be least value s.t. V ≤ Ki.!

2.  If no such exists, set C = last non-null pointer in C !

3.  Else { if (V= Ki ) Set C = Pi +1  else set C = Pi}!

}!

3.  Let i be least value s.t. Ki = V"

4.  If there is such a value i,  follow pointer Pi  to the desired record.!

5.  Else no record with search-key value k exists.!

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri
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Handling Duplicates!

■  With duplicate search keys!

●  In both leaf and internal nodes, !

! we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1!

! but can guarantee K1 ≤ K2 ≤ K3 ≤ . . . ≤ Kn–1!

●  Search-keys in the subtree to which Pi points !

! are ≤ Ki,, but not necessarily < Ki,!

! To see why, suppose same search key value V  is 
present in two leaf node Li and Li+1.  Then in parent node 
Ki must be equal to V

!
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Handling Duplicates!

■  We modify find procedure as follows !

●  traverse Pi  even if V = Ki!

● As soon as we reach a leaf node C check if C has 

only search key values less than V"

! if so set C = right sibling of C before checking 

whether C contains V"

■  Procedure printAll!

●  uses modified find procedure to find first 

occurrence of V"

●  Traverse through consecutive leaves to find all 

occurrences of V!

** Errata note: modified find procedure missing in first printing of 6th edition!
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Queries on B+-Trees (Cont.)!

■  If there are K search-key values in the file, the height of the tree is no 
more than ⎡log⎡n/2⎤(K)⎤.!

■  A node is generally the same size as a disk block, typically 4 
kilobytes!

●  and n is typically around 100 (40 bytes per index entry).!

■  With 1 million search key values and n = 100!

●  at most  log50(1,000,000) = 4 nodes are accessed in a lookup.!

■  Contrast this with a balanced binary tree with 1 million search key 
values — around 20 nodes are accessed in a lookup!

●  above difference is significant since every node access may need 
a disk I/O, costing around 20 milliseconds!
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Updates on B+-Trees:  Insertion!

1.  Find the leaf node in which the search-key value would appear!

2.  If the search-key value is already present in the leaf node!

1.  Add record to the file!

2.  If necessary add a pointer to the bucket.!

3.  If the search-key value is not present, then !

1.  add the record to the main file (and create a bucket if 

necessary)!

2.  If there is room in the leaf node, insert (key-value, pointer) 
pair in the leaf node!

3.  Otherwise, split the node (along with the new (key-value, 
pointer) entry) as discussed in the next slide.!

©Silberschatz, Korth and Sudarshan!11.45!CS425 – Fall 2013 – Boris Glavic!

Updates on B+-Trees:  Insertion (Cont.)!

■  Splitting a leaf node:!

●  take the n (search-key value, pointer) pairs (including the one 
being inserted) in sorted order.  Place the first ⎡n/2⎤ in the original 

node, and the rest in a new node.!

●  let the new node be p, and let k be the least key value in p.  Insert 

(k,p) in the parent of the node being split. !

●  If the parent is full, split it and propagate the split further up.!

■  Splitting of nodes proceeds upwards till a node that is not full is found. !

●  In the worst case the root node may be split increasing the height 
of the tree by 1. !

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams!
Next step: insert entry with (Califieri,pointer-to-new-node) into parent!

Adams Califieri CrickBrandt
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B+-Tree  Insertion!

B+-Tree before and after insertion of Adams !

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick
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B+-Tree  Insertion!

Srinivasan

Gold

Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

B+-Tree before and after insertion of Lamport !
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■  Splitting a non-leaf node: when inserting (k,p) into an already full 
internal node N!

●  Copy N to an in-memory area M with space for n+1 pointers and n 
keys!

●  Insert (k,p) into M!

●  Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N!

●  Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node 
N’!

●  Insert (K ⎡n/2⎤,N’) into parent N!

■  Read pseudocode in book!!

Crick!

Insertion in B+-Trees (Cont.)!

Adams  Brandt  Califieri  Crick! Adams Brandt!

 Califieri!     !
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Examples of B+-Tree Deletion!

■  Deleting Srinivasan  causes merging of under-full leaves!

Before and after deleting Srinivasan !

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

©Silberschatz, Korth and Sudarshan!11.50!CS425 – Fall 2013 – Boris Glavic!

Examples of B+-Tree Deletion (Cont.)!

Deletion of Singh  and Wu  from result of previous example!

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim      Mozart

Califieri Einstein Kim

Gold

■  Leaf containing Singh and Wu became underfull, and borrowed a value 
Kim from its left sibling!

■  Search-key value in the parent changes as a result!
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Example of B+-tree Deletion (Cont.)!

Before and after deletion of Gold  from earlier example!

■  Node with Gold and Katz became underfull, and was merged with its sibling !

■  Parent node becomes underfull, and is merged with its sibling!

●  Value separating two nodes (at the parent) is pulled down when merging!

■  Root node then has only one child, and is deleted!

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim      Mozart

Califieri Einstein Kim

Gold
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Updates on B+-Trees: Deletion!

■  Find the record to be deleted, and remove it from the main file and 
from the bucket (if present)!

■  Remove (search-key value, pointer) from the leaf node if there is no 
bucket or if the bucket has become empty!

■  If the node has too few entries due to the removal, and the entries in 

the node and a sibling fit into a single node, then merge siblings:!

●  Insert all the search-key values in the two nodes into a single node 
(the one on the left), and delete the other node.!

●  Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted 
node, from its parent, recursively using the above procedure.!
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Updates on B+-Trees:  Deletion!

■  Otherwise, if the node has too few entries due to the removal, but the 
entries in the node and a sibling do not fit into a single node, then 

redistribute pointers:!

●  Redistribute the pointers between the node and a sibling such that 
both have more than the minimum number of entries.!

●  Update the corresponding search-key value in the parent of the 
node.!

■  The node deletions may cascade upwards till a node which has  ⎡n/2⎤ 
or more pointers is found.  !

■  If the root node has only one pointer after deletion, it is deleted and 
the sole child becomes the root. !
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Non-Unique Search Keys!

■  Alternatives to scheme described earlier!

●  Buckets on separate block (bad idea)!

●  List of tuple pointers with each key!

! Extra code to handle long lists!

! Deletion of a tuple can be expensive if there are many 
duplicates on search key (why?)!

! Low space overhead, no extra cost for queries!

●  Make search key unique by adding a record-identifier!

! Extra storage overhead for keys!

! Simpler code for insertion/deletion!

! Widely used!
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B+-Tree File Organization!

■  Index file degradation problem is solved by using B+-Tree indices.!

■  Data file degradation problem is solved by using B+-Tree File 
Organization.!

■  The leaf nodes in a B+-tree file organization store records, instead of 
pointers.!

■  Leaf nodes are still required to be half full!

●  Since records are larger than pointers, the maximum number of 
records that can be stored in a leaf node is less than the number of 

pointers in a nonleaf node.!

■  Insertion and deletion are handled in the same way as insertion and 
deletion of entries in a B+-tree index.!
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B+-Tree File Organization (Cont.)!

■  Good space utilization important since records use more space than 
pointers.  !

■  To improve space utilization, involve more sibling nodes in redistribution 
during splits and merges!

●  Involving 2 siblings in redistribution (to avoid split / merge where 

possible) results in each node having at least              entries!

!

Example of B+-tree File Organization!

⎣ ⎦3/2n

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Hashing!
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Static Hashing!

■  A bucket is a unit of storage containing one or more records (a 
bucket is typically a disk block). !

■  In a hash file organization we obtain the bucket of a record directly 
from its search-key value using a hash function.!

■  Hash function h is a function from the set of all search-key values K 

to the set of all bucket addresses B."

■  Hash function is used to locate records for access, insertion as well 
as deletion.!

■  Records with different search-key values may be mapped to the 
same bucket; thus entire bucket has to be searched sequentially to 

locate a record. !

©Silberschatz, Korth and Sudarshan!11.59!CS425 – Fall 2013 – Boris Glavic!

Example of Hash File Organization!

■  There are 10 buckets,!

■  The binary representation of the ith character is assumed to be the 
integer i.!

■  The hash function returns the sum of the binary representations of 
the characters modulo 10!

●  E.g. h(Music) = 1        h(History) = 2    
        h(Physics) =  3   h(Elec. Eng.) = 3!

 

Hash file organization of instructor file, using dept_name as key  

 (See figure in next slide.)!
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Example of Hash File Organization !

Hash file organization of instructor file, using dept_name as key 

(see previous slide for details).!

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

bucket 7

45565

15151 Mozart Music 40000

80000

Wu12121 Finance 90000

76543 FinanceSingh

10101 Comp. Sci.Srinivasan

Katz Comp. Sci. 75000

92000

6500032343

58583

El Said

Califieri

History

History

80000

60000

Einstein

Gold

Kim

22222

33456

98345

Physics

Physics

Elec. Eng.

95000

87000

80000

Brandt83821 Comp. Sci.

76766 Crick Biology 72000
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Hash Functions!

■  Worst hash function maps all search-key values to the same bucket; 
this makes access time proportional to the number of search-key 

values in the file.!

■  An ideal hash function is uniform, i.e., each bucket is assigned the 
same number of search-key values from the set of all possible values.!

■  Ideal hash function is random, so each bucket will have the same 
number of records assigned to it irrespective of the actual distribution of 

search-key values in the file.!

■  Typical hash functions perform computation on the internal binary 

representation of the search-key. !

●  For example, for a string search-key, the binary representations of 
all the characters in the string could be added and the sum modulo 

the number of buckets could be returned. .!
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Handling of Bucket Overflows!

■  Bucket overflow can occur because of !

●  Insufficient buckets !

●  Skew in distribution of records.  This can occur due to two 
reasons:!

! multiple records have same search-key value!

! chosen hash function produces non-uniform distribution of key 
values!

■  Although the probability of bucket overflow can be reduced, it cannot 
be eliminated; it is handled by using overflow buckets.!
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Handling of Bucket Overflows (Cont.)!

■  Overflow chaining – the overflow buckets of a given bucket are 
chained together in a linked list.!

■  Above scheme is called closed hashing.  !

●  An alternative, called open hashing, which does not use overflow 
buckets,  is not suitable for database applications.!

overflow buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3
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Hash Indices!

■  Hashing can be used not only for file organization, but also for index-
structure creation.  !

■  A hash index organizes the search keys, with their associated record 
pointers, into a hash file structure.!

■  Strictly speaking, hash indices are always secondary indices !

●  if the file itself is organized using hashing, a separate primary 
hash index on it using the same search-key is unnecessary.  !

●  However, we use the term hash index to refer to both secondary 

index structures and hash organized files. !
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Example of Hash Index!
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565

76543

10101

15151

33456

58583

83821

22222

98345

bucket 7

12121

32343

76766 Crick

76543 Singh

32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim

12121 Wu

Biology

Physics

Finance

History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.

Finance

72000

80000

60000
62000
40000
95000
87000

65000
75000
92000
80000

90000

hash index on instructor,  on attribute ID!
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Deficiencies of Static Hashing!

■  In static hashing, function h maps search-key values to a fixed set of B 
of bucket addresses. Databases grow or shrink with time. !

●  If initial number of buckets is too small, and file grows, performance 
will degrade due to too much overflows.!

●  If space is allocated for anticipated growth, a significant amount of 

space will be wasted initially (and buckets will be underfull).!

●  If database shrinks, again space will be wasted.!

■  One solution: periodic re-organization of the file with a new hash 

function!

●  Expensive, disrupts normal operations!

■  Better solution: allow the number of buckets to be modified dynamically. !
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Index Definition in SQL!

■  Create an index!

! !create index <index-name> on <relation-name>  
! ! !(<attribute-list>)!

E.g.:  create index  b-index on branch(branch_name)!

■  Use create unique index to indirectly specify and enforce the 
condition that the search key is a candidate key is a candidate key.!

●  Not really required if SQL unique integrity constraint is supported!

■  To drop an index !

! ! !drop index <index-name>!

■  Most database systems allow specification of type of index, and 
clustering.!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter!
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Figure 11.01!

10101 Srinivasan

45565 Katz

58583 Califieri

76543 Singh

76766 Crick

83821 Brandt

98345 Kim

12121 Wu

15151 Mozart

22222 Einstein

32343 El Said

33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.

History

Finance

Biology

Elec. Eng.

Finance

Music

Physics

History

Physics

65000

75000

62000

80000

72000

92000

80000

90000

40000

95000

60000

87000
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Figure 11.15 !
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Partitioned Hashing!

■  Hash values are split into segments that depend on each 
attribute of the search-key.!

! !(A1, A2, . . . , An) for n attribute search-key!

■  Example:  n = 2, for customer,  search-key being  
(customer-street, customer-city)!

! !search-key value "hash value  
"(Main, Harrison) !101 111  
!(Main, Brooklyn) !101 001  

!(Park, Palo Alto) !010 010  

!(Spring, Brooklyn) !001 001  
!(Alma, Palo Alto) !110 010!

■  To answer equality query on single attribute, need to look up 
multiple buckets.  Similar in effect to grid files. !
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Grid Files!

■  Structure used to speed the processing of general multiple search-
key queries involving one or more comparison operators.!

■  The grid file has a single grid array and one linear scale for each 
search-key attribute.  The grid array has number of dimensions 
equal to number of search-key attributes.!

■  Multiple cells of grid array can point to same bucket!

■  To find the bucket for a search-key value, locate the row and column 
of its cell using the linear scales and follow pointer!
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Example Grid File for account!
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Queries on a Grid File!

■  A grid file on two attributes A and B can handle queries of all following 
forms with reasonable efficiency !

●  (a1 ≤ A ≤ a2)!

●  (b1 ≤ B ≤ b2)!

●  (a1 ≤ A ≤ a2  ∧  b1 ≤ B ≤ b2),.!

■  E.g., to answer (a1 ≤ A ≤ a2  ∧  b1 ≤ B ≤ b2), use linear scales to find 
corresponding candidate grid array cells, and look up all the buckets 

pointed to from those cells.!
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Grid Files (Cont.)!

■  During insertion, if a bucket becomes full, new bucket can be created 
if more than one cell points to it. !

●  Idea similar to extendable hashing, but on multiple dimensions!

●   If only one cell points to it, either an overflow bucket must be 
created or the grid size must be increased!

■  Linear scales must be chosen to uniformly distribute records across 
cells. !

●   Otherwise there will be too many overflow buckets.!

■  Periodic re-organization to increase grid size will help.!

●  But reorganization can be very expensive.!

■  Space overhead of grid array can be high.!

■  R-trees (Chapter 23) are an alternative !


