
1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2017

Boris Glavic

Course Information

©Silberschatz, Korth and Sudarshan0.2CS425 – Boris Glavic

Hi, I am Boris Glavic,

 Assistant Professor in

CS

©Silberschatz, Korth and Sudarshan0.3CS425 – Boris Glavic

Hi, I am Boris Glavic,

 Assistant Professor in
CS

I am a database guy!

©Silberschatz, Korth and Sudarshan0.4CS425 – Boris Glavic

Hi, I am Boris Glavic,
 Assistant Professor in

CS

I am a database guy!

I will teach you:
database stuff

©Silberschatz, Korth and Sudarshan0.5CS425 – Boris Glavic

Why are Databases Important?

■ What do Databases do?

1. Provide persistent storage

2. Efficient declarative access to data -> Querying

3. Protection from hardware/software failures

4. Safe concurrent access to data

©Silberschatz, Korth and Sudarshan0.6CS425 – Boris Glavic

What happens if you do not pay attention?

2

©Silberschatz, Korth and Sudarshan0.7CS425 – Boris Glavic

Who uses Databases?

■ Most big software systems involve DBs!

● Business Intelligence ⇒ e.g., IBM Cognos

● Web based systems

● …

■ You! (desktop software)

● Your music player ⇒ e.g., Amarok

● Your Web Content Management System

● Your email client

● Half of the apps on your phone

● …

■ Every big company

● Banks

● Insurance

● Government

● Google, …
©Silberschatz, Korth and Sudarshan0.8CS425 – Boris Glavic

Who Produces Databases?

■ Traditional relational database systems is big

business

● IBM ⇒ DB2

● Oracle ⇒ Oracle J

● Microsoft ⇒ SQLServer

● Open Source ⇒ MySQL, Postgres, SQLite, …

■ Emerging distributed systems with DB
characteristics and Big Data

● Cloud storage and Key-value stores ⇒Amazon S3,
Google Big Table, . . .

● Big Data Analytics ⇒Hadoop, Google Map &
Reduce, . . .

● SQL on Distributed Platforms ⇒ Hive, Tenzing, …

©Silberschatz, Korth and Sudarshan0.9CS425 – Boris Glavic

Why are Database Interesting (for

Students)?
■ The pragmatic perspective

● Background in databases makes you competitive in the job market
;-)

■ Systems and theoretical research

● Database research has a strong systems aspect

4 Hacking complex and large systems

4 Low-level optimization

– cache-conscious algorithms

– Exploit modern hardware

● Databases have a strong theoretical foundation

4 Complexity of query answering

4 Expressiveness of query languages

4 Concurrency theory

4 …

©Silberschatz, Korth and Sudarshan0.10CS425 – Boris Glavic

Why are Database Interesting (for

Students)?
■ Connection to many CS fields

● Distributed systems

4 Getting more and more important

● Compilers

● Modeling

● AI and machine learning

4 Data mining

● Operating and file systems

● Hardware

4 Hardware-software co-design

©Silberschatz, Korth and Sudarshan0.11CS425 – Boris Glavic

Webpage and Faculty

■ Course Info

● Course Webpage: http://cs.iit.edu/~cs425

● Google Group: https://groups.google.com/d/forum/cs425-2017-
fall-group

4 Used for announcements

4 Use it to discuss with me, TA, and fellow students

● Syllabus: http://cs.iit.edu/~cs425/files/syllabus.pdf

● Git Repos: https://github.com/IITDBGroup/cs425

■ Faculty

● Boris Glavic (http://cs.iit.edu/~glavic)

● Email: bglavic@iit.edu

● Phone: 312.567.5205

● Office: Stuart Building, room 226C

● Office Hours: Mondays, 12pm-1pm (and by appointment)

©Silberschatz, Korth and Sudarshan0.12CS425 – Boris Glavic

TAs

■ TAs

● TBA

3

©Silberschatz, Korth and Sudarshan0.13CS425 – Boris Glavic

Workload and Grading

■ Exams

● Midterm (25%)

● Final (35%)

■ Homework Assignments (preparation for exams!) – 20%

● HW1 (Relational algebra)

● HW2 (SQL)

● HW3 (Database modeling)

■ Course Project (20%)

● In groups of 3 students

● Given an example application (e.g., ticketing system)

4 Develop a database model

4 Derive a database schema from the model

4 Implement the application accessing the database

©Silberschatz, Korth and Sudarshan0.14CS425 – Boris Glavic

Course Objectives

■ Understand the underlying ideas of database systems

■ Understand the relational data model

■ Be able to write and understand SQL queries and data definition
statements

■ Understand relational algebra and its connection to SQL

■ Understand how to write programs that access a database server

■ Understand the ER model used in database design

■ Understand normalization of database schemata

■ Be able to create a database design from a requirement analysis for
a specific domain

■ Know basic index structures and understand their importance

■ Have a basic understanding of relational database concepts such as

concurrency control, recovery, query processing, and access
control

©Silberschatz, Korth and Sudarshan0.15CS425 – Boris Glavic

PostgreSQL

■ In this course we will use PostgreSQL, a powerful open source

database management system

● https://www.postgresql.org/

©Silberschatz, Korth and Sudarshan0.16CS425 – Boris Glavic

Course Project

■ Forming groups

● Your responsibility!

● Inform me + TA

● Deadline: TBA

■ Git repositories

● Create an account on Bitbucket.org (https://bitbucket.org/) using

your IIT email

● We will create a repository for each student

● Use it to exchange code with your fellow group members

● The project has to be submitted via the group repository

■ Timeline:

● Brainstorming on application (by Sep 11th)

● Design database model (by Nov 12th)

● Derive relational model (by Nov 25th)

● Implement application (by end of the semester)

©Silberschatz, Korth and Sudarshan0.17CS425 – Boris Glavic

Fraud and Late Assignments

■ All work has to be original!

● Cheating = 0 points for assignment/exam

● Possibly E in course and further administrative sanctions

● Every dishonesty will be reported to office of academic honesty

■ Late policy:

● -20% per day

● No exceptions!

■ Course projects:

● Every student has to contribute in every phase of the project!

● Don’t let others freeload on you hard work!

4 Inform me or TA immediately

©Silberschatz, Korth and Sudarshan0.18CS425 – Boris Glavic

Reading and Prerequisites

■ Textbook: Silberschatz, Korth and Sudarsham

● Database System Concepts, 6th edition

● McGraw Hill

● publication date:2006,

● ISBN 0-13-0-13-142938-8.

■ Prerequisites:

● CS 331 or CS401 or CS403

4

©Silberschatz, Korth and Sudarshan0.19CS425 – Boris Glavic

Self-study

■ I expect you to learn by yourself how to effectively use the
following technologies

● Git – a version control system

4 You have to submit your project through git and should also

use git to collaborate with your project group members

4 We provide some useful examples/scripts through git

● Docker – a virtualization platform (think VMs, but more
lightweight)

4 The easiest way to get postgres running is by using the docker
image we provide

● PostgreSQL

4 I expect you to learn how to start/stop/configure a postgres

server and how to connect to a running postgres server

■ Help is on the way!

● https://github.com/IITDBGroup/cs425

©Silberschatz, Korth and Sudarshan0.20CS425 – Boris Glavic

PostgreSQL Overview

■ Client/Server Architecture

● Postgres Cluster

4 A directory on the machine running the server that stores data
and configuration files

● Postgres Server

4 A postgres server handles the data of single cluster

4 Clients connect to the server via network (TCP/IP)

– Send commands and receive results

● Clients

4 GUI clients: e.g., PGAdmin (https://www.pgadmin.org/)

4 CLI clients: e.g., the built-in psql tool

4 Programming Language Libraries

– Java: JDBC (https://jdbc.postgresql.org/)

– Python: pyscopg (http://initd.org/psycopg/)

– …

©Silberschatz, Korth and Sudarshan0.21CS425 – Boris Glavic

Get Your Hands Dirty

■ Get a working version of the PostgreSQL server

● Your options

4 Install locally

– Installer packages for windows exists

– Most Linux distributions have a postgres package

– Installation from source is not that hard

4 Get our docker image (docker pull iitdbgroup/cs425)

– It’s an extension of the official postgres image which loads
our running example university database

■ Validate your installation

● Create a database cluster (the directory PostgreSQL uses to store

data)

● Check that you can start/stop the server

● Check that you can connect to the running server using psql or
any other client

■ https://github.com/IITDBGroup/cs425
©Silberschatz, Korth and Sudarshan0.22CS425 – Boris Glavic

Jupyther notebook

■ Jupyther notebooks

● Notebooks mix documentation and code

● Over the course of the class I will put SQL examples we discuss in
class into a notebook that is shared through the class repository:

4 classnotebook-2017-Fall/CS425-2017-Notebook.ipynb

■ Find the classnotebook

● https://github.com/IITDBGroup/cs425

©Silberschatz, Korth and Sudarshan0.23CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2017

Boris Glavic

Chapter 1: Introduction

©Silberschatz, Korth and Sudarshan1.2CS425 – Boris Glavic

Textbook: Chapter 1

©Silberschatz, Korth and Sudarshan1.3CS425 – Boris Glavic

Database Management System (DBMS)

■ DBMS contains information about a particular domain

● Collection of interrelated data

● Set of programs to access the data

● An environment that is both convenient and efficient to use

■ Database Applications:

● Banking: transactions

● Airlines: reservations, schedules

● Universities: registration, grades

● Sales: customers, products, purchases

● Online retailers: order tracking, customized recommendations

● Manufacturing: production, inventory, orders, supply chain

● Human resources: employee records, salaries, tax deductions

■ Databases can be very large.

■ Databases touch all aspects of our lives

©Silberschatz, Korth and Sudarshan1.4CS425 – Boris Glavic

University Database Example

■ Application program examples

● Add new students, instructors, and courses

● Register students for courses, and generate class rosters

● Assign grades to students, compute grade point averages (GPA)

and generate transcripts

■ In the early days, database applications were built directly on top of
file systems

©Silberschatz, Korth and Sudarshan1.5CS425 – Boris Glavic

Drawbacks of using file systems to store data

● Data redundancy and inconsistency

4 Multiple file formats, duplication of information in different files

● Difficulty in accessing data

4 Need to write a new program to carry out each new task

● Data isolation — multiple files and formats

● Integrity problems

4 Integrity constraints (e.g., account balance > 0) become

buried in program code rather than being stated explicitly

4 Hard to add new constraints or change existing ones

©Silberschatz, Korth and Sudarshan1.6CS425 – Boris Glavic

Drawbacks of using file systems to store data (Cont.)

● Atomicity of updates

4 Failures may leave database in an inconsistent state with partial updates

carried out

4 Example: Transfer of funds from one account to another should either

complete or not happen at all

● Concurrent access by multiple users

4 Concurrent access needed for performance

4 Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time

● Security problems

4 Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems!

2

©Silberschatz, Korth and Sudarshan1.7CS425 – Boris Glavic

Levels of Abstraction

■ Physical level: describes how a record (e.g., customer) is stored.

■ Logical level: describes data stored in database, and the relationships
among the data.

type instructor = record

ID : string;
name : string;

dept_name : string;
salary : integer;

end;

■ View level: application programs hide details of data types. Views can
also hide information (such as an employee s salary) for security

purposes.

©Silberschatz, Korth and Sudarshan1.8CS425 – Boris Glavic

View of Data

An architecture for a database system

view 1 view 2

logical
level

physical
level

view n…

view level

©Silberschatz, Korth and Sudarshan1.9CS425 – Boris Glavic

Instances and Schemas

■ Similar to types and variables in programming languages

■ Schema – the logical structure of the database

● Example: The database consists of information about a set of customers and

accounts and the relationship between them

● Analogous to type information of a variable in a program

● Physical schema: database design at the physical level

● Logical schema: database design at the logical level

■ Instance – the actual content of the database at a particular point in time

● Analogous to the value of a variable

■ Physical Data Independence – the ability to modify the physical schema without

changing the logical schema

● Applications depend on the logical schema

● In general, the interfaces between the various levels and components should

be well defined so that changes in some parts do not seriously influence others.

■ Logical Data Independence – the ability to modify the logical schema without

changing the applications

● For example, add new information to each employee

©Silberschatz, Korth and Sudarshan1.10CS425 – Boris Glavic

Data Models

■ A collection of tools for describing

● Data

● Data relationships

● Data semantics

● Data constraints

■ Relational model

■ Entity-Relationship data model (mainly for database design)

■ Object-based data models (Object-oriented and Object-relational)

■ Semistructured data model (XML)

■ Other older models:
● Network model
● Hierarchical model

■ Other newer (or revived) models:

● Key-value

©Silberschatz, Korth and Sudarshan1.11CS425 – Boris Glavic

Relational Model

■ Relational model (Chapter 2)

■ Example of tabular data in the relational model
Columns (attributes)

Rows (tuples)

©Silberschatz, Korth and Sudarshan1.12CS425 – Boris Glavic

A Sample Relational Database

3

©Silberschatz, Korth and Sudarshan1.13CS425 – Boris Glavic

Data Manipulation Language (DML)

■ Language for accessing and manipulating the data organized by the

appropriate data model

● DML also known as query language

■ Two classes of languages

● Procedural – user specifies what data is required and how to get
those data

● Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data

■ SQL is the most widely used query language

©Silberschatz, Korth and Sudarshan1.14CS425 – Boris Glavic

Data Definition Language (DDL)

■ Specification notation for defining the database schema

Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

■ DDL compiler generates a set of table templates stored in a data dictionary

■ Data dictionary contains metadata (i.e., data about data)

● Database schema

● Integrity constraints

4 Primary key (ID uniquely identifies instructors)

4 Referential integrity (references constraint in SQL)

– e.g. dept_name value in any instructor tuple must appear in

department relation

● Authorization

©Silberschatz, Korth and Sudarshan1.15CS425 – Boris Glavic

SQL

■ SQL: widely used declarative (non-procedural) language

● Example: Find the name of the instructor with ID 22222
select name
from instructor
where instructor.ID = 22222

● Example: Find the ID and building of instructors in the Physics dept.

select instructor.ID, department.building
from instructor, department
where instructor.dept_name = department.dept_name and

department.dept_name = Physics

■ Application programs generally access databases through one of

● Language extensions to allow embedded SQL

● Application program interface (e.g., ODBC/JDBC) which allow SQL
queries to be sent to a database

■ Chapters 3, 4 and 5

©Silberschatz, Korth and Sudarshan1.16CS425 – Boris Glavic

Database Design

The process of designing the general structure of a database:

■ Logical Design – Deciding on the database schema. Database design
requires that we find a good representation of the information from an
application domain (e.g., banking) as a collection of relation schemas.

● Business decision – What information should we record in the
database?

● Computer Science decision – What relation schemas should we
have and how should the attributes be distributed among the various

relation schemas?

■ Physical Design – Deciding on the physical layout of the database

©Silberschatz, Korth and Sudarshan1.17CS425 – Boris Glavic

Database Design?

■ Is there any problem with this design?

©Silberschatz, Korth and Sudarshan1.18CS425 – Boris Glavic

Database Design?

■ Example: Changing the budget of the ‘Physics’ department

● Updates to many rows!

● Easy to break integrity

4 If we forget to update a row, then we have multiple budget

values for the physics department!

4

©Silberschatz, Korth and Sudarshan1.19CS425 – Boris Glavic

Design Approaches

■ Normalization Theory (Chapter 8)

● Formalize what designs are “good”, and test for them

● Translate a “bad” into a “good” design

■ Entity Relationship Model (Chapter 7)

● Models an domainas a collection of entities and relationships

4 Entity: a thing or object in the domain that is

distinguishable from other objects

– Described by a set of attributes

4 Relationship: an association among several entities

● Represented diagrammatically by an entity-relationship diagram

©Silberschatz, Korth and Sudarshan1.20CS425 – Boris Glavic

The Entity-Relationship Model

■ Models a domain as a collection of entities and relationships

● Entity: a thing or object in the domain that is distinguishable
from other objects

4 Described by a set of attributes

● Relationship: an association among several entities

■ Represented diagrammatically by an entity-relationship diagram:

What happened to dept_name of instructor and student?

instructor

ID
name
salary

department

dept_name
building
budget

member

©Silberschatz, Korth and Sudarshan1.21CS425 – Boris Glavic

Object-Relational Data Models

■ Relational model: flat, atomic values

● E.g., integer

■ Object Relational Data Models

● Extend the relational data model by including object orientation

and constructs to deal with added data types.

● Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

● Preserve relational foundations, in particular the declarative
access to data, while extending modeling power.

● Provide upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan1.22CS425 – Boris Glavic

Semistructured Data: XML and JSON

■ XML: Defined by the WWW Consortium (W3C)

● Originally intended as a document markup language not a
database language

● The ability to specify new tags, and to create nested tag
structures made XML a great way to exchange data, not just

documents

● XML used to be the basis for many data interchange formats

● A wide variety of tools is available for parsing, browsing and
querying XML documents/data

■ JSON: Javascript Object Notation

● Semistructured data format similar to XML, but simpler

● Well integrated with web technologies

● Is widely used today

©Silberschatz, Korth and Sudarshan1.23CS425 – Boris Glavic

Storage Management

■ Storage manager is a program module that provides the interface

between the low-level data stored in the database (on disk) and the
application programs and queries submitted to the system.

■ The storage manager is responsible to the following tasks:

● Interaction with the file manager

● Efficient storing, retrieving and updating of data

■ Issues:

● Storage access

● File organization

● Indexing and hashing

©Silberschatz, Korth and Sudarshan1.24CS425 – Boris Glavic

Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

query
output

query
parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

5

©Silberschatz, Korth and Sudarshan1.25CS425 – Boris Glavic

Query Processing (Cont.)

■ Alternative ways of evaluating a given query

● Equivalent expressions

● Different algorithms for each operation

■ Cost difference between a good and a bad way of evaluating a query can

be enormous

■ Need to estimate the cost of operations

● Depends critically on statistical information about relations which the
database must maintain

● Need to estimate statistics for intermediate results to compute cost of
complex expressions

■ Need to search for a good plan (low costs)

● Traversing the search space of alternative ways (plans) to compute
the query result

● This is called query optimization

©Silberschatz, Korth and Sudarshan1.26CS425 – Boris Glavic

Transaction Management

■ What if the system fails?

■ What if more than one user is concurrently updating the same data?

■ A transaction is a collection of operations that performs a single
logical function in a database application

■ Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.

■ Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

©Silberschatz, Korth and Sudarshan1.27CS425 – Boris Glavic

Database Users and Administrators

Database

©Silberschatz, Korth and Sudarshan1.28CS425 – Boris Glavic

Database System Internals
naive users

(tellers, agents,
web users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)

database
administrators

use write use use

©Silberschatz, Korth and Sudarshan1.29CS425 – Boris Glavic

Database Architecture

The architecture of a database systems is greatly influenced by

the underlying computer system on which the database is running:

■ Centralized (embedded, e.g., SQLite)

■ vs. Client-server (e.g., Postgres, DB2, Oracle, …)

■ Parallel (multi-processor) (most systems)

■ Distributed (e.g., DB2, Hive, SparkSQL …)

©Silberschatz, Korth and Sudarshan1.30CS425 – Boris Glavic

Build a Complete Database System in

your free time?
■ How much time do you need?

■ To get a rough idea:

● Postgres (about 800,000 lines of code)

4 Hundreds of man-years of work

● Oracle (about 8,000,000 lines of code)

4 Probably thousands of man-years of work?

■ Hmm, … probably not!

■ Maybe a limited research prototype or new feature ;-)

6

©Silberschatz, Korth and Sudarshan1.31CS425 – Boris Glavic

History of Database Systems

■ 1950s and early 1960s:

● Data processing using magnetic tapes for storage

4 Tapes provided only sequential access

● Punched cards for input

■ Late 1960s and 1970s:

● Hard disks allowed direct access to data

● Network and hierarchical data models in widespread use

● Ted Codd defines the relational data model

4 Would win the ACM Turing Award for this work

4 IBM Research begins System R prototype

4 UC Berkeley begins Ingres prototype

● High-performance (for the era) transaction processing

©Silberschatz, Korth and Sudarshan1.32CS425 – Boris Glavic

History (cont.)

■ 1980s:

● Research relational prototypes evolve into commercial systems

4 SQL becomes industrial standard

● Parallel and distributed database systems

● Object-oriented database systems

■ 1990s:

● Large decision support and data-mining applications

● Large multi-terabyte data warehouses

● Emergence of Web commerce

■ Early 2000s:

● XML and XQuery standards

©Silberschatz, Korth and Sudarshan1.33CS425 – Boris Glavic

History (cont.)

■ Later 2000s:

● Scalable data storage systems

4 Google BigTable, Yahoo PNuts, Amazon, ..

● Scalable distributed query processing

4 Hive, Spark SQL, Impala, Apache Flink, …

● Scalable transaction processing

4 H-store, Spanner, F1, ...

● Scalable machine learning

4 Tensorflow

● Software-Hardware co-design (e.g., Oracle Sparc M7)

©Silberschatz, Korth and Sudarshan1.34CS425 – Boris Glavic

Recap

■ Why databases?

■ What do databases do?

■ Data independence

● Physical and Logical

■ Database design

■ Data models

● Relational, object, XML, network, hierarchical

■ Query languages

● DML

● DDL

■ Architecture and systems aspects of database systems

● Recovery

● Concurrency control

● Query processing (optimization)

● File organization and indexing

■ History of databases

©Silberschatz, Korth and Sudarshan1.35CS425 – Boris Glavic

End of Chapter 1

©Silberschatz, Korth and Sudarshan1.36CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

7

©Silberschatz, Korth and Sudarshan1.37CS425 – Boris Glavic

Figure 1.02

©Silberschatz, Korth and Sudarshan1.38CS425 – Boris Glavic

Figure 1.04

©Silberschatz, Korth and Sudarshan1.39CS425 – Boris Glavic

Figure 1.06

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture

1

Modifies from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2016

Boris Glavic

Chapter 2: Intro to Relational Model

©Silberschatz, Korth and Sudarshan2.2CS425 – Boris Glavic

Textbook: Chapter 2

©Silberschatz, Korth and Sudarshan2.3CS425 – Boris Glavic

Example of a Relation

attributes

(or columns)

tuples

(or rows)

©Silberschatz, Korth and Sudarshan2.4CS425 – Boris Glavic

Attribute Types

■ The set of allowed values for each attribute is called the domain

or data type of the attribute

■ Attribute values are (normally) required to be atomic; that is,

indivisible

● E.g., integer values

● E.g., not address (street, city, zip code, state, country)

■ The special value null is a member of every domain

● Means unknown or not applicable

■ The null value causes complications in the definition of many
operations

● Will be detailed later

©Silberschatz, Korth and Sudarshan2.5CS425 – Boris Glavic

Relation Schema and Instance

■ A1, A2, …, An are attributes names

■ R = (A1, A2, …, An) is a relation schema

Example:

instructor = (ID, name, dept_name, salary)

■ Formally, given sets D1, D2, …. Dn of domains a relation r (or relation

instance) is a subset of

D1 x D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai Î Di

■ The current values (relation instance) of a relation are often

specified in tabular form

■ Caveat: being a set, the tuples of the relation do not have any

order defined as implied by the tabular representation

■ An element t of r is a tuple, represented as a row in a table

Th
eor
y

Wa
rnin
g

©Silberschatz, Korth and Sudarshan2.6CS425 – Boris Glavic

Alternative Definitions

■ A relation schema is often defined as a list of attribute-domain pairs

● That is the data types of each attribute in the relation are
considered as part of the relation schema

■ Tuples are sometimes defined as functions from attribute names to
values (order of attributes does not matter)

● E.g., t(name) = ‘Bob’

■ A relation r can be specified as a function

● D1 x D2 x … x Dn -> {true, false}

● t = (a1, a2, …, an) is mapped to true if t is in r and to false

otherwise

■ These alternative definition are useful in database theory

● We will stick to the simple definition!

Th
eor
y

Wa
rnin
g

2

©Silberschatz, Korth and Sudarshan2.7CS425 – Boris Glavic

Relations are Unordered

■ A relation is a set -> the elements of a set are not ordered per se

■ From a pratical perspective:

■Order of tuples is irrelevant (tuples may be stored or returned in an
arbitrary order)

■ Example: instructor relation with unordered tuples

©Silberschatz, Korth and Sudarshan2.8CS425 – Boris Glavic

Database

■ A database schema S consists of multiple relation schema

■ A database instance I for a schema S is a set of relation instances

● One relation for each relation schema in S

■ Information about an enterprise is broken up into parts

instructor

student

advisor

■ Bad design:

univ (instructor -ID, name, dept_name, salary, student_Id, ..)

results in

● repetition of information (e.g., two students have the same instructor)

● the need for many null values (e.g., represent an student with no
advisor)

■ Normalization theory (Chapter 7) deals with how to design good
relational schemas avoiding these problems

©Silberschatz, Korth and Sudarshan2.9CS425 – Boris Glavic

Bad Design Example Revisited

■ Example: Changing the budget of the ‘Physics’ department

● Updates to many rows!

4 Easy to break integrity

4 If we forget to update a row, then we have multiple budget

values for the physics department!

■ Example: Deleting all employees from the ‘Physics’ department

● How to avoid deleting the ‘Physics’ department?

● Dummy employee’s to store departments?

4 This is bad. E.g., counting the number of employees per
department becomes more involved

©Silberschatz, Korth and Sudarshan2.10CS425 – Boris Glavic

Keys

■ Let K Í R

■ K is a superkey of R if values for K are sufficient to identify a unique

tuple of each possible relation r(R)

● Example: {ID} and {ID,name} are both superkeys of instructor.

■ Superkey K is a candidate key if K is minimal (no subset of K is also a

superkey)

Example: {ID} is a candidate key for Instructor

■ One of the candidate keys is selected to be the primary key.

● which one? -> domain specific design choice

■ Foreign key constraint: Value in one relation must appear in another

● Referencing relation

● Referenced relation

©Silberschatz, Korth and Sudarshan2.11CS425 – Boris Glavic

Keys

■ Formally, a set of attributes K Í R is a superkey if for every instance r of
R holds that

● ∀t, t’ ∊ r: t.K = t’.K ⇒ t = t’

■ A superkey K is called a candidate key iff

● ∀K’ Í K: K’ is not a superkey

■ A foreign key constraint FK is quartuple (R, K, R’, K’) where R and R’

are relation schemata, K Í R, K’ is the primary key of R’, and |K| = |K’|

■ A foreign key holds over an instance {r, r’} for {R,R’} iff

● ∀t ∊ R:∃t’ ∊ R’: t.K = t’.K’

Th
eor
y

Wa
rnin
g

©Silberschatz, Korth and Sudarshan2.12CS425 – Boris Glavic

Schema Diagram for the University Database

ID
course_id
sec_id
semester
year
grade

ID
name
dept_name
tot_cred

building
room_no
capacity

s_id
i_id

ID
course_id
sec_id
semester
year

takes

section

classroom

teaches

prereq

course_id
prereq_id

course_id

title
dept_name
credits

course

student

dept_name

building
budget

department

instructor

ID
name
dept_name
salary

advisor

time_slot

time_slot_id
day
start_time
end_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

3

Modifies from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 2

©Silberschatz, Korth and Sudarshan2.14CS425 – Boris Glavic

Recap

■ Database Schema (or short schema)

● Set of relation schemata

4 List of attribute names

■ Database Instance (or short database)

● Set of relations instances

4 Set of tuples

– List of attribute values

■ Integrity Constraints

● Keys (Super-, Candidate-, Primary-)

4 For identifying tuples

● Foreign keys

4 For referencing tuples in other relations

©Silberschatz, Korth and Sudarshan2.15CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan2.16CS425 – Boris Glavic

Figure 2.01

©Silberschatz, Korth and Sudarshan2.17CS425 – Boris Glavic

Figure 2.02

©Silberschatz, Korth and Sudarshan2.18CS425 – Boris Glavic

Figure 2.03

4

©Silberschatz, Korth and Sudarshan2.19CS425 – Boris Glavic

Figure 2.04

©Silberschatz, Korth and Sudarshan2.20CS425 – Boris Glavic

Figure 2.05

©Silberschatz, Korth and Sudarshan2.21CS425 – Boris Glavic

Figure 2.06

©Silberschatz, Korth and Sudarshan2.22CS425 – Boris Glavic

Figure 2.07

©Silberschatz, Korth and Sudarshan2.23CS425 – Boris Glavic

Figure 2.10

©Silberschatz, Korth and Sudarshan2.24CS425 – Boris Glavic

Figure 2.11

5

©Silberschatz, Korth and Sudarshan2.25CS425 – Boris Glavic

Figure 2.12

©Silberschatz, Korth and Sudarshan2.26CS425 – Boris Glavic

Figure 2.13

1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2016

Boris Glavic

Chapter 3: Formal Relational Query

Languages

©Silberschatz, Korth and Sudarshan3.2CS425 – Boris Glavic

Chapter 3: Formal Relational Query Languages

■ Relational Algebra

■ Tuple Relational Calculus

■ Domain Relational Calculus

Textbook: Chapter 6

©Silberschatz, Korth and Sudarshan3.3CS425 – Boris Glavic

Relational Query Languages

■ Procedural vs non-procedural (declarative)

■ Pure languages:

● Relational algebra

● Tuple relational calculus

● Domain relational calculus

■ Expressive power of a query language

● What queries can be expressed in this language?

■ Relational algebra:

● Algebra of relations -> set of operators that take relations as input
and produce relations as output

● -> closed: the output of evaluating an expression in relational
algebra can be used as input to another relational algebra
expression

■ Now: First introduction to operators of the relational algebra

©Silberschatz, Korth and Sudarshan3.4CS425 – Boris Glavic

Relational Algebra

■ Procedural language

■ Six basic operators

● select: s

● project: Õ

● union: È

● set difference: –

● Cartesian product: x

● rename: r

■ The operators take one or two relations as inputs and produce a new
relation as a result.

● composable

©Silberschatz, Korth and Sudarshan3.5CS425 – Boris Glavic

Select Operation – Example

■ Relation r

¡ sA=B ^ D > 5 (r)

©Silberschatz, Korth and Sudarshan3.6CS425 – Boris Glavic

Select Operation

■ Notation: s p(r)

■ p is called the selection predicate

■ Defined as:

Where p is a formula in propositional calculus consisting of terms
connected by : Ù (and), Ú (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of: =, ¹, >, ³. <. £

■ Example of selection:

s dept_name= Physics (instructor)

Th
eor
y

Wa
rnin
g

σp(r) = {t | t ∈ r ∧ p(t)}

2

©Silberschatz, Korth and Sudarshan3.7CS425 – Boris Glavic

Project Operation – Example

■ Relation r:

■ ÕA,C (r)

©Silberschatz, Korth and Sudarshan3.8CS425 – Boris Glavic

Project Operation

■ Notation:

where A1, A2 are attribute names and r is a relation name.

■ The result is defined as the relation of k columns obtained by erasing
the columns that are not listed

■ Duplicate rows removed from result, since relations are sets

■ Let A be a subset of the attributes of relation r then:

■ Example: To eliminate the dept_name attribute of instructor

ÕID, name, salary (instructor)

)(
,,

2
,

1
r

k
AAA !

Õ

Th
eor
y

Wa
rnin
g

πA(r) = {t.A | t ∈ r}

©Silberschatz, Korth and Sudarshan3.9CS425 – Boris Glavic

Union Operation – Example

■ Relations r, s:

■ r È s:

©Silberschatz, Korth and Sudarshan3.10CS425 – Boris Glavic

Union Operation

■ Notation: r È s

■ Defined as:

■ For r È s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be union compatible (example: 2nd

column
of r deals with the same type of values as does the 2nd

column of s)

■ Example: to find all courses taught in the Fall 2009 semester, or in the

Spring 2010 semester, or in both

Õcourse_id (s semester= Fall Λ year=2009 (section)) È

Õcourse_id (s semester= Spring Λ year=2010 (section))

r ∪ s = {t | t ∈ r ∨ t ∈ s}

©Silberschatz, Korth and Sudarshan3.11CS425 – Boris Glavic

Set difference of two relations

■ Relations r, s:

■ r – s:

©Silberschatz, Korth and Sudarshan3.12CS425 – Boris Glavic

Set Difference Operation

■ Notation r – s

■ Defined as:

■ Set differences must be taken between compatible relations.

● r and s must have the same arity

● attribute domains of r and s must be compatible

■ Example: to find all courses taught in the Fall 2009 semester, but

not in the Spring 2010 semester

Õcourse_id (s semester= Fall Λ year=2009 (section)) −

Õcourse_id (s semester= Spring Λ year=2010 (section))

r � s = {t | t 2 r ^ t 62 s}

3

©Silberschatz, Korth and Sudarshan3.13CS425 – Boris Glavic

Cartesian-Product Operation – Example

■ Relations r, s:

■ r x s:

©Silberschatz, Korth and Sudarshan3.14CS425 – Boris Glavic

Cartesian-Product Operation

■ Notation r x s

■ Defined as:

■ Assume that attributes of r(R) and s(S) are
disjoint. (That is, R Ç S = Æ).

■ If attributes of r(R) and s(S) are not disjoint, then
renaming must be used.

r × s = {t, t0 | t ∈ r ∧ t
0
∈ s}

©Silberschatz, Korth and Sudarshan3.15CS425 – Boris Glavic

Composition of Operations
■ Can build expressions using multiple operations

■ Example: sA=C(r x s)

■ r x s

■ sA=C(r x s)

©Silberschatz, Korth and Sudarshan3.16CS425 – Boris Glavic

Rename Operation

■ Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.

■ Allows us to refer to a relation by more than one name.

■ Example:

r x (r)

returns the expression E under the name X

■ If a relational-algebra expression E has arity n, then

returns the result of expression E under the name X, and with the

attributes renamed to A1 , A2 , …., An .

ρ
x(A

1
,A
2
,...,A

n
)
(r)

ρX(r) = {t(X) | t ∈ r}

ρX(A)(r) = {t(X).A | t ∈ r}

©Silberschatz, Korth and Sudarshan3.17CS425 – Boris Glavic

Example Query

■ Find the largest salary in the university

● Step 1: find instructor salaries that are less than some other
instructor salary (i.e. not maximum)

– using a copy of instructor under a new name d

● Step 2: Find the largest salary

πinstructor.salary(σinstructor.salary<d.salary

(instructor × ρd(instructor)))

πsalary(instructor)−

πinstructor.salary(σinstructor.salary<d.salary

(instructor × ρd(instructor)))

©Silberschatz, Korth and Sudarshan3.18CS425 – Boris Glavic

Example Queries

■ Find the names of all instructors in the Physics department, along with the
course_id of all courses they have taught

● Query 1

● Query 2

πinstructor.ID,course id(σdept name=0Physics0(

σinstructor.ID=teaches.ID(instructor × teaches)))

πinstructor.ID,course id(σinstructor.ID=teaches.ID(

σdept name=0Physics0(instructor × teaches)))

4

©Silberschatz, Korth and Sudarshan3.19CS425 – Boris Glavic

Formal Definition (Syntax)

■ A basic expression in the relational algebra consists of either one of the

following:

● A relation in the database

● A constant relation: e.g., {(1),(2)}

■ Let E1 and E2 be relational-algebra expressions; the following are all

relational-algebra expressions:

● E1 È E2

● E1 – E2

● E1 x E2

● sp (E1), P is a predicate on attributes in E1

● Õs(E1), S is a list consisting of some of the attributes in E1

● r x (E1), x is the new name for the result of E1

Th
eor
y

Wa
rnin
g

©Silberschatz, Korth and Sudarshan3.20CS425 – Boris Glavic

Formal Definition (Semantics)

■ Let E be an relational algebra expression. We use [E](I) to denote the

evaluation of E over a database instance I

● For simplicity we will often drop I and []

■ The result of evaluating a simple relational algebra expression E over a

database is defined as

● Simple relation: [R](I) = R(I)

● Constant relation: [C](I) = C

Th
eor
y

Wa
rnin
g

©Silberschatz, Korth and Sudarshan3.21CS425 – Boris Glavic

Formal Definition (Semantics)

■ Let E1 and E2 be relational-algebra expressions.

Th
eor
y

Wa
rnin
g

[E1 [E2] = {t | t 2 [E1] _ t 2 [E2]}

[E1 � E2] = {t | t 2 [E1] ^ t 62 [E2]}

[E1 ⇥ E2] = {t, t0 | t 2 [E1] ^ t0 2 [E2]}

[σp(E1)] = {t | t 2 [E1] ^ p(t)}

[πA(E1)] = {t.A | t 2 [E1]}

[ρX(E1)] = {t(X) | t 2 [E1]}

©Silberschatz, Korth and Sudarshan3.22CS425 – Boris Glavic

Null Values

■ It is possible for tuples to have a null value, denoted by null, for some

of their attributes

■ null signifies an unknown value or that a value does not exist.

■ Examples:

● We register a new employee Peter, but the salary for this

employee has not yet been determined

4 Unknown value

● A government agency collects data about residents including their

SSN. Some residents are not allowed to work and, thus, do not

have an SSN

4 The attribute SSN is not applicable for such residents

©Silberschatz, Korth and Sudarshan3.23CS425 – Boris Glavic

Conditions with Null Values

■ Comparisons with null values return the special truth value: unknown

● If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5

■ Three-valued logic using the truth value unknown:

● OR: (unknown or true) = true,
(unknown or false) = unknown

(unknown or unknown) = unknown

● AND: (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown

● NOT: (not unknown) = unknown

● In SQL P is unknown evaluates to true if predicate P evaluates
to unknown

■ Result of selection predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.24CS425 – Boris Glavic

Arithmetics with Null Values

■ The result of any arithmetic expression involving null is null.

■ Aggregate functions simply ignore null values (as in SQL)

■ For duplicate elimination and grouping, null is treated like any other

value, and two nulls are assumed to be the same (as in SQL)

5

©Silberschatz, Korth and Sudarshan3.25CS425 – Boris Glavic

Additional Operations

We define additional operations that do not add any expressive power to
the relational algebra, but that simplify common queries.

■ Set intersection

■ Natural join

■ Assignment

■ Outer join

©Silberschatz, Korth and Sudarshan3.26CS425 – Boris Glavic

Set-Intersection Operation

■ Notation: r Ç s

■ Defined as:

■ Assume:

● r, s have the same arity

● attributes of r and s are compatible

■ Note: r Ç s = r – (r – s)

● That is adding intersection to the language does not make it more
expressive

r ∩ s = {t | t ∈ r ∧ t ∈ s}

©Silberschatz, Korth and Sudarshan3.27CS425 – Boris Glavic

Set-Intersection Operation – Example

■ Relation r, s:

■ r Ç s

©Silberschatz, Korth and Sudarshan3.28CS425 – Boris Glavic

■ Notation: r s

Natural-Join Operation

■ Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R È S obtained as follows:

● Consider each pair of tuples tr from r and ts from s.

● If tr and ts have the same value on each of the attributes in R Ç S, add
a tuple t to the result, where

4 t has the same value as tr on r

4 t has the same value as ts on s

■ Example:

R = (A, B, C, D)

S = (E, B, D)

● Result schema = (A, B, C, D, E)

● r s is defined as:

Õr.A, r.B, r.C, r.D, s.E (sr.B = s.B Ù r.D = s.D (r x s))

©Silberschatz, Korth and Sudarshan3.29CS425 – Boris Glavic

Natural-Join Operation (cont.)

■ Let r and s be relations on schemas R and S respectively.
Then, r s is defined as:

X = R ∩ S

S
0 = S −R

r ./ s = ⇡R,S0(�r.X=s.X(r × s))

©Silberschatz, Korth and Sudarshan3.30CS425 – Boris Glavic

Natural Join Example

■ Relations r, s:

■ r s

6

©Silberschatz, Korth and Sudarshan3.31CS425 – Boris Glavic

Natural Join and Theta Join

■ Find the names of all instructors in the Comp. Sci. department together with
the course titles of all the courses that the instructors teach

● Õ name, title (s dept_name= Comp. Sci. (instructor teaches
course))

■ Natural join is associative

● (instructor teaches) course is equivalent to
instructor (teaches course)

■ Natural join is commutative (we ignore attribute order)

● instruct teaches is equivalent to
teaches instructor

■ The theta join operation r q s is defined as

r ./θ s = �θ(r × s)

©Silberschatz, Korth and Sudarshan3.32CS425 – Boris Glavic

Assignment Operation

■ The assignment operation (¬) provides a convenient way to
express complex queries.

● Write query as a sequential program consisting of

4 a series of assignments

4 followed by an expression whose value is displayed as a
result of the query.

● Assignment must always be made to a temporary relation
variable.

E1 ← σsalary>40000(instructor)

E2 ← σsalary<10000(instructor)

E3 ← E1 ∪ E2

©Silberschatz, Korth and Sudarshan3.33CS425 – Boris Glavic

Outer Join

■ An extension of the join operation that avoids loss of information.

■ Computes the join and then adds tuples form one relation that does not
match tuples in the other relation to the result of the join.

■ Uses null values:

● null signifies that the value is unknown or does not exist

● All comparisons involving null are (roughly speaking) false by
definition.

4 We shall study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan3.34CS425 – Boris Glavic

Outer Join – Example

■ Relation instructor1

■ Relation teaches1

ID course_id

10101
12121
76766

CS-101
FIN-201
BIO-101

Comp. Sci.
Finance
Music

ID dept_name

10101
12121
15151

name

Srinivasan
Wu
Mozart

©Silberschatz, Korth and Sudarshan3.35CS425 – Boris Glavic

■ Left Outer Join

instructor teaches

Outer Join – Example

■ Join

instructor teaches

ID dept_name

10101
12121

Comp. Sci.
Finance

course_id

CS-101
FIN-201

name

Srinivasan
Wu

ID dept_name

10101
12121
15151

Comp. Sci.
Finance
Music

course_id

CS-101
FIN-201
null

name

Srinivasan
Wu
Mozart

©Silberschatz, Korth and Sudarshan3.36CS425 – Boris Glavic

Outer Join – Example

■ Full Outer Join

instructor teaches

■ Right Outer Join

instructor teaches

ID dept_name

10101
12121
76766

Comp. Sci.
Finance

null

course_id

CS-101
FIN-201
BIO-101

name

Srinivasan
Wu
null

ID dept_name

10101
12121
15151
76766

Comp. Sci.
Finance
Music
null

course_id

CS-101
FIN-201
null
BIO-101

name

Srinivasan
Wu
Mozart
null

7

©Silberschatz, Korth and Sudarshan3.37CS425 – Boris Glavic

Defining Outer Join using Join

■ Outer join can be expressed using basic operations

r ><s = (r ./ s) ∪ ((r −ΠR(r ./ s))× {(null, . . . , null)})

r>< s = (r ./ s) ∪ ({(null, . . . , null)}× (s−ΠS(r ./ s)))

r >< s = (r ./ s) ∪ ((r −ΠR(r ./ s))× {(null, . . . , null)})

∪ ({(null, . . . , null)}× (s−ΠS(r ./ s)))

©Silberschatz, Korth and Sudarshan3.38CS425 – Boris Glavic

Division Operator

■ Given relations r(R) and s(S), such that S Ì R, r ÷ s is the largest
relation t(R-S) such that

t x s Í r

● Alternatively, all tuples from r.(R-S) such that all their extensions on
R ∩ S with tuples from s exist in R

■ E.g. let r(ID, course_id) = ÕID, course_id (takes) and

s(course_id) = Õcourse_id (sdept_name= Biology (course)
then r ÷ s gives us students who have taken all courses in the Biology
department

■ Can write r ÷ s as

E1 ← ΠR−S(r)

E2 ← ΠR−S((E1 × s)−ΠR−S,S(r ./ s))

r ÷ s = E1 − E2

©Silberschatz, Korth and Sudarshan3.39CS425 – Boris Glavic

Division Operator Example

■ Return the name of all persons that read all newspapers

name newspaper

Peter
Bob
Alice
Alice

Times
Wall Street

newspaper

Times
Wall Street
Times
Wall Street

reads newspaper

©Silberschatz, Korth and Sudarshan3.40CS425 – Boris Glavic

Extended Relational-Algebra-Operations

■ Generalized Projection

■ Aggregate Functions

©Silberschatz, Korth and Sudarshan3.41CS425 – Boris Glavic

Generalized Projection

■ Extends the projection operation by allowing arithmetic functions to be
used in the projection list.

■ E is any relational-algebra expression

■ Each of F1, F2, …, Fn are arithmetic expressions and function calls

involving constants and attributes in the schema of E.

■ Given relation instructor(ID, name, dept_name, salary) where salary is
annual salary, get the same information but with monthly salary

ÕID, name, dept_name, salary/12 (instructor)

■ Adding functions increases expressive power!

● In standard relational algebra there is no way to change attribute
values

πF1,...,Fn
(E)

©Silberschatz, Korth and Sudarshan3.42CS425 – Boris Glavic

Aggregate Functions and Operations

■ Aggregation function takes a set of values and returns a single value
as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

■ Aggregate operation in relational algebra

E is any relational-algebra expression

● G1, G2 …, Gm is a list of attributes on which to group (can be empty)

● Each Fi is an aggregate function

● Each Ai is an attribute name

■ Note: Some books/articles use g instead of (Calligraphic G)

8

©Silberschatz, Korth and Sudarshan3.43CS425 – Boris Glavic

Aggregate Operation – Example

■ Relation r:

A B

a

a

b

b

a

b

b

b

C

7

7

3

10

■ sum(c) (r)
sum(c)

27

©Silberschatz, Korth and Sudarshan3.44CS425 – Boris Glavic

Aggregate Operation – Example

■ Find the average salary in each department

dept_name avg(salary) (instructor)

avg_salary

©Silberschatz, Korth and Sudarshan3.45CS425 – Boris Glavic

Aggregate Functions (Cont.)

■ What are the names for attributes in aggregation results?

● Need some convention!

4 E.g., use the expression as a name avg(salary)

● For convenience, we permit renaming as part of aggregate
operation

dept_name avg(salary) as avg_sal (instructor)

©Silberschatz, Korth and Sudarshan3.46CS425 – Boris Glavic

Modification of the Database

■ The content of the database may be modified using the following
operations:

● Deletion

● Insertion

● Updating

■ All these operations can be expressed using the assignment
operator

■ Example: Delete instructors with salary over $1,000,000

R ← R− (σsalary>1000000(R))

©Silberschatz, Korth and Sudarshan3.47CS425 – Boris Glavic

Restrictions for Modification

■ Consider a modification where R=(A,B) and S=(C)

■ This would change the schema of R!

● Should not be allowed

■ Requirements for modifications

● The name R on the left-hand side of the assignment operator
refers to an existing relation in the database schema

● The expression on the right-hand side of the assignment operator
should be union-compatible with R

R ← σC>5(S)

©Silberschatz, Korth and Sudarshan3.48CS425 – Boris Glavic

Tuple Relational Calculus

9

©Silberschatz, Korth and Sudarshan3.49CS425 – Boris Glavic

Tuple Relational Calculus

■ A nonprocedural query language, where each query is of the form

{t | P (t) }

■ It is the set of all tuples t such that predicate P is true for t

■ t is a tuple variable, t [A] denotes the value of tuple t on attribute A

■ t Î r denotes that tuple t is in relation r

■ P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan3.50CS425 – Boris Glavic

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., <, £, =, ¹, >, ³)

3. Set of logical connectives: and (Ù), or (v)‚ not (¬)

4. Implication (Þ): x Þ y, if x if true, then y is true

x Þ y º ¬x v y

5. Set of quantifiers:

� $ t Î r (Q (t)) º there exists a tuple in t in relation r
such that predicate Q (t) is true

� "t Î r (Q (t)) º Q is true for all tuples t in relation r

©Silberschatz, Korth and Sudarshan3.51CS425 – Boris Glavic

Example Queries

■ Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000

■ As in the previous query, but output only the ID attribute value

{t | $ s Î instructor (t [ID] = s [ID] Ù s [salary] > 80000)}

Notice that a relation on schema (ID) is implicitly defined by

the query, because

1) t is not bound to any relation by the predicate

2) we implicitly state that t has an ID attribute (t[ID] = s[ID])

{t | t Î instructor Ù t [salary] > 80000}

©Silberschatz, Korth and Sudarshan3.52CS425 – Boris Glavic

Example Queries

■ Find the names of all instructors whose department is in the Watson
building

{t | $s Î section (t [course_id] = s [course_id] Ù
s [semester] = Fall Ù s [year] = 2009)

v $u Î section (t [course_id] = u [course_id] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

{t | $s Î instructor (t [name] = s [name]
Ù $u Î department (u [dept_name] = s[dept_name]

Ù u [building] = Watson))}

©Silberschatz, Korth and Sudarshan3.53CS425 – Boris Glavic

Example Queries

{t | $s Î section (t [course_id] = s [course_id] Ù
s [semester] = Fall Ù s [year] = 2009)

Ù $u Î section (t [course_id] = u [course_id] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{t | $s Î section (t [course_id] = s [course_id] Ù
s [semester] = Fall Ù s [year] = 2009)

Ù ¬ $u Î section (t [course_id] = u [course_id] Ù
u [semester] = Spring Ù u [year] = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, but not in
the Spring 2010 semester

©Silberschatz, Korth and Sudarshan3.54CS425 – Boris Glavic

Safety of Expressions

■ It is possible to write tuple calculus expressions that generate infinite
relations.

■ For example, { t | ¬ t Î r } results in an infinite relation if the domain of
any attribute of relation r is infinite

■ To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

■ An expression {t | P (t)} in the tuple relational calculus is safe if every
component of t appears in one of the relations, tuples, or constants that
appear in P

● NOTE: this is more than just a syntax condition.

4 E.g. { t | t [A] = 5 Ú true } is not safe --- it defines an infinite set
with attribute values that do not appear in any relation or tuples
or constants in P.

10

©Silberschatz, Korth and Sudarshan3.55CS425 – Boris Glavic

Universal Quantification

■ Find all students who have taken all courses offered in the
Biology department

● {t | $ r Î student (t [ID] = r [ID]) Ù
(" u Î course (u [dept_name]= Biology Þ

$ s Î takes (t [ID] = s [ID] Ù
s [course_id] = u [course_id]))}

● Note that without the existential quantification on student,
the above query would be unsafe if the Biology department
has not offered any courses.

©Silberschatz, Korth and Sudarshan3.56CS425 – Boris Glavic

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan3.57CS425 – Boris Glavic

Domain Relational Calculus

■ A nonprocedural query language equivalent in power to the tuple
relational calculus

■ Each query is an expression of the form:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

● x1, x2, …, xn represent domain variables

4 Variables that range of attribute values

● P represents a formula similar to that of the predicate calculus

● Tuples can be formed using <>

4 E.g., <‘Einstein’,’Physics’>

©Silberschatz, Korth and Sudarshan3.58CS425 – Boris Glavic

Example Queries

■ Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000

● {< i, n, d, s> | < i, n, d, s> Î instructor Ù s > 80000}

■ As in the previous query, but output only the ID attribute value

● {< i> | < i, n, d, s> Î instructor Ù s > 80000}

■ Find the names of all instructors whose department is in the Watson
building

{< n > | $ i, d, s (< i, n, d, s > Î instructor

Ù $ b, a (< d, b, a> Î department Ù b = Watson))}

©Silberschatz, Korth and Sudarshan3.59CS425 – Boris Glavic

Example Queries

{<c> | $ a, s, y, b, r, t (<c, a, s, y, b, t > Î section Ù
s = Fall Ù y = 2009)

v $ a, s, y, b, r, t (<c, a, s, y, b, t > Î section] Ù
s = Spring Ù y = 2010)}

■ Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

This case can also be written as
{<c> | $ a, s, y, b, r, t (<c, a, s, y, b, t > Î section Ù

((s = Fall Ù y = 2009) v (s = Spring Ù y = 2010))}

■ Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{<c> | $ a, s, y, b, r, t (<c, a, s, y, b, t > Î section Ù
s = Fall Ù y = 2009)

Ù $ a, s, y, b, r, t (<c, a, s, y, b, t > Î section] Ù
s = Spring Ù y = 2010)}

©Silberschatz, Korth and Sudarshan3.60CS425 – Boris Glavic

Safety of Expressions

The expression:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values
from dom (P) (that is, the values appear either as constants in P or

in a tuple of a relation mentioned in P).

2. For every there exists subformula of the form $ x (P1(x)), the
subformula is true if and only if there is a value of x in dom (P1)
such that P1(x) is true.

3. For every for all subformula of the form "x (P1 (x)), the subformula is
true if and only if P1(x) is true for all values x from dom (P1).

11

©Silberschatz, Korth and Sudarshan3.61CS425 – Boris Glavic

Universal Quantification

■ Find all students who have taken all courses offered in the Biology
department

● {< i > | $ n, d, tc (< i, n, d, tc > Î student Ù

(" ci, ti, dn, cr (< ci, ti, dn, cr > Î course Ù dn = Biology
Þ $ si, se, y, g (<i, ci, si, se, y, g> Î takes))}

● Note that without the existential quantification on student, the
above query would be unsafe if the Biology department has not
offered any courses.

* Above query fixes bug in page 246, last query

©Silberschatz, Korth and Sudarshan3.62CS425 – Boris Glavic

Relationship between Relational Algebra

and Tuple (Domain) Calculus
■ Codd’s theorem

● Relational algebra and tuple calculus are equivalent in terms of
expressiveness

■ That means that every query expressible in relational algebra can also
be expressed in tuple calculus and vice versa

■ Since domain calculus is as expressive as tuple calculus the same
holds for the domain calculus

■ Note: Here relational algebra refers to the standard version (no
aggregation and projection with functions)

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 3

©Silberschatz, Korth and Sudarshan3.64CS425 – Boris Glavic

Recap
■ Query language

● Declarative

● Retrieve, combine, and analyze data from a database instance

■ Relational algebra

● Standard relational algebra:

4 Selection, projection, renaming, cross product, union, set
difference

● Null values

● Semantic sugar operators:

4 Intersection, joins, division,

● Extensions:

4 Aggregation, extended projection

■ Tuple Calculus

● safety

■ Domain Calculus

©Silberschatz, Korth and Sudarshan3.65CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Introduction

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan3.66CS425 – Boris Glavic

Figure 6.01

12

©Silberschatz, Korth and Sudarshan3.67CS425 – Boris Glavic

Figure 6.02

©Silberschatz, Korth and Sudarshan3.68CS425 – Boris Glavic

Figure 6.03

©Silberschatz, Korth and Sudarshan3.69CS425 – Boris Glavic

Figure 6.04

©Silberschatz, Korth and Sudarshan3.70CS425 – Boris Glavic

Figure 6.05

©Silberschatz, Korth and Sudarshan3.71CS425 – Boris Glavic

Figure 6.06

©Silberschatz, Korth and Sudarshan3.72CS425 – Boris Glavic

Figure 6.07

13

©Silberschatz, Korth and Sudarshan3.73CS425 – Boris Glavic

Figure 6.08

©Silberschatz, Korth and Sudarshan3.74CS425 – Boris Glavic

Figure 6.09

©Silberschatz, Korth and Sudarshan3.75CS425 – Boris Glavic

Figure 6.10

©Silberschatz, Korth and Sudarshan3.76CS425 – Boris Glavic

Figure 6.11

©Silberschatz, Korth and Sudarshan3.77CS425 – Boris Glavic

Figure 6.12

©Silberschatz, Korth and Sudarshan3.78CS425 – Boris Glavic

Figure 6.13

14

©Silberschatz, Korth and Sudarshan3.79CS425 – Boris Glavic

Figure 6.14

©Silberschatz, Korth and Sudarshan3.80CS425 – Boris Glavic

Figure 6.15

©Silberschatz, Korth and Sudarshan3.81CS425 – Boris Glavic

Figure 6.16

©Silberschatz, Korth and Sudarshan3.82CS425 – Boris Glavic

Figure 6.17

©Silberschatz, Korth and Sudarshan3.83CS425 – Boris Glavic

Figure 6.18

©Silberschatz, Korth and Sudarshan3.84CS425 – Boris Glavic

Figure 6.19

15

©Silberschatz, Korth and Sudarshan3.85CS425 – Boris Glavic

Figure 6.20

©Silberschatz, Korth and Sudarshan3.86CS425 – Boris Glavic

Figure 6.21

©Silberschatz, Korth and Sudarshan3.87CS425 – Boris Glavic

Deletion

■ A delete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.

■ Can delete only whole tuples; cannot delete values on only
particular attributes

■ A deletion is expressed in relational algebra by:

r ¬ r – E

where r is a relation and E is a relational algebra query.

©Silberschatz, Korth and Sudarshan3.88CS425 – Boris Glavic

Deletion Examples

■ Delete all account records in the Perryridge branch.

■ Delete all accounts at branches located in Needham.

r1 ¬ s branch_city = Needham (account branch)

r2 ¬ Õ account_number, branch_name, balance (r1)

r3 ¬ Õ customer_name, account_number (r2 depositor)

account ¬ account – r2

depositor ¬ depositor – r3

■ Delete all loan records with amount in the range of 0 to 50

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

account ¬ account – s branch_name = Perryridge (account)

©Silberschatz, Korth and Sudarshan3.89CS425 – Boris Glavic

Insertion

■ To insert data into a relation, we either:

● specify a tuple to be inserted

● write a query whose result is a set of tuples to be inserted

■ in relational algebra, an insertion is expressed by:

r ¬ r È E

where r is a relation and E is a relational algebra expression.

■ The insertion of a single tuple is expressed by letting E be a constant
relation containing one tuple.

©Silberschatz, Korth and Sudarshan3.90CS425 – Boris Glavic

Insertion Examples

■ Insert information in the database specifying that Smith has $1200 in
account A-973 at the Perryridge branch.

■ Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

account ¬ account È {(A-973 , Perryridge , 1200)}

depositor ¬ depositor È {(Smith , A-973)}

r1 ¬ (sbranch_name = Perryridge (borrower loan))

account ¬ account È Õloan_number, branch_name, 200 (r1)

depositor ¬ depositor È Õcustomer_name, loan_number (r1)

16

©Silberschatz, Korth and Sudarshan3.91CS425 – Boris Glavic

Updating

■ A mechanism to change a value in a tuple without charging all values in
the tuple

■ Use the generalized projection operator to do this task

■ Each Fi is either

● the I th attribute of r, if the I th attribute is not updated, or,

● if the attribute is to be updated Fi is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

)(
,,,, 21
rr

lFFF …
∏←

©Silberschatz, Korth and Sudarshan3.92CS425 – Boris Glavic

Update Examples

■ Make interest payments by increasing all balances by 5 percent.

■ Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account ¬ Õ account_number, branch_name, balance * 1.06 (s BAL > 10000 (account))
È Õ account_number, branch_name, balance * 1.05 (sBAL £ 10000

(account))

account ¬ Õ account_number, branch_name, balance * 1.05 (account)

©Silberschatz, Korth and Sudarshan3.93CS425 – Boris Glavic

Example Queries

■ Find the names of all customers who have a loan and an account at
bank.

Õcustomer_name (borrower) Ç Õcustomer_name (depositor)

■ Find the name of all customers who have a loan at the bank and the

loan amount

Õcustomer_name, loan_number, amount (borrower loan)

©Silberschatz, Korth and Sudarshan3.94CS425 – Boris Glavic

● Query 1

Õcustomer_name (sbranch_name = Downtown (depositor account)) Ç

Õcustomer_name (sbranch_name = Uptown (depositor account))

● Query 2

Õcustomer_name, branch_name (depositor account)

÷ rtemp(branch_name) ({(Downtown), (Uptown)})

Note that Query 2 uses a constant relation.

Example Queries

■ Find all customers who have an account from at least the
Downtown and the Uptown branches.

©Silberschatz, Korth and Sudarshan3.95CS425 – Boris Glavic

■ Find all customers who have an account at all branches located in

Brooklyn city.

Bank Example Queries

Õcustomer_name, branch_name (depositor account)

÷ Õbranch_name (sbranch_city = Brooklyn (branch))

1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

CS425 – Fall 2017

Boris Glavic

Chapter 4: Introduction to SQL

©Silberschatz, Korth and Sudarshan4.2CS425 – Boris Glavic

Chapter 4: Introduction to SQL

■ Overview of the SQL Query Language

■ Data Definition

■ Basic Query Structure

■ Additional Basic Operations

■ Set Operations

■ Null Values

■ Aggregate Functions

■ Nested Subqueries

■ Modification of the Database

Textbook: Chapter 3

©Silberschatz, Korth and Sudarshan4.3CS425 – Boris Glavic

History

■ IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

■ Renamed Structured Query Language (SQL)

■ ANSI and ISO standard SQL:

● SQL-86, SQL-89, SQL-92

● SQL:1999, SQL:2003, SQL:2008

■ Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

● Not all examples here may work one-to-one on your
particular system.

©Silberschatz, Korth and Sudarshan4.4CS425 – Boris Glavic

Data Definition Language

■ The schema for each relation.

■ The domain of values associated with each attribute.

■ Integrity constraints

■ And as we will see later, also other information such as

● The set of indices to be maintained for each relations.

● Security and authorization information for each relation.

● The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

©Silberschatz, Korth and Sudarshan4.5CS425 – Boris Glavic

Domain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.

■ varchar(n). Variable length character strings, with user-specified
maximum length n.

■ int. Integer (a finite subset of the integers that is machine-
dependent).

■ smallint. Small integer (a machine-dependent subset of the integer
domain type).

■ numeric(p,d). Fixed point number, with user-specified precision of
p digits, with n digits to the right of decimal point.

■ real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

■ float(n). Floating point number, with user-specified precision of at
least n digits.

■ More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan4.6CS425 – Boris Glavic

Create Table Construct

■ An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation

● each Ai is an attribute name in the schema of relation r

● Di is the data type of values in the domain of attribute Ai

■ Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

■ insert into instructor values (10211 , Smith , Biology , 66000);

■ insert into instructor values (10211 , null, Biology , 66000);

2

©Silberschatz, Korth and Sudarshan4.7CS425 – Boris Glavic

Integrity Constraints in Create Table

■ not null

■ primary key (A1, ..., An)

■ foreign key (Am, ..., An) references r

Example: Declare ID as the primary key for instructor

.
create table instructor (

ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),

primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan4.8CS425 – Boris Glavic

And a Few More Relation Definitions
■ create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department));

■ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

● Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

©Silberschatz, Korth and Sudarshan4.9CS425 – Boris Glavic

Even more

■ create table course (
course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department));

● Primary key declaration can be combined with attribute
declaration as shown above

©Silberschatz, Korth and Sudarshan4.10CS425 – Boris Glavic

Drop and Alter Table Constructs

■ drop table student

● Deletes the table and its contents

■ alter table

● alter table r add A D

4 where A is the name of the attribute to be added to
relation r and D is the domain of A.

4All tuples in the relation are assigned null as the value
for the new attribute.

● alter table r drop A

4where A is the name of an attribute of relation r

4Dropping of attributes not supported by many
databases

● And more …

©Silberschatz, Korth and Sudarshan4.11CS425 – Boris Glavic

Basic Query Structure

■ The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

■ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

● Ai represents an attribute

● Ri represents a relation

● P is a predicate.

■ The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan4.12CS425 – Boris Glavic

The select Clause

■ The select clause list the attributes desired in the result of a query

● corresponds to the projection operation of the relational algebra

■ Example: find the names of all instructors:

select name

from instructor

■ NOTE: SQL keywords are case insensitive (i.e., you may use upper- or
lower-case letters.)

● E.g. Name ≡ NAME ≡ name

● Some people use upper case wherever we use bold font.

3

©Silberschatz, Korth and Sudarshan4.13CS425 – Boris Glavic

The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.

■ To force the elimination of duplicates, insert the keyword distinct

after select.

■ Find the names of all departments with instructor, and remove
duplicates

select distinct dept_name
from instructor

■ The (redundant) keyword all specifies that duplicates not be
removed.

select all dept_name
from instructor

©Silberschatz, Korth and Sudarshan4.14CS425 – Boris Glavic

The select Clause (Cont.)

■ An asterisk in the select clause denotes all attributes

select *
from instructor

■ The select clause can contain arithmetic expressions involving
the operation, +, –, *, and /, and operating on constants or
attributes of tuples.

● Most systems also support additional functions

4 E.g., substring

● Most systems allow user defined functions (UDFs)

■ The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

©Silberschatz, Korth and Sudarshan4.15CS425 – Boris Glavic

The from Clause

■ The from clause lists the relations involved in the query

● Corresponds to the Cartesian product operation of the
relational algebra.

■ Find the Cartesian product instructor X teaches

select *
from instructor, teaches

● generates every possible instructor – teaches pair, with all
attributes from both relations

■ Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra)

©Silberschatz, Korth and Sudarshan4.16CS425 – Boris Glavic

The where Clause

■ The where clause specifies conditions that the result must
satisfy

● Corresponds to the selection predicate of the relational
algebra.

■ To find all instructors in Comp. Sci. dept with salary > 80000
select name

from instructor
where dept_name = Comp. Sci.' and salary > 80000

■ Comparison results can be combined using the logical
connectives and, or, and not.

■ Comparisons can be applied to results of arithmetic expressions.

■ SQL standard: any valid expression that returns a boolean result

● Vendor specific restrictions may apply!

©Silberschatz, Korth and Sudarshan4.17CS425 – Boris Glavic

Cartesian Product: instructor X teaches
instructor teaches

©Silberschatz, Korth and Sudarshan4.18CS425 – Boris Glavic

grade
section

course_id

title
dept_name
credits

course

time_slot

time_slot_id
day
start_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

grade
section

course_id

title
dept_name
credits

course

time_slot

time_slot_id
day
start_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

Joins

■ For all instructors who have taught some course, find their names
and the course ID of the courses they taught.

select name, course_id

from instructor, teaches
where instructor.ID = teaches.ID

■ Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, year, title

from section, course
where section.course_id = course.course_id and

dept_name = Comp. Sci.'

4

©Silberschatz, Korth and Sudarshan4.19CS425 – Boris Glavic

Try Writing Some Queries in SQL

■ Suggest queries to be written…..

©Silberschatz, Korth and Sudarshan4.20CS425 – Boris Glavic

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

■ The join operations are typically used as subquery
expressions in the from clause

©Silberschatz, Korth and Sudarshan4.21CS425 – Boris Glavic

Join operations – Example

■ Relation course

■ Relation prereq

■ Observe that

prereq information is missing for CS-315 and

course information is missing for CS-437
©Silberschatz, Korth and Sudarshan4.22CS425 – Boris Glavic

Natural Join

■ Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each common
column

● This is the natural join from relational algebra

■ select *

from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan4.23CS425 – Boris Glavic

Natural Join Example

■ List the names of instructors along with the course ID of the courses that
they taught.

● select name, course_id
from instructor, teaches

where instructor.ID = teaches.ID;

● select name, course_id
from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan4.24CS425 – Boris Glavic

Natural Join (Cont.)

■ Danger in natural join: beware of unrelated attributes with same name which
get equated incorrectly

■ List the names of instructors along with the the titles of courses that they
teach

● Incorrect version (makes course.dept_name = instructor.dept_name)

4 select name, title
from instructor natural join teaches natural join course;

● Correct version

4 select name, title
from instructor natural join teaches, course

where teaches.course_id = course.course_id;

● Another correct version

4 select name, title
from (instructor natural join teaches)

join course using(course_id);

5

©Silberschatz, Korth and Sudarshan4.25CS425 – Boris Glavic

Outer Join

■ An extension of the join operation that avoids loss of
information.

■ Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

■ Uses null values.

©Silberschatz, Korth and Sudarshan4.26CS425 – Boris Glavic

Left Outer Join

■ course natural left outer join prereq

©Silberschatz, Korth and Sudarshan4.27CS425 – Boris Glavic

Right Outer Join

■ course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.28CS425 – Boris Glavic

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ These additional operations are typically used as subquery
expressions in the from clause

■ Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

■ Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

©Silberschatz, Korth and Sudarshan4.29CS425 – Boris Glavic

Full Outer Join

■ course natural full outer join prereq

©Silberschatz, Korth and Sudarshan4.30CS425 – Boris Glavic

Joined Relations – Examples

■ course inner join prereq on
course.course_id = prereq.course_id

■ What is the difference between the above, and a natural join?

■ course left outer join prereq on

course.course_id = prereq.course_id

6

©Silberschatz, Korth and Sudarshan4.31CS425 – Boris Glavic

Joined Relations – Examples

■ course natural right outer join prereq

■ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.32CS425 – Boris Glavic

The Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

■ E.g.

● select ID, name, salary/12 as monthly_salary

from instructor

■ Find the names of all instructors who have a higher salary than
some instructor in Comp. Sci .

● select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = Comp. Sci.

■ Keyword as is optional and may be omitted
instructor as T ≡ instructor T

● Keyword as must be omitted in Oracle

©Silberschatz, Korth and Sudarshan4.33CS425 – Boris Glavic

String Operations

■ SQL includes a string-matching operator for comparisons on
character strings. The operator like uses patterns that are
described using two special characters:

● percent (%). The % character matches any substring.

● underscore (_). The _ character matches any character.

■ Find the names of all instructors whose name includes the substring
dar .

select name

from instructor
where name like '%dar%'

■ Match the string 100 %

like 100 \%' escape '\'

©Silberschatz, Korth and Sudarshan4.34CS425 – Boris Glavic

String Operations (Cont.)

■ Patters are case sensitive.

■ Pattern matching examples:

● Intro% matches any string beginning with Intro .

● %Comp% matches any string containing Comp as a substring.

● _ _ _ matches any string of exactly three characters.

● _ _ _ % matches any string of at least three characters.

■ SQL supports a variety of string operations such as

● concatenation (using ||)

● converting from upper to lower case (and vice versa)

● finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.35CS425 – Boris Glavic

Case Construct

■ Like case, if, and ? Operators in programming languages

case

when c1 then e1

when c2 then e2

…

[else en]

end

■ Each ci is a condition

■ Each e1 is an expression

■ Returns the first ei for which ci evaluates to true

● If none of the ci is true, then return en (else)

4 If there is no else return null

©Silberschatz, Korth and Sudarshan4.36CS425 – Boris Glavic

Case Construct Example

■ Like case, if, and ? Operators in programming languages

select

name,

case

when salary > 1000000 then ‘premium’

else ‘standard’

end as customer_group

from customer

7

©Silberschatz, Korth and Sudarshan4.37CS425 – Boris Glavic

Ordering the Display of Tuples

■ List in alphabetic order the names of all instructors
select distinct name

from instructor

order by name

■ We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.

● Example: order by name desc

■ Can sort on multiple attributes

● Example: order by dept_name, name

■ Order is not expressible in the relational model!

©Silberschatz, Korth and Sudarshan4.38CS425 – Boris Glavic

Where Clause Predicates

■ SQL includes a between comparison operator

■ Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)

● select name
from instructor

where salary between 90000 and 100000

■ Tuple comparison

● select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, Biology);

©Silberschatz, Korth and Sudarshan4.39CS425 – Boris Glavic

Set Operations

■ Find courses that ran in Fall 2009 or in Spring 2010

■ Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = Fall and year = 2009)
union
(select course_id from section where sem = Spring and year = 2010)

■ Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = Fall and year = 2009)
intersect
(select course_id from section where sem = Spring and year = 2010)

(select course_id from section where sem = Fall and year = 2009)
except
(select course_id from section where sem = Spring and year = 2010)

©Silberschatz, Korth and Sudarshan4.40CS425 – Boris Glavic

Set Operations

■ Set operations union, intersect, and except

● Each of the above operations automatically eliminates
duplicates

■ To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
occurs:

● m + n times in r union all s

● min(m,n) times in r intersect all s

● max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan4.41CS425 – Boris Glavic

Null Values

■ It is possible for tuples to have a null value, denoted by null, for
some of their attributes

■ null signifies an unknown value or that a value does not exist.

■ The result of any arithmetic expression and comparisons
involving null evaluate to null

● Example: 5 + null returns null

null > 5 returns null

null = null returns null

■ The predicate is null can be used to check for null values.

● Example: Find all instructors whose salary is null.

select name
from instructor

where salary is null

©Silberschatz, Korth and Sudarshan4.42CS425 – Boris Glavic

Null Values and Three Valued Logic

■ Any comparison with null returns null

● Example: 5 < null or null <> null or null = null

■ Three-valued logic using the truth value null:

● OR: (null or true) = true,
(null or false) = null

(null or null) = null

● AND: (true and null) = null,

(false and null) = false,

(null and null) = null

● NOT: (not null) = null

● P is null evaluates to true if predicate P evaluates to null

■ Result of where clause predicate is treated as false if it
evaluates to null

8

©Silberschatz, Korth and Sudarshan4.43CS425 – Boris Glavic

Aggregate Functions

■ These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

■ Most DBMS support user defined aggregation functions

©Silberschatz, Korth and Sudarshan4.44CS425 – Boris Glavic

Aggregate Functions (Cont.)

■ Find the average salary of instructors in the Computer Science
department

● select avg (salary)
from instructor
where dept_name= Comp. Sci. ;

■ Find the total number of instructors who teach a course in the
Spring 2010 semester

● select count (distinct ID)
from teaches

where semester = Spring and year = 2010

■ Find the number of tuples in the course relation

● select count (*)
from course;

©Silberschatz, Korth and Sudarshan4.45CS425 – Boris Glavic

Aggregate Functions – Group By

■ Find the average salary of instructors in each department

● select dept_name, avg (salary)
from instructor

group by dept_name;

● Note: departments with no instructor will not appear in result

©Silberschatz, Korth and Sudarshan4.46CS425 – Boris Glavic

Aggregation (Cont.)

■ Attributes in select clause outside of aggregate functions must
appear in group by list

● /* erroneous query */
select dept_name, ID, avg (salary)
from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan4.47CS425 – Boris Glavic

Aggregate Functions – Having Clause

■ Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where

clause are applied before forming groups

select dept_name, avg (salary)
from instructor

group by dept_name
having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan4.48CS425 – Boris Glavic

Null Values and Aggregates

■ Total all salaries

select sum (salary)
from instructor

● Above statement ignores null amounts

● Result is null if there is no non-null amount

■ All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

■ What if collection has only null values?

● count returns 0

● all other aggregates return null

9

©Silberschatz, Korth and Sudarshan4.49CS425 – Boris Glavic

Empty Relations and Aggregates

■ What if the input relation is empty

■ Conventions:

● sum: returns null

● avg: returns null

● min: returns null

● max: returns null

● count: returns 0

©Silberschatz, Korth and Sudarshan4.50CS425 – Boris Glavic

Duplicates

■ In relations with duplicates, SQL can define how many copies
of tuples appear in the result.

■ Multiset (bag semantics) versions of some of the relational
algebra operators – given multiset relations r1 and r2:

1. sq (r1): If there are c1 copies of tuple t1 in r1, and t1

satisfies selections sq,, then there are c1 copies of t1 in sq
(r1).

2. PA (r): For each copy of tuple t1 in r1, there is a copy of
tuple PA (t1) in PA (r1) where PA (t1) denotes the
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1

x r2

©Silberschatz, Korth and Sudarshan4.51CS425 – Boris Glavic

Multiset Relational Algebra

■ Pure relational algebra operates on set-semantics (no duplicates
allowed)

● e.g. after projection

■ Multiset (bag-semantics) relational algebra retains duplicates, to
match SQL semantics

● SQL duplicate retention was initially for efficiency, but is now a
feature

■ Multiset relational algebra defined as follows

● selection: has as many duplicates of a tuple as in the input, if the
tuple satisfies the selection

● projection: one tuple per input tuple, even if it is a duplicate

● cross product: If there are m copies of t1 in r, and n copies of
t2 in s, there are m x n copies of t1.t2 in r x s

● Other operators similarly defined

4 E.g. union: m + n copies, intersection: min(m, n) copies
difference: max(0, m – n) copies

©Silberschatz, Korth and Sudarshan4.52CS425 – Boris Glavic

Duplicates (Cont.)

■ Example: Suppose multiset relations r1 (A, B) and r2 (C)
are as follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

■ Then PB(r1) would be {(a), (a)}, while PB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

■ SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((
21,,, 21 mPAAA

rrr
n

×××∏ …
…

σ

©Silberschatz, Korth and Sudarshan4.53CS425 – Boris Glavic

SQL and Relational Algebra

■ select A1, A2, .. An

from r1, r2, …, rm

where P

is equivalent to the following expression in multiset relational algebra

Õ A1, .., An (s P (r1 x r2 x .. x rm))

■ select A1, A2, sum(A3)

from r1, r2, …, rm

where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

A1, A2 sum(A3) (s P (r1 x r2 x .. x rm)))

©Silberschatz, Korth and Sudarshan4.54CS425 – Boris Glavic

SQL and Relational Algebra

■ More generally, the non-aggregated attributes in the select clause
may be a subset of the group by attributes, in which case the
equivalence is as follows:

select A1, sum(A3) AS sumA3

from r1, r2, …, rm

where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

Õ A1,sumA3(A1,A2 sum(A3) as sumA3(s P (r1 x r2 x .. x rm)))

10

©Silberschatz, Korth and Sudarshan4.55CS425 – Boris Glavic

Subqueries in the From Clause

■ SQL allows a subquery expression to be used in the from clause

■ Find the average instructors salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)
where avg_salary > 42000;

■ Note that we do not need to use the having clause

■ Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)
from instructor

group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan4.56CS425 – Boris Glavic

Nested Subqueries

■ SQL provides a mechanism for the nesting of subqueries.

■ A subquery is a select-from-where expression that is nested
within another query.

■ A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan4.57CS425 – Boris Glavic

Example Query

■ Find courses offered in Fall 2009 and in Spring 2010

■ Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section

where semester = Fall and year= 2009 and

course_id in (select course_id
from section

where semester = Spring and year= 2010);

select distinct course_id
from section

where semester = Fall and year= 2009 and

course_id not in (select course_id
from section

where semester = Spring and year=
2010);

©Silberschatz, Korth and Sudarshan4.58CS425 – Boris Glavic

Example Query

■ Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with ID 10101

■ Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches

where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan4.59CS425 – Boris Glavic

Quantification

■ Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

■ Same query using > some clause

select name
from instructor

where salary > some (select salary

from instructor

where dept_name = Biology);

select distinct T.name
from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = Biology ;

©Silberschatz, Korth and Sudarshan4.60CS425 – Boris Glavic

Definition of Some Clause

■ F <comp> some r Û $ t Î r such that (F <comp> t)
Where <comp> can be: <, £, >, =, ¹

0

5

6

(5 < some) = true

0
5

0

) = false

5

0

5(5 ¹ some) = true (since 0 ¹ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) º in

However, (¹ some) º not in

11

©Silberschatz, Korth and Sudarshan4.61CS425 – Boris Glavic

Example Query

■ Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor

where salary > all (select salary

from instructor

where dept_name = Biology);

©Silberschatz, Korth and Sudarshan4.62CS425 – Boris Glavic

Definition of all Clause

■ F <comp> all r Û " t Î r (F <comp> t)

0

5

6

(5 < all) = false

6
10

4

) = true

5

4

6(5 ¹ all) = true (since 5 ¹ 4 and 5 ¹ 6)

(5 < all

) = false(5 = all

(¹ all) º not in

However, (= all) º in

©Silberschatz, Korth and Sudarshan4.63CS425 – Boris Glavic

Test for Empty Relations

■ The exists construct returns the value true if the argument
subquery returns a nonempty result.

■ exists r Û r ¹ Ø

■ not exists r Û r = Ø

©Silberschatz, Korth and Sudarshan4.64CS425 – Boris Glavic

Correlation Variables

■ Yet another way of specifying the query Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester

select course_id
from section as S

where semester = Fall and year= 2009 and

exists (select *
from section as T

where semester = Spring and year= 2010
and S.course_id= T.course_id);

■ Correlated subquery

■ Correlation name or correlation variable

©Silberschatz, Korth and Sudarshan4.65CS425 – Boris Glavic

Not Exists

■ Find all students who have taken all courses offered in the
Biology department.

select distinct S.ID, S.name
from student as S

where not exists ((select course_id

from course

where dept_name = Biology)
except
(select T.course_id
from takes as T

where S.ID = T.ID));

■ Note that X – Y = Ø Û X Í Y

■ Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan4.66CS425 – Boris Glavic

Test for Absence of Duplicate Tuples

■ The unique construct tests whether a subquery has any duplicate tuples
in its result.

● (Evaluates to true on an empty set)

■ Find all courses that were offered at most once in 2009

select T.course_id
from course as T

where unique (select R.course_id
from section as R

where T.course_id= R.course_id
and R.year = 2009);

12

©Silberschatz, Korth and Sudarshan4.67CS425 – Boris Glavic

Correlated Subqueries in the From

Clause
■ And yet another way to write it: lateral clause

select name, salary, avg_salary

from instructor I1,
lateral (select avg(salary) as avg_salary

from instructor I2

where I2.dept_name= I1.dept_name);

■ Lateral clause permits later part of the from clause (after the lateral

keyword) to access correlation variables from the earlier part.

■ Note: lateral is part of the SQL standard, but is not supported on many
database systems; some databases such as SQL Server offer
alternative syntax

©Silberschatz, Korth and Sudarshan4.68CS425 – Boris Glavic

With Clause

■ The with clause provides a way of defining a temporary view
whose definition is available only to the query in which the with

clause occurs.

■ Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)
from department)

select budget

from department, max_budget
where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan4.69CS425 – Boris Glavic

Complex Queries using With Clause

■ With clause is very useful for writing complex queries

■ Supported by most database systems, with minor syntax
variations

■ Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor

group by dept_name),
dept_total_avg(value) as

(select avg(value)
from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value >= dept_total_avg.value;

©Silberschatz, Korth and Sudarshan4.70CS425 – Boris Glavic

Scalar Subquery

■ Scalar subquery is one which is used where a single value is expected

■ E.g. select dept_name,
(select count(*)

from instructor

where department.dept_name = instructor.dept_name)
as num_instructors

from department;

■ E.g. select name
from instructor
where salary * 10 >

(select budget from department
where department.dept_name = instructor.dept_name)

■ Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan4.71CS425 – Boris Glavic

Query Features Recap - Syntax

■ An SQL query is either a Select-from-where block or a set operation

■ An SQL query block is structured like this:

SELECT [DISTINCT] select_list

[FROM from_list]

[WHERE where_condition]

[GROUP BY group_by_list]

[HAVING having_condition]

[ORDER BY order_by_list]

■ Set operations

[Query Block] set_op [Query Block]

set_op: [ALL] UNION | INTERSECT | EXCEPT

©Silberschatz, Korth and Sudarshan4.72CS425 – Boris Glavic

Query Features Recap - Syntax

■ Almost all clauses are optional

■ Examples:

● SELECT * FROM r;

● SELECT 1;

4 Convention: returns single tuple

● SELECT ‘ok’ FROM accounts HAVING sum(balance) = 0;

● SELECT 1 GROUP BY 1;

● SELECT 1 HAVING true;

● Let r be a relation with two attributes a and b

4 SELECT a,b FROM r

WHERE a IN (SELECT a FROM r) AND b IN (SELECT b FROM r)

GROUP BY a,b HAVING count(*) > 0;

■ Note:

● Not all systems support all of this “non-sense”

13

©Silberschatz, Korth and Sudarshan4.73CS425 – Boris Glavic

Syntax - SELECT

■ SELECT [DISTINCT [ON (distinct_list)]] select_list

■ select_list

● List of projection expressions

4 [expr] [AS name]

● expr

4 Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

■ distinct_list

● List of expressions

■ Examples:

● SELECT DISTINCT ON (a % 2) a FROM r;

● SELECT substring(a, 1,2) AS x FROM r;

● SELECT CASE WHEN a = 2 THEN a ELSE null END AS b FROM r;

● SELECT a = b AS is_a_equal_to_b FROM r;

©Silberschatz, Korth and Sudarshan4.74CS425 – Boris Glavic

Syntax - FROM

■ FROM from_list

■ from_list

● List of from clause expressions

4 subquery | relation | constant_relation | join_expr [alias]

● subquery

4 Any valid SQL query – alias is not optional

● relation

4 A relation in the database

● constant_relation

4 (VALUES tuples) – alias is not optional

● join_expr

4 joins between from_clause entries

● alias

4 [AS] b [(attribute_name_list)]

©Silberschatz, Korth and Sudarshan4.75CS425 – Boris Glavic

Syntax – FROM (cont.)

■ Examples (relation r with attributes a and b):

● SELECT * FROM r;

● SELECT * FROM r AS g(v,w);

● SELECT * FROM r x;

● SELECT * FROM (VALUES (1,2), (3,1)) AS s(u,v);

● SELECT * FROM r NATURAL JOIN s, t;

● SELECT * FROM ((r JOIN s ON (r.a = s.c)) NATURAL JOIN
(SELECT * FROM t) AS new);

● SELECT * FROM (SELECT * FROM r) AS r;

● SELECT * FROM (SELECT * FROM (SELECT * FROM r) AS r) AS r;

©Silberschatz, Korth and Sudarshan4.76CS425 – Boris Glavic

Syntax - WHERE

■ WHERE where_condition

■ where_condition: A boolean expression over

● Attributes

● Constants: e.g., true, 1, 0.5, ‘hello’

● Comparison operators: =, <, >, IS DISTINCT FROM, IS NULL, …

● Arithmetic operators: +,-,/,%

● Function calls

● Nested subquery expressions

■ Examples

● SELECT * FROM r WHERE a = 2;

● SELECT * FROM r WHERE true OR false;

● SELECT * FROM r WHERE NOT(a = 2 OR a = 3);

● SELECT * FROM r WHERE a IS DISTINCT FROM b;

● SELECT * FROM r WHERE a < ANY (SELECT c FROM s);

● SELECT * FROM r WHERE a = (SELECT count(*) FROM s);

©Silberschatz, Korth and Sudarshan4.77CS425 – Boris Glavic

Syntax – GROUP BY

■ GROUP BY group_by_list

■ group_by_list

● List of expressions

4 Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

■ Examples:

● SELECT sum(a), b FROM r GROUP BY b;

● SELECT sum(a), b, c FROM r GROUP BY b, c;

● SELECT sum(a), b/2 FROM r GROUP BY b/2;

● SELECT sum(a), b FROM r GROUP BY b > 5;

4 Incorrect, cannot select b, because it is not an expression in the
group by clause

● SELECT sum(a), b FROM r GROUP BY b IN (SELECT c FROM s);

©Silberschatz, Korth and Sudarshan4.78CS425 – Boris Glavic

Syntax – HAVING

■ HAVING having_condition

■ having_condition

● Like where_condition except that expressions over attributes have
either to be in the GROUP BY clause or are aggregated

■ Examples:

● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) > 10;

● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) + 5 > 10;

● SELECT sum(a), b FROM r GROUP BY b HAVING true;

● SELECT sum(a), b FROM r GROUP BY b HAVING count(*) = 50;

● SELECT b FROM r GROUP BY b HAVING sum(a) > 10;

14

©Silberschatz, Korth and Sudarshan4.79CS425 – Boris Glavic

Syntax – ORDER BY

■ ORDER BY order_by_list

■ order_by_list

● Like select_list minus renaming

● Optional [ASC | DESC] for each item

■ Examples:

● SELECT * FROM r ORDER BY a;

● SELECT * FROM r ORDER BY b, a;

● SELECT * FROM r ORDER BY a * 2;

● SELECT * FROM r ORDER BY a * 2, a;

● SELECT * FROM r ORDER BY a + (SELECT count(*) FROM s);

©Silberschatz, Korth and Sudarshan4.80CS425 – Boris Glavic

Query Semantics

■ Evaluation Algorithm (you can do it manually – sort of)

1. Compute FROM clause

1. Compute cross product of all items in the FROM clause

4 Relations: nothing to do

4 Subqueries: use this algorithm to recursively compute the result of
subqueries first

4 Join expressions: compute the join

2. Compute WHERE clause

1. For each tuple in the result of 1. evaluate the WHERE clause
condition

3. Compute GROUP BY clause

1. Group the results of step 2. on the GROUP BY expressions

4. Compute HAVING clause

1. For each group (if any) evaluate the HAVING condition

©Silberschatz, Korth and Sudarshan4.81CS425 – Boris Glavic

Query Semantics (Cont.)

5. Compute SELECT clause

5. Project each result tuple from step 4 on the SELECT expressions

6. Compute ORDER BY clause

5. Order the result of step 5 on the ORDER BY expressions

■ If the WHERE, SELECT, GROUP BY, HAVING, ORDER BY clauses
have any nested subqueries

● For each tuple t in the result of the FROM clause

4 Substitute the correlated attributes with values from t

4 Evaluate the resulting query

4 Use the result to evaluate the expression in the clause the
subquery occurs in

©Silberschatz, Korth and Sudarshan4.82CS425 – Boris Glavic

Query Semantics (Cont.)

■ For LATERAL subqueries in the FROM clause

● The FROM clause is evaluated from left to right as follows:

1. Evaluate the crossproduct up to the next LATERAL subquery

2. substitute values from the result of the crossproduct into the
LATERAL query

3. Evaluate the resulting query

4. Compute the crossproduct of the current result with the result of
the LATERAL subquery

5. If there are more items in the FROM clause continue with 1)

©Silberschatz, Korth and Sudarshan4.83CS425 – Boris Glavic

Query Semantics (Cont.)

■ Equivalent relational algebra expression

● ORDER BY has no equivalent, because relations are unordered

● Nested subqueries: need to extend algebra (not covered here)

■ Each query block is equivalent to

■ Where Fi is the translation of the ith FROM clause item

■ Note: we leave out the arguments

π(σ(G(π(σ(F1 × . . . Fn))))

©Silberschatz, Korth and Sudarshan4.84CS425 – Boris Glavic

Modification of the Database

■ Deletion of tuples from a given relation

■ Insertion of new tuples into a given relation

■ Updating values in some tuples in a given relation

15

©Silberschatz, Korth and Sudarshan4.85CS425 – Boris Glavic

Modification of the Database – Deletion

■ Delete all instructors

delete from instructor

■ Delete all instructors from the Finance department
delete from instructor

where dept_name= Finance ;

■ Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name

from department

where building = Watson);

©Silberschatz, Korth and Sudarshan4.86CS425 – Boris Glavic

Deletion (Cont.)

■ Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary < (select avg (salary) from instructor);

● Problem: as we delete tuples from instructor, the average salary
changes

● Solution used in SQL:

1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

©Silberschatz, Korth and Sudarshan4.87CS425 – Boris Glavic

Modification of the Database – Insertion

■ Add a new tuple to course

insert into course
values (CS-437 , Database Systems , Comp. Sci. , 4);

■ or equivalently
insert into course (course_id, title, dept_name, credits)

values (CS-437 , Database Systems , Comp. Sci. , 4);

■ Add a new tuple to student with tot_creds set to null

insert into student

values (3003 , Green , Finance , null);

©Silberschatz, Korth and Sudarshan4.88CS425 – Boris Glavic

Insertion (Cont.)

■ Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

■ The select from where statement is evaluated fully before any of
its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems, if table1 did not have any primary key

defined.

©Silberschatz, Korth and Sudarshan4.89CS425 – Boris Glavic

Modification of the Database – Updates

■ Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise

● Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

● The order is important

● Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan4.90CS425 – Boris Glavic

Case Statement for Conditional Updates

■ Same query as before but with case statement

update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03
end

16

©Silberschatz, Korth and Sudarshan4.91CS425 – Boris Glavic

Updates with Scalar Subqueries

■ Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)
from takes natural join course
where S.ID= takes.ID and

takes.grade <> F and

takes.grade is not null);

■ Sets tot_creds to null for students who have not taken any course

■ Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

■ Or COALESCE(sum(credits),0)

● COALESCE returns first non-null arguments

©Silberschatz, Korth and Sudarshan4.92CS425 – Boris Glavic

Recap

■ SQL queries

● Clauses: SELECT, FROM , WHERE, GROUP BY, HAVING,
ORDER BY

● Nested subqueries

● Equivalence with relational algebra

■ SQL update, inserts, deletes

● Semantics of referencing updated relation in WHERE

■ SQL DDL

● Table definition: CREATE TABLE

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

End of Chapter 4

©Silberschatz, Korth and Sudarshan4.94CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Intermediate

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan4.95CS425 – Boris Glavic

Advanced SQL Features**

■ Create a table with the same schema as an existing table:

create table temp_account like account

©Silberschatz, Korth and Sudarshan4.96CS425 – Boris Glavic

Figure 3.02

17

©Silberschatz, Korth and Sudarshan4.97CS425 – Boris Glavic

Figure 3.03

©Silberschatz, Korth and Sudarshan4.98CS425 – Boris Glavic

Figure 3.04

©Silberschatz, Korth and Sudarshan4.99CS425 – Boris Glavic

Figure 3.05

©Silberschatz, Korth and Sudarshan4.100CS425 – Boris Glavic

Figure 3.07

©Silberschatz, Korth and Sudarshan4.101CS425 – Boris Glavic

Figure 3.08

©Silberschatz, Korth and Sudarshan4.102CS425 – Boris Glavic

Figure 3.09

18

©Silberschatz, Korth and Sudarshan4.103CS425 – Boris Glavic

Figure 3.10

©Silberschatz, Korth and Sudarshan4.104CS425 – Boris Glavic

Figure 3.11

©Silberschatz, Korth and Sudarshan4.105CS425 – Boris Glavic

Figure 3.12

©Silberschatz, Korth and Sudarshan4.106CS425 – Boris Glavic

Figure 3.13

©Silberschatz, Korth and Sudarshan4.107CS425 – Boris Glavic

Figure 3.16

©Silberschatz, Korth and Sudarshan4.108CS425 – Boris Glavic

Figure 3.17

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2017

Boris Glavic

Chapter 5: Intermediate SQL

©Silberschatz, Korth and Sudarshan5.2CS425 – Boris Glavic

Chapter 5: Intermediate SQL

■ Views

■ Transactions

■ Integrity Constraints

■ SQL Data Types and Schemas

■ Access Control

Textbook: Chapter 4

©Silberschatz, Korth and Sudarshan5.3CS425 – Boris Glavic

Views

■ In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

■ Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name

from instructor

■ A view provides a mechanism to hide certain data from the
view of certain users.

■ Any relation that is not of the conceptual model but is made
visible to a user as a virtual relation is called a view.

©Silberschatz, Korth and Sudarshan5.4CS425 – Boris Glavic

View Definition

■ A view is defined using the create view statement which has
the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The
view name is represented by v.

■ Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

■ View definition is not the same as creating a new relation by
evaluating the query expression

● Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan5.5CS425 – Boris Glavic

Example Views

■ A view of instructors without their salary

create view faculty as

select ID, name, dept_name
from instructor

■ Find all instructors in the Biology department
select name

from faculty

where dept_name = Biology

■ Create a view of department salary totals
create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)
from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan5.6CS425 – Boris Glavic

Views Defined Using Other Views

■ create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = Physics
and section.semester = Fall
and section.year = 2009 ;

■ create view physics_fall_2009_watson as

select course_id, room_number

from physics_fall_2009
where building= Watson ;

2

©Silberschatz, Korth and Sudarshan5.7CS425 – Boris Glavic

View Expansion

■ Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number

from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = Physics
and section.semester = Fall
and section.year = 2009)

where building= Watson ;

©Silberschatz, Korth and Sudarshan5.8CS425 – Boris Glavic

Views Defined Using Other Views

■ One view may be used in the expression defining another view

■ A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1

■ A view relation v1 is said to depend on view relation v2 if either
v1 depends directly to v2 or there is a path of dependencies
from v1 to v2

■ A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan5.9CS425 – Boris Glavic

View Expansion

■ A way to define the meaning of views defined in terms of other
views.

■ Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

■ View expansion of an expression repeats the following
replacement step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

■ As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan5.10CS425 – Boris Glavic

Update of a View

■ Add a new tuple to faculty view which we defined earlier

insert into faculty values (30765 , Green , Music);

This insertion must be represented by the insertion of the tuple

(30765 , Green , Music , null)

into the instructor relation

©Silberschatz, Korth and Sudarshan5.11CS425 – Boris Glavic

Some Updates cannot be Translated Uniquely

■ create view instructor_info as
select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

■ insert into instructor_info values (69987 , White , Taylor);

4which department, if multiple departments in Taylor?

4what if no department is in Taylor?

■ Most SQL implementations allow updates only on simple views

● The from clause has only one database relation.

● The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates, or
distinct specification.

● Any attribute not listed in the select clause can be set to null

● The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan5.12CS425 – Boris Glavic

… and Some Not at All

■ create view history_instructors as

select *
from instructor

where dept_name= History ;

■ What happens if we insert (25566 , Brown , Biology ,
100000) into history_instructors?

3

©Silberschatz, Korth and Sudarshan5.13CS425 – Boris Glavic

Materialized Views

■ Materializing a view: create a physical table containing all the tuples
in the result of the query defining the view

■ If relations used in the query are updated, the materialized view result
becomes out of date

● Need to maintain the view, by updating the view whenever the
underlying relations are updated.

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Transactions

©Silberschatz, Korth and Sudarshan5.15CS425 – Boris Glavic

Transactions

■ Unit of work

■ Atomic transaction

● either fully executed or rolled back as if it never occurred

■ Isolation from concurrent transactions

■ Transactions begin implicitly

● Ended by commit work or rollback work

■ But default on most databases: each SQL statement commits
automatically

● Can turn off auto commit for a session (e.g. using API)

● In SQL:1999, can use: begin atomic …. end

4 Not supported on most databases

©Silberschatz, Korth and Sudarshan5.16CS425 – Boris Glavic

Transactions Example

■ Example Atomicity (all-or-nothing)

● Recall example from the introduction

● Relation accounts(accID, cust, type, balance)

● A user want to transfer $100 from his savings (accID = 100) to his
checking account (accID= 101)

UPDATE accounts SET balance = balance – 100 WHERE accID = 100;

UPDATE accounts SET balance = balance + 100 WHERE accID = 101;

● This can cause inconsistencies if the system crashes after the first
update (user would loose money)

● Using a transaction either both or none of the statements are executed

BEGIN

UPDATE accounts SET balance = balance – 100 WHERE accID = 100;

UPDATE accounts SET balance = balance + 100 WHERE accID = 101;

COMMIT

©Silberschatz, Korth and Sudarshan5.17CS425 – Boris Glavic

Transactions and Concurrency

■ Transactions are also used to isolate concurrent actions of different
users

■ Recall from the introduction that if several users are modifying the
database at the same time that can lead to inconsistencies

■ More on that later once we talk about concurrency control

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Integrity Constraints

4

©Silberschatz, Korth and Sudarshan5.19CS425 – Boris Glavic

Integrity Constraints

■ Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

● A checking account must have a balance greater than
$10,000.00

● A salary of a bank employee must be at least $4.00 an
hour

● A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan5.20CS425 – Boris Glavic

Integrity Constraints on a Single Relation

■ not null

■ primary key

■ unique

■ check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan5.21CS425 – Boris Glavic

Not Null and Unique Constraints

■ not null

● Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

■ unique (A1, A2, …, Am)

● The unique specification states that the attributes A1, A2, …
Am

form a candidate key.

● Candidate keys are permitted to be null (in contrast to primary
keys).

©Silberschatz, Korth and Sudarshan5.22CS425 – Boris Glavic

The check clause

■ check (P)

where P is a predicate

Example: ensure that semester is one of fall, winter, spring
or summer:

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in (Fall , Winter , Spring ,

Summer))
);

©Silberschatz, Korth and Sudarshan5.23CS425 – Boris Glavic

Referential Integrity

■ Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.

● Example: If Biology is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for Biology .

■ Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appear in S.

©Silberschatz, Korth and Sudarshan5.24CS425 – Boris Glavic

Cascading Actions in Referential Integrity

■ create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)

■ create table course (
…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade

on update cascade,
. . .

)

■ alternative actions to cascade: set null, set default

5

©Silberschatz, Korth and Sudarshan5.25CS425 – Boris Glavic

Integrity Constraint Violation During
Transactions

■ E.g.

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,

foreign key mother references person)

■ How to insert a tuple without causing constraint violation ?

● insert father and mother of a person before inserting person

● OR, set father and mother to null initially, update after
inserting all persons (not possible if father and mother
attributes declared to be not null)

● OR defer constraint checking (next slide)

©Silberschatz, Korth and Sudarshan5.26CS425 – Boris Glavic

Complex Check Clauses

■ check (time_slot_id in (select time_slot_id from time_slot))

● why not use a foreign key here?

■ Every section has at least one instructor teaching the section.

● how to write this?

■ Unfortunately: subquery in check clause not supported by
pretty much any database

● Alternative: triggers (later)

■ create assertion <assertion-name> check <predicate>;

● Also not supported by anyone

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Indexes and User-Defined Types

(UDTs)

©Silberschatz, Korth and Sudarshan5.28CS425 – Boris Glavic

Built-in Data Types in SQL

■ date: Dates, containing a (4 digit) year, month and date

● Example: date 2005-7-27

■ time: Time of day, in hours, minutes and seconds.

● Example: time 09:00:30 time 09:00:30.75

■ timestamp: date plus time of day

● Example: timestamp 2005-7-27 09:00:30.75

■ interval: period of time

● Example: interval 1 day

● Subtracting a date/time/timestamp value from another gives
an interval value

● Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan5.29CS425 – Boris Glavic

Index Creation

■ create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

■ create index studentID_index on student(ID)

■ Indices are data structures used to speed up access to records
with specified values for index attributes

● e.g. select *
from student

where ID = 12345

can be executed by using the index to find the required
record, without looking at all records of student

More on indices later

©Silberschatz, Korth and Sudarshan5.30CS425 – Boris Glavic

User-Defined Types

■ create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

● create table department

(dept_name varchar (20),
building varchar (15),
budget Dollars);

6

©Silberschatz, Korth and Sudarshan5.31CS425 – Boris Glavic

Domains

■ create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

■ Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

■ create domain degree_level varchar(10)
constraint degree_level_test

check (value in (Bachelors , Masters , Doctorate));

©Silberschatz, Korth and Sudarshan5.32CS425 – Boris Glavic

Large-Object Types

■ Large objects (photos, videos, CAD files, etc.) are stored as a
large object:

● blob: binary large object -- object is a large collection of
uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

● clob: character large object -- object is a large collection of
character data

● When a query returns a large object, a pointer is returned
rather than the large object itself.

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Access Control

©Silberschatz, Korth and Sudarshan5.34CS425 – Boris Glavic

Access Control

Forms of authorization on parts of the database:

■ Read - allows reading, but not modification of data.

■ Insert - allows insertion of new data, but not modification of existing
data.

■ Update - allows modification, but not deletion of data.

■ Delete - allows deletion of data.

Forms of authorization to modify the database schema

■ Index - allows creation and deletion of indices.

■ Resources - allows creation of new relations.

■ Alteration - allows addition or deletion of attributes in a relation.

■ Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan5.35CS425 – Boris Glavic

Authorization Specification in SQL

■ The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

■ <user list> is:

● a user-id

● public, which allows all valid users the privilege granted

● A role (more on this later)

■ Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

■ The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan5.36CS425 – Boris Glavic

Privileges in SQL

■ select: allows read access to relation,or the ability to query
using the view

● Example: grant users U1, U2, and U3 select

authorization on the instructor relation:

grant select on instructor to U1, U2, U3

■ insert: the ability to insert tuples

■ update: the ability to update using the SQL update
statement

■ delete: the ability to delete tuples.

■ all privileges: used as a short form for all the allowable
privileges

7

©Silberschatz, Korth and Sudarshan5.37CS425 – Boris Glavic

Revoking Authorization in SQL

■ The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

■ Example:

revoke select on branch from U1, U2, U3

■ <privilege-list> may be all to revoke all privileges the revokee
may hold.

■ If <revokee-list> includes public, all users lose the privilege
except those granted it explicitly.

■ If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

■ All privileges that depend on the privilege being revoked are
also revoked.

©Silberschatz, Korth and Sudarshan5.38CS425 – Boris Glavic

Roles

■ create role instructor;

■ grant instructor to Amit;

■ Privileges can be granted to roles:

● grant select on takes to instructor;

■ Roles can be granted to users, as well as to other roles

● create role teaching_assistant

● grant teaching_assistant to instructor;

4 Instructor inherits all privileges of teaching_assistant

■ Chain of roles

● create role dean;

● grant instructor to dean;

● grant dean to Satoshi;

©Silberschatz, Korth and Sudarshan5.39CS425 – Boris Glavic

Authorization on Views

■ create view geo_instructor as

(select *
from instructor

where dept_name = Geology);

■ grant select on geo_instructor to geo_staff

■ Suppose that a geo_staff member issues

● select *
from geo_instructor;

■ What if

● geo_staff does not have permissions on instructor?

● creator of view did not have some permissions on
instructor?

©Silberschatz, Korth and Sudarshan5.40CS425 – Boris Glavic

Other Authorization Features

■ references privilege to create foreign key

● grant reference (dept_name) on department to Mariano;

● why is this required?

■ transfer of privileges

● grant select on department to Amit with grant option;

● revoke select on department from Amit, Satoshi cascade;

● revoke select on department from Amit, Satoshi restrict;

■ Etc. read text book Section 4.6 for more details we have
omitted here.

©Silberschatz, Korth and Sudarshan5.41CS425 – Boris Glavic

Understanding RESTRICT/CASCADE

■ Bob grants right X on Y to Alice with grant option

■ Alice grants right X on Y to Peter

■ Abandoned right

● A right for which there is no justification anymore

■ revoke X on Y from Alice restrict

● With restrict fails if it would result in abandoned
rights

■ revoke X on Y from Alice cascade

● Also revokes rights that would otherwise be
abandoned

Bob

Alice

Peter

©Silberschatz, Korth and Sudarshan5.42CS425 – Boris Glavic

Understanding RESTRICT/CASCADE

■ Bob grants right X on Y to Alice with grant option

■ Alice grants right X on Y to Peter

■ Bob grants right X on Y to Peter

■ Abandoned privilege

● A privilege for which there is no justification anymore

● Indirect justifications count

■ revoke X on Y from Alice restrict

● Fails: even though there exists additional justification
for the privilege.

■ revoke X on Y from Alice cascade

● Revokes that right from Peter.

● Peter still has the right to do X on Y

Bob

Alice

Peter

8

©Silberschatz, Korth and Sudarshan5.43CS425 – Boris Glavic

Recap

■ Views

● Virtual

● Materialized

● Updates

■ Integrity Constraints

● Not null, unique, check

● Foreign keys: referential integrity

■ Access control

● Users, roles

● Privileges

● GRANT / REVOKE

■ Data types

● Build-in types, Domains, Large Objects

● UDTs

● Indices
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 5

©Silberschatz, Korth and Sudarshan5.45CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan5.46CS425 – Boris Glavic

Figure 4.01

©Silberschatz, Korth and Sudarshan5.47CS425 – Boris Glavic

Figure 4.02

©Silberschatz, Korth and Sudarshan5.48CS425 – Boris Glavic

Figure 4.03

9

©Silberschatz, Korth and Sudarshan5.49CS425 – Boris Glavic

Figure 4.04
This image cannot currently be displayed.

©Silberschatz, Korth and Sudarshan5.50CS425 – Boris Glavic

Figure 4.05

©Silberschatz, Korth and Sudarshan5.51CS425 – Boris Glavic

Figure 4.07

Taylor

©Silberschatz, Korth and Sudarshan5.52CS425 – Boris Glavic

Figure 4.06

Join types
inner join
le! outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A2, . . ., An)

©Silberschatz, Korth and Sudarshan5.53CS425 – Boris Glavic

Figure 4.03

U3

DBA

U1

U5U2

U4

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2017

Boris Glavic

Chapter 6: Advanced SQL

©Silberschatz, Korth and Sudarshan5.2CS425 – Boris Glavic

Chapter 6: Advanced SQL

■ Accessing SQL From a Programming Language

● Dynamic SQL

4 JDBC and ODBC

● Embedded SQL

■ Functions and Procedural Constructs

■ Triggers

Textbook: Chapter 5

©Silberschatz, Korth and Sudarshan5.3CS425 – Boris Glavic

Accessing SQL From a Programming

Language

©Silberschatz, Korth and Sudarshan5.4CS425 – Boris Glavic

JDBC and ODBC

■ API (application-program interface) for a program to interact

with a database server

■ Application makes calls to

● Connect with the database server

● Send SQL commands to the database server

● Fetch tuples of result one-by-one into program variables

■ ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic

● Other API s such as ADO.NET sit on top of ODBC

■ JDBC (Java Database Connectivity) works with Java

©Silberschatz, Korth and Sudarshan5.5CS425 – Boris Glavic

Native APIs

■ Most DBMS also define DBMS specific APIs

■ Oracle: OCI

■ Postgres: libpg

…

©Silberschatz, Korth and Sudarshan5.6CS425 – Boris Glavic

JDBC

■ JDBC is a Java API for communicating with database systems

supporting SQL.

■ JDBC supports a variety of features for querying and updating
data, and for retrieving query results.

■ JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of
relation attributes.

■ Model for communicating with the database:

● Open a connection

● Create a statement object

● Execute queries using the Statement object to send queries
and fetch results

● Exception mechanism to handle errors

2

©Silberschatz, Korth and Sudarshan5.7CS425 – Boris Glavic

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {

Class.forName ("oracle.jdbc.driver.OracleDriver"); // load driver

Connection conn = DriverManager.getConnection(// connect to server

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement(); // create Statement object

… Do Actual Work ….

stmt.close(); // close Statement and release resources

conn.close(); // close Connection and release resources

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle); // handle exceptions

}

}

©Silberschatz, Korth and Sudarshan5.8CS425 – Boris Glavic

JDBC Code (Cont.)

■ Update to database

try {
stmt.executeUpdate(

"insert into instructor values(77987 , Kim , Physics ,
98000)");
} catch (SQLException sqle)

{
System.out.println("Could not insert tuple. " + sqle);

}

■ Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)

from instructor
group by dept_name");

while (rset.next()) {

System.out.println(rset.getString("dept_name") + " " +
rset.getFloat(2));

}

©Silberschatz, Korth and Sudarshan5.9CS425 – Boris Glavic

JDBC Code Details

■ Result stores the current row position in the result

● Pointing before the first row after executing the statement

● .next() moves to the next tuple

4Returns false if no more tuples

■ Getting result fields:

● rs.getString(dept_name) and rs.getString(1)
equivalent if dept_name is the first attribute in select

result.

■ Dealing with Null values

● int a = rs.getInt(a);

if (rs.wasNull()) Systems.out.println(Got null value);

©Silberschatz, Korth and Sudarshan5.10CS425 – Boris Glavic

Prepared Statement

■ PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance"); pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");
pStmt.executeUpdate();

■ For queries, use pStmt.executeQuery(), which returns a ResultSet

■ WARNING: always use prepared statements when taking an input
from the user and adding it to a query

● NEVER create a query by concatenating strings which you
get as inputs

● "insert into instructor values(" + ID + " , " + name + " , " +

" + dept name + " , " balance +

")

● What if name is D Souza ?

©Silberschatz, Korth and Sudarshan5.11CS425 – Boris Glavic

SQL Injection

■ Suppose query is constructed using

● "select * from instructor where name = " + name + " "

■ Suppose the user, instead of entering a name, enters:

● X or Y = Y

■ then the resulting statement becomes:

● "select * from instructor where name = " + "X or Y = Y" +
" "

● which is:

4 select * from instructor where name = X or Y = Y

● User could have even used

4X ; update instructor set salary = salary + 10000; --

■ Prepared statement internally uses:
"select * from instructor where name = X\ or \ Y\ = \ Y

● Always use prepared statements, with user inputs as
parameters

©Silberschatz, Korth and Sudarshan5.12CS425 – Boris Glavic

Metadata Features

■ ResultSet metadata

■ E.g., after executing query to get a ResultSet rs:

● ResultSetMetaData rsmd = rs.getMetaData();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

■ How is this useful?

3

©Silberschatz, Korth and Sudarshan5.13CS425 – Boris Glavic

Metadata (Cont)

■ Database metadata

■ DatabaseMetaData dbmd = conn.getMetaData();

ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

// and Column-Pattern

// Returns: One row for each column; row has a number of attributes

// such as COLUMN_NAME, TYPE_NAME

while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),

rs.getString("TYPE_NAME");

}

■ And where is this useful?

©Silberschatz, Korth and Sudarshan5.14CS425 – Boris Glavic

Transaction Control in JDBC

■ By default, each SQL statement is treated as a separate

transaction that is committed automatically

● bad idea for transactions with multiple updates

■ Can turn off automatic commit on a connection

● conn.setAutoCommit(false);

■ Transactions must then be committed or rolled back explicitly

● conn.commit(); or

● conn.rollback();

■ conn.setAutoCommit(true) turns on automatic commit.

©Silberschatz, Korth and Sudarshan5.15CS425 – Boris Glavic

Other JDBC Features

■ Calling functions and procedures

● CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");

● CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");

■ Handling large object types

● getBlob() and getClob() that are similar to the getString()

method, but return objects of type Blob and Clob, respectively

● get data from these objects by getBytes()

● associate an open stream with Java Blob or Clob object to

update large objects

4blob.setBlob(int parameterIndex, InputStream inputStream).

©Silberschatz, Korth and Sudarshan5.16CS425 – Boris Glavic

SQLJ

■ JDBC is dynamic, errors cannot be caught by compiler

■ SQLJ: embedded SQL in Java

● #sql iterator deptInfoIter (String dept name, int avgSal);

deptInfoIter iter = null;

#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };

while (iter.next()) {

String deptName = iter.dept_name();

int avgSal = iter.avgSal();

System.out.println(deptName + " " + avgSal);

}

iter.close();

©Silberschatz, Korth and Sudarshan5.17CS425 – Boris Glavic

ODBC

■ Open DataBase Connectivity(ODBC) standard

● standard for application program to communicate with a

database server.

● application program interface (API) to

4open a connection with a database,

4 send queries and updates,

4get back results.

■ Applications such as GUI, spreadsheets, etc. can use ODBC

■ Was defined originally for Basic and C, versions available for

many languages.

©Silberschatz, Korth and Sudarshan5.18CS425 – Boris Glavic

ODBC (Cont.)

■ Each database system supporting ODBC provides a "driver"

library that must be linked with the client program.

■ When client program makes an ODBC API call, the code in the
library communicates with the server to carry out the requested

action, and fetch results.

■ ODBC program first allocates an SQL environment, then a
database connection handle.

■ Opens database connection using SQLConnect(). Parameters for
SQLConnect:

● connection handle,

● the server to which to connect

● the user identifier,

● password

■ Must also specify types of arguments:

● SQL_NTS denotes previous argument is a null-terminated string.

4

©Silberschatz, Korth and Sudarshan5.19CS425 – Boris Glavic

ODBC Code

■ int ODBCexample()

{

RETCODE error;

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

©Silberschatz, Korth and Sudarshan5.20CS425 – Boris Glavic

ODBC Code (Cont.)

■ Program sends SQL commands to database by using SQLExecDirect

■ Result tuples are fetched using SQLFetch()

■ SQLBindCol() binds C language variables to attributes of the query
result

● When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

● Arguments to SQLBindCol()

4 ODBC stmt variable, attribute position in query result

4 The type conversion from SQL to C.

4 The address of the variable.

4 For variable-length types like character arrays,

– The maximum length of the variable

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null
value

■ Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

©Silberschatz, Korth and Sudarshan5.21CS425 – Boris Glavic

ODBC Code (Cont.)

■ Main body of program

char deptname[80];

float salary;
int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)
from instructor

group by dept_name";

SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2);

while (SQLFetch(stmt) == SQL_SUCCESS) {

printf (" %s %g\n", deptname, salary);
}

}

SQLFreeStmt(stmt, SQL_DROP);
©Silberschatz, Korth and Sudarshan5.22CS425 – Boris Glavic

ODBC Prepared Statements

■ Prepared Statement

● SQL statement prepared: compiled at the database

● Can have placeholders: E.g. insert into account values(?,?,?)

● Repeatedly executed with actual values for the placeholders

■ To prepare a statement
SQLPrepare(stmt, <SQL String>);

■ To bind parameters

SQLBindParameter(stmt, <parameter#>,
… type information and value omitted for simplicity..)

■ To execute the statement

retcode = SQLExecute(stmt);

■ To avoid SQL injection security risk, do not create SQL strings

directly using user input; instead use prepared statements to bind

user inputs

©Silberschatz, Korth and Sudarshan5.23CS425 – Boris Glavic

More ODBC Features

■ Metadata features

● finding all the relations in the database and

● finding the names and types of columns of a query result or a
relation in the database.

■ By default, each SQL statement is treated as a separate
transaction that is committed automatically.

● Can turn off automatic commit on a connection

4SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

● Transactions must then be committed or rolled back explicitly by

4SQLTransact(conn, SQL_COMMIT) or

4SQLTransact(conn, SQL_ROLLBACK)

©Silberschatz, Korth and Sudarshan5.24CS425 – Boris Glavic

ODBC Conformance Levels

■ Conformance levels specify subsets of the functionality defined

by the standard.

● Core

● Level 1 requires support for metadata querying

● Level 2 requires ability to send and retrieve arrays of
parameter values and more detailed catalog information.

■ SQL Call Level Interface (CLI) standard similar to ODBC

interface, but with some minor differences.

5

©Silberschatz, Korth and Sudarshan5.25CS425 – Boris Glavic

ADO.NET

■ API designed for Visual Basic .NET and C#, providing database access

facilities similar to JDBC/ODBC

● Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;

SqlConnection conn = new SqlConnection(

“Data Source=<IPaddr>, Initial Catalog=<Catalog>”);
conn.Open();

SqlCommand cmd = new SqlCommand(“select * from students”,

conn);
SqlDataReader rdr = cmd.ExecuteReader();

while(rdr.Read()) {

Console.WriteLine(rdr[0], rdr[1]); /* Prints result attributes 1 & 2 */
}

rdr.Close(); conn.Close();

■ Can also access non-relational data sources such as

● OLE-DB, XML data, Entity framework

©Silberschatz, Korth and Sudarshan5.26CS425 – Boris Glavic

Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

code

DBMS

Compiler

Library

binary

Code with embeded SQL

DBMS

Preprocessor

Library

code

Compiler

binary

©Silberschatz, Korth and Sudarshan5.27CS425 – Boris Glavic

Embedded SQL

■ The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, Java, and Cobol.

■ A language to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

■ The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

■ EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding

uses # SQL { …. };)

©Silberschatz, Korth and Sudarshan5.28CS425 – Boris Glavic

Example Query

■ Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for

select ID, name
from student

where tot_cred > :credit_amount

END_EXEC

■ From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount.

©Silberschatz, Korth and Sudarshan5.29CS425 – Boris Glavic

Embedded SQL (Cont.)

■ The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

■ The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

■ A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to 02000 to indicate no more data is
available

■ The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.30CS425 – Boris Glavic

Updates Through Cursors

■ Can update tuples fetched by cursor by declaring that the cursor

is for update

declare c cursor for

select *
from instructor

where dept_name = Music

for update

■ To update tuple at the current location of cursor c

update instructor
set salary = salary + 100

where current of c

6

©Silberschatz, Korth and Sudarshan5.31CS425 – Boris Glavic

Procedural Constructs in SQL

©Silberschatz, Korth and Sudarshan5.32CS425 – Boris Glavic

Procedural Extensions and Stored Procedures

■ SQL provides a module language

● Permits definition of procedures in SQL, with if-then-else

statements, for and while loops, etc.

■ Stored Procedures

● Can store procedures in the database

● then execute them using the call statement

● permit external applications to operate on the database

without knowing about internal details

■ Object-oriented aspects of these features are covered in Chapter

22 (Object Based Databases) in the textbook

©Silberschatz, Korth and Sudarshan5.33CS425 – Boris Glavic

Why have procedural extensions?

■ Shipping data between a database server and application

program (e.g., through network connection) is costly

■ Converting data from the database internal format into a format
understood by the application programming language is costly

■ Example:

● Use Java to retrieve all users and their friend-relationships from a
friends relation representing a world-wide social network with

10,000,000 users

● Compute the transitive closure

4 All pairs of users connects through a path of friend relationships.
E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend

of Magret

● Return pairs of users from Chicago – say 4000 pairs

● 1) cannot be expressed (efficiently) as SQL query, 2) result is small

4 -> save by executing this on the DB server

©Silberschatz, Korth and Sudarshan5.34CS425 – Boris Glavic

Functions and Procedures

■ SQL:1999 supports functions and procedures

● Functions/procedures can be written in SQL itself, or in an

external programming language.

● Functions are particularly useful with specialized data types such

as images and geometric objects.

4Example: functions to check if polygons overlap, or to

compare images for similarity.

● Some database systems support table-valued functions, which
can return a relation as a result.

■ SQL:1999 also supports a rich set of imperative constructs, including

● Loops, if-then-else, assignment

■ Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Silberschatz, Korth and Sudarshan5.35CS425 – Boris Glavic

SQL Functions

■ Define a function that, given the name of a department, returns

the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer

begin
declare d_count integer;

select count (*) into d_count
from instructor

where instructor.dept_name = dept_name;

return d_count;
end

■ Find the department name and budget of all departments with
more that 12 instructors.

select dept_name, budget

from department
where dept_count (dept_name) > 1

©Silberschatz, Korth and Sudarshan5.36CS425 – Boris Glavic

Table Functions

■ SQL:2003 added functions that return a relation as a result

■ Example: Return all accounts owned by a given customer

create function instructors_of (dept_name char(20)

returns table (ID varchar(5),

name varchar(20),

dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor

where instructor.dept_name = instructors_of.dept_name)

■ Usage

select *
from table (instructors_of (Music))

7

©Silberschatz, Korth and Sudarshan5.37CS425 – Boris Glavic

SQL Procedures

■ The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

■ Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(Physics , d_count);

Procedures and functions can be invoked also from dynamic SQL

■ SQL:1999 allows more than one function/procedure of the same
name (called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan5.38CS425 – Boris Glavic

Procedural Constructs

■ Warning: most database systems implement their own variant of the
standard syntax below

● read your system manual to see what works on your system

■ Compound statement: begin … end,

● May contain multiple SQL statements between begin and end.

● Local variables can be declared within a compound statements

■ While and repeat statements :

declare n integer default 0;

while n < 10 do

set n = n + 1

end while

repeat

set n = n – 1

until n = 0

end repeat

©Silberschatz, Korth and Sudarshan5.39CS425 – Boris Glavic

Procedural Constructs (Cont.)

■ For loop

● Permits iteration over all results of a query

● Example:

declare n integer default 0;

for r as
select budget from department

where dept_name = Music

do
set n = n - r.budget

end for

©Silberschatz, Korth and Sudarshan5.40CS425 – Boris Glavic

Procedural Constructs (cont.)

■ Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

■ Example procedure: registers student after ensuring classroom capacity
is not exceeded

● Returns 0 on success and -1 if capacity is exceeded

● See book for details

■ Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats
begin

…
.. signal out_of_classroom_seats

end

● The handler here is exit -- causes enclosing begin..end to be exited

● Other actions possible on exception

©Silberschatz, Korth and Sudarshan5.41CS425 – Boris Glavic

External Language Functions/Procedures

■ SQL:1999 permits the use of functions and procedures written in

other languages such as C or C++

■ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)
language C

external name /usr/avi/bin/dept_count_proc

create function dept_count(dept_name varchar(20))

returns integer

language C
external name /usr/avi/bin/dept_count

©Silberschatz, Korth and Sudarshan5.42CS425 – Boris Glavic

External Language Routines (Cont.)

■ Benefits of external language functions/procedures:

● more efficient for many operations, and more expressive

power.

■ Drawbacks

● Code to implement function may need to be loaded into

database system and executed in the database system s
address space.

4 risk of accidental corruption of database structures

4 security risk, allowing users access to unauthorized data

● There are alternatives, which give good security at the cost of

potentially worse performance.

● Direct execution in the database system s space is used

when efficiency is more important than security.

8

©Silberschatz, Korth and Sudarshan5.43CS425 – Boris Glavic

Security with External Language Routines

■ To deal with security problems

● Use sandbox techniques

4E.g., use a safe language like Java, which cannot be
used to access/damage other parts of the database

code.

● Or, run external language functions/procedures in a

separate process, with no access to the database process

memory.

4Parameters and results communicated via inter-process

communication

■ Both have performance overheads

■ Many database systems support both above approaches as

well as direct executing in database system address space.

©Silberschatz, Korth and Sudarshan5.44CS425 – Boris Glavic

Triggers

©Silberschatz, Korth and Sudarshan5.45CS425 – Boris Glavic

Triggers

■ A trigger is a statement that is executed automatically by

the system as a side effect of a modification to the

database.

■ To design a trigger mechanism, we must:

● Specify the conditions under which the trigger is to be

executed.

● Specify the actions to be taken when the trigger

executes.

■ Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by

most databases.

● Syntax illustrated here may not work exactly on your

database system; check the system manuals

©Silberschatz, Korth and Sudarshan5.46CS425 – Boris Glavic

Trigger Example

■ E.g. time_slot_id is not a primary key of timeslot, so we cannot
create a foreign key constraint from section to timeslot.

■ Alternative: use triggers on section and timeslot to enforce integrity

constraints

create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row
when (nrow.time_slot_id not in (

select time_slot_id

from time_slot)) /* time_slot_id not present in time_slot */

begin

rollback
end;

©Silberschatz, Korth and Sudarshan5.47CS425 – Boris Glavic

Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot
referencing old row as orow

for each row
when (orow.time_slot_id not in (

select time_slot_id

from time_slot)

/* last tuple for time slot id deleted from time slot */
and orow.time_slot_id in (

select time_slot_id

from section)) /* and time_slot_id still referenced from section*/

begin

rollback
end;

©Silberschatz, Korth and Sudarshan5.48CS425 – Boris Glavic

Triggering Events and Actions in SQL

■ Triggering event can be insert, delete or update

■ Triggers on update can be restricted to specific attributes

● E.g., after update of takes on grade

■ Values of attributes before and after an update can be
referenced

● referencing old row as : for deletes and updates

● referencing new row as : for inserts and updates

■ Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade =)
begin atomic

set nrow.grade = null;
end;

9

©Silberschatz, Korth and Sudarshan5.49CS425 – Boris Glavic

Trigger to Maintain credits_earned value

■ create trigger credits_earned after update of takes on
(grade)

referencing new row as nrow

referencing old row as orow

for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)

begin atomic
update student

set tot_cred= tot_cred +
(select credits

from course

where course.course_id= nrow.course_id)
where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan5.50CS425 – Boris Glavic

Statement Level Triggers

■ Instead of executing a separate action for each affected

row, a single action can be executed for all rows affected by

a transaction

● Use for each statement instead of for each row

● Use referencing old table or referencing new
table to refer to temporary tables (called transition

tables) containing the affected rows

● Can be more efficient when dealing with SQL
statements that update a large number of rows

©Silberschatz, Korth and Sudarshan5.51CS425 – Boris Glavic

When Not To Use Triggers

■ Triggers were used earlier for tasks such as

● maintaining summary data (e.g., total salary of each department)

● Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process

that applies the changes over to a replica

■ There are better ways of doing these now:

● Databases today provide built in materialized view facilities to

maintain summary data

● Databases provide built-in support for replication

■ Encapsulation facilities can be used instead of triggers in many cases

● Define methods to update fields

● Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan5.52CS425 – Boris Glavic

When Not To Use Triggers

■ Risk of unintended execution of triggers, for example, when

● loading data from a backup copy

● replicating updates at a remote site

● Trigger execution can be disabled before such actions.

■ Other risks with triggers:

● Error leading to failure of critical transactions that set off the

trigger

● Cascading execution

©Silberschatz, Korth and Sudarshan5.53CS425 – Boris Glavic

Recursive Queries

©Silberschatz, Korth and Sudarshan5.54CS425 – Boris Glavic

Recursion in SQL

■ SQL:1999 permits recursive view definition

■ Example: find which courses are a prerequisite, whether

directly or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id

from prereq

union
select rec_prereq.course_id, prereq.prereq_id,

from rec_rereq, prereq

where rec_prereq.prereq_id = prereq.course_id
)

select ∗
from rec_prereq;

This example view, rec_prereq, is called the transitive closure

of the prereq relation

10

©Silberschatz, Korth and Sudarshan5.55CS425 – Boris Glavic

Recursion in SQL - Syntax

■ General form

with recursive R as (

init_query

union

recusive_step)

select ∗
from R;

■ init_query returns the initial content of R

■ recursive_step is a query that mentions R exactly once in the
FROM clause

©Silberschatz, Korth and Sudarshan5.56CS425 – Boris Glavic

Recursion in SQL - Semantics

■ General form

with recursive R as (

init_query

union

recusive_step)

select ∗
from R;

■ Fixpoint computation

● R0 = result of init_query

● In step i: Ri is computed as

4Ri-1 union recursive_step(Ri-1)

● The computation stops when recursive_step(Ri-1) is

the empty set, i.e., Ri-1 = Ri

©Silberschatz, Korth and Sudarshan5.57CS425 – Boris Glavic

The Power of Recursion

■ Recursive views make it possible to write queries, such as

transitive closure queries, that cannot be written without recursion

or iteration.

● Intuition: Without recursion, a non-recursive non-iterative
program can perform only a fixed number of joins of prereq

with itself

4This can give only a fixed number of levels of managers

4Given a fixed non-recursive query, we can construct a
database with a greater number of levels of prerequisites on

which the query will not work

4Alternative: write a procedure to iterate as many times as
required

– See procedure findAllPrereqs in book

©Silberschatz, Korth and Sudarshan5.58CS425 – Boris Glavic

The Power of Recursion

■ Computing transitive closure using iteration, adding successive
tuples to rec_prereq

● The next slide shows a prereq relation

● Each step of the iterative process constructs an extended
version of rec_prereq from its recursive definition.

● The final result is called the fixed point of the recursive view

definition.

■ Recursive views are monotonic. That is,

● if we add tuples to prereq the view rec_prereq contains all of

the tuples it contained before, plus possibly more

©Silberschatz, Korth and Sudarshan5.59CS425 – Boris Glavic

Example of Fixed-Point Computation

©Silberschatz, Korth and Sudarshan5.60CS425 – Boris Glavic

Another Recursion Example

■ Given relation
manager(employee_name, manager_name)

■ Find all employee-manager pairs, where the employee reports to the

manager directly or indirectly (that is manager s manager, manager s
manager s manager, etc.)

with recursive empl (employee_name, manager_name) as (
select employee_name, manager_name

from manager

union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select *
from empl

This example view, empl, is the transitive closure of the manager

relation

11

©Silberschatz, Korth and Sudarshan5.61CS425 – Boris Glavic

Recap

■ Programming Language Interfaces for Databases

● Dynamic SQL (e.g., JDBC, ODBC)

● Embedded SQL

● SQL Injection

■ Procedural Extensions of SQL

● Functions and Procedures

■ External Functions/Procedures

● Written in programming language (e.g., C)

■ Triggers

● Events (insert, …)

● Conditions (WHEN)

● per statement / per row

● Accessing old/new table/row versions

■ Recursive Queries
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

©Silberschatz, Korth and Sudarshan5.63CS425 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design – ER model

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Partially taken from

Klaus R. Dittrich

CS425 – Fall 2013

Boris Glavic

Chapter 7: Entity-Relationship Model

©Silberschatz, Korth and Sudarshan7.2CS425 – Fall 2016 – Boris Glavic

Chapter 7: Entity-Relationship Model

■ Design Process

■ Modeling

■ Constraints

■ E-R Diagram

■ Design Issues

■ Weak Entity Sets

■ Extended E-R Features

■ Design of the Bank Database

■ Reduction to Relation Schemas

■ Database Design

■ UML

©Silberschatz, Korth and Sudarshan7.3CS425 – Fall 2016 – Boris Glavic

Database Design

World

Relational DB schema

???

©Silberschatz, Korth and Sudarshan7.4CS425 – Fall 2016 – Boris Glavic

Database Design

n First: need to develop a “mind”-model based on a requirement analysis

World

Relational DB schema

???

“Mind” Model

Requirement Analysis

English (e.g.)

©Silberschatz, Korth and Sudarshan7.5CS425 – Fall 2016 – Boris Glavic

Requirement Analysis Example

Zoo

■ The zoo stores information about animals, cages, and zoo keepers.

■ Animals are of a certain species and have a name. For each animal
we want to record its weight and age.

■ Each cage is located in a section of the zoo. Cages can house
animals, but there may be cages that are currently empty. Cages have
a size in square meter.

■ Zoo keepers are identified by their social security number. We store a
first name, last name, and for each zoo keeper. Zoo keepers are
assigned to cages they have to take care of (clean, …). Each cage
that is not empty has a zoo keeper assigned to it. A zoo keeper can
take care of several cages. Each zoo keeper takes care of at least one
cage.

©Silberschatz, Korth and Sudarshan7.6CS425 – Fall 2016 – Boris Glavic

Requirement Analysis Example

Music Collection

■ Let’s do it!

2

©Silberschatz, Korth and Sudarshan7.7CS425 – Fall 2016 – Boris Glavic

Database Design

n Second: Formalize this model by developing a conceptual model

World

Relational DB schema

“Mind” Model

Requirement Analysis

English (e.g.)

Conceptual Model ER model

???

Conceptual modeling

©Silberschatz, Korth and Sudarshan7.8CS425 – Fall 2016 – Boris Glavic

Database Design

n Second: Formalize this model by developing a conceptual model

World

Relational DB schema

“Mind” Model

Requirement Analysis

English (e.g.)

Conceptual Model ER model

Conceptual modeling

Logical modeling (possibly automated)

SQL (e.g.)

©Silberschatz, Korth and Sudarshan7.9CS425 – Fall 2016 – Boris Glavic

Modeling – ER model

■ A database can be modeled as:

● a collection of entities,

● relationship among entities.

■ An entity is an object that exists and is distinguishable from other
objects.

● Example: specific person, company, event, plant

■ Entities have attributes

● Example: people have names and addresses

■ An entity set is a set of entities of the same type that share the same
properties.

● Example: set of all persons, companies, trees, holidays

©Silberschatz, Korth and Sudarshan7.10CS425 – Fall 2016 – Boris Glavic

Entity Sets instructor and student

instructor_ID instructor_name student-ID student_name

instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345

98988

76653

23121

00128

76543

Shankar

Tanaka

Aoi

Chavez

Peltier

Zhang

Brown

44553

©Silberschatz, Korth and Sudarshan7.11CS425 – Fall 2016 – Boris Glavic

Relationship Sets

■ A relationship is an association among several entities

Example:
44553 (Peltier) advisor 22222 (Einstein)
student entity relationship set instructor entity

■ A relationship set is a mathematical relation among n ³ 2 entities, each
taken from entity sets

{(e1, e2, … en) | e1 Î E1, e2 Î E2, …, en Î En}

where (e1, e2, …, en) is a relationship

● Example:

(44553,22222) Î advisor

©Silberschatz, Korth and Sudarshan7.12CS425 – Fall 2016 – Boris Glavic

Relationship Set advisor

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

76653

23121

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3

©Silberschatz, Korth and Sudarshan7.13CS425 – Fall 2016 – Boris Glavic

Relationship Sets (Cont.)

■ An attribute can also be property of a relationship set.

■ For instance, the advisor relationship set between entity sets
instructor and student may have the attribute date which tracks when
the student started being associated with the advisor

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121

©Silberschatz, Korth and Sudarshan7.14CS425 – Fall 2016 – Boris Glavic

Degree of a Relationship Set

■ binary relationship

● involve two entity sets (or degree two).

■ Relationships between more than two entity sets are rare. Most
relationships are binary. (More on this later.)

4 Example: students work on research projects under the
guidance of an instructor.

4 relationship proj_guide is a ternary relationship between
instructor, student, and project

©Silberschatz, Korth and Sudarshan7.15CS425 – Fall 2016 – Boris Glavic

Attributes

■ An entity is represented by a set of attributes, that are descriptive
properties possessed by all members of an entity set.

● Example:

instructor = (ID, name, street, city, salary)
course= (course_id, title, credits)

■ Domain – the set of permitted values for each attribute

■ Attribute types:

● Simple and composite attributes.

● Single-valued and multivalued attributes

4 Example: multivalued attribute: phone_numbers

● Derived attributes

4 Can be computed from other attributes

4 Example: age, given date_of_birth

©Silberschatz, Korth and Sudarshan7.16CS425 – Fall 2016 – Boris Glavic

Composite Attributes

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes

©Silberschatz, Korth and Sudarshan7.17CS425 – Fall 2016 – Boris Glavic

Mapping Cardinality Constraints

■ Express the number of entities to which another entity can be
associated via a relationship set.

■ For a binary relationship set the mapping cardinality must be one of
the following types:

● One to one (1-1)

● One to many (1-N)

● Many to one (N-1)

● Many to many (N-M)

©Silberschatz, Korth and Sudarshan7.18CS425 – Fall 2016 – Boris Glavic

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

4

©Silberschatz, Korth and Sudarshan7.19CS425 – Fall 2016 – Boris Glavic

Mapping Cardinalities Example

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Person Birth certificate Advisor Student

©Silberschatz, Korth and Sudarshan7.20CS425 – Fall 2016 – Boris Glavic

Mapping Cardinalities

Many to
one

Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

©Silberschatz, Korth and Sudarshan7.21CS425 – Fall 2016 – Boris Glavic

Mapping Cardinalities Example

Many to
one

Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Employee Department Student Course

©Silberschatz, Korth and Sudarshan7.22CS425 – Fall 2016 – Boris Glavic

Mapping Cardinality Constraints Cont.

■ What if we allow some elements to not be mapped to another
element?

● E.g., 0:1 – 1

■ For a binary relationship set the mapping cardinality must be one of
the following types:

■ 1-1

● 1-1

● 0:1-1

● 1-0:1

● 0:1-0:1

■ 1-N

● 0:1-N

● 0:1-0:N

● 1-N

● 1-0:N

■ N-1

● N-1

● N-0:1

● 0:N-1

● 0:N-0:1

■ N-M

● N-M

● N-0:M

● 0:N-M

● 0:N-0:M

©Silberschatz, Korth and Sudarshan7.23CS425 – Fall 2016 – Boris Glavic

Mapping Cardinality Constraints Cont.

■ Typical Notation

● (0:1) – (1:N)

©Silberschatz, Korth and Sudarshan7.24CS425 – Fall 2016 – Boris Glavic

Keys

■ A super key of an entity set is a set of one or more attributes
whose values uniquely determine each entity.

■ A candidate key of an entity set is a minimal super key

● ID is candidate key of instructor

● course_id is candidate key of course

■ Although several candidate keys may exist, one of the candidate
keys is selected to be the primary key.

■ Note: Basically the same as for relational model

5

©Silberschatz, Korth and Sudarshan7.25CS425 – Fall 2016 – Boris Glavic

Keys for Relationship Sets

■ The combination of primary keys of the participating entity sets
forms a super key of a relationship set.

● (s_id, i_id) is the super key of advisor

● NOTE: this means a pair of entities can have at most one
relationship in a particular relationship set.

4 Example: if we wish to track multiple meeting dates between
a student and her advisor, we cannot assume a relationship
for each meeting. We can use a multivalued attribute
though or model meeting as a separate entity

■ Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys

■ Need to consider semantics of relationship set in selecting the
primary key in case of more than one candidate key

©Silberschatz, Korth and Sudarshan7.26CS425 – Fall 2016 – Boris Glavic

Keys for Relationship Sets Cont.

■ Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys

● 1-1: both primary keys are candidate keys

4 Example: hasBc: (Person-Birthcertificate)

● N-1: the N side is the candidate key

4 Example: worksFor: (Instructor-Department)

● N-M: the combination of both primary keys

4 Example: takes: (Student-Course)

©Silberschatz, Korth and Sudarshan7.27CS425 – Fall 2016 – Boris Glavic

Redundant Attributes

■ Suppose we have entity sets

● instructor, with attributes including dept_name

● department

and a relationship

● inst_dept relating instructor and department

■ Attribute dept_name in entity instructor is redundant since there is an
explicit relationship inst_dept which relates instructors to departments

● The attribute replicates information present in the relationship, and
should be removed from instructor

● BUT: when converting back to tables, in some cases the attribute
gets reintroduced, as we will see.

©Silberschatz, Korth and Sudarshan7.28CS425 – Fall 2016 – Boris Glavic

E-R Diagrams

■ Rectangles represent entity sets.

■ Diamonds represent relationship sets.

■ Attributes listed inside entity rectangle

■ Underline indicates primary key attributes

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.29CS425 – Fall 2016 – Boris Glavic

Entity With Composite, Multivalued, and Derived

Attributes

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan7.30CS425 – Fall 2016 – Boris Glavic

Entity With Composite, Multivalued, and Derived

Attributes

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

composite

Multi-valued

derived

6

©Silberschatz, Korth and Sudarshan7.31CS425 – Fall 2016 – Boris Glavic

Relationship Sets with Attributes

ID
name
salary

ID
name
tot_cred

date

instructor student

advisor

©Silberschatz, Korth and Sudarshan7.32CS425 – Fall 2016 – Boris Glavic

Roles

■ Entity sets of a relationship need not be distinct

● Each occurrence of an entity set plays a role in the relationship

■ The labels course_id and prereq_id are called roles.

course

course_id
title
credits

course_id

prereq_id
prereq

©Silberschatz, Korth and Sudarshan7.33CS425 – Fall 2016 – Boris Glavic

Cardinality Constraints

■ We express cardinality constraints by drawing either a directed line
(®), signifying one, or an undirected line (—), signifying many,
between the relationship set and the entity set.

■ One-to-one relationship:

● A student is associated with at most one instructor via the
relationship advisor

● A student is associated with at most one department via
stud_dept

©Silberschatz, Korth and Sudarshan7.34CS425 – Fall 2016 – Boris Glavic

One-to-One Relationship

■ one-to-one relationship between an instructor and a student

● an instructor is associated with at most one student via advisor

● and a student is associated with at most one instructor via
advisor

instructor student

ID
name
salary

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.35CS425 – Fall 2016 – Boris Glavic

One-to-Many Relationship

■ one-to-many relationship between an instructor and a student

● an instructor is associated with several (including 0) students
via advisor

● a student is associated with at most one instructor via advisor,

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.36CS425 – Fall 2016 – Boris Glavic

Many-to-One Relationships

■ In a many-to-one relationship between an instructor and a student,

● an instructor is associated with at most one student via
advisor,

● and a student is associated with several (including 0)
instructors via advisor

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

7

©Silberschatz, Korth and Sudarshan7.37CS425 – Fall 2016 – Boris Glavic

Many-to-Many Relationship

■ An instructor is associated with several (possibly 0) students via
advisor

■ A student is associated with several (possibly 0) instructors via
advisor

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.38CS425 – Fall 2016 – Boris Glavic

Participation of an Entity Set in a
Relationship Set

■ Total participation (indicated by double line): every entity in the
entity set participates in at least one relationship in the relationship
set

● E.g., participation of section in sec_course is total

4 every section must have an associated course

■ Partial participation: some entities may not participate in any
relationship in the relationship set

● Example: participation of instructor in advisor is partial

course

course_id

title
credits

section

sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan7.39CS425 – Fall 2016 – Boris Glavic

Alternative Notation for Cardinality Limits

■ Cardinality limits can also express participation constraints

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*

©Silberschatz, Korth and Sudarshan7.40CS425 – Fall 2016 – Boris Glavic

Alternative Notation for Cardinality Limits

■ Alternative Notation

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*

(0,n) (1,1)

©Silberschatz, Korth and Sudarshan7.41CS425 – Fall 2016 – Boris Glavic

E-R Diagram with a Ternary Relationship

instructor

ID

name

salary

student

ID

name

tot_cred

. . .

project

proj_guide

©Silberschatz, Korth and Sudarshan7.42CS425 – Fall 2016 – Boris Glavic

Cardinality Constraints on Ternary

Relationship

■ We allow at most one arrow out of a ternary (or greater degree)
relationship to indicate a cardinality constraint

■ E.g., an arrow from proj_guide to instructor indicates each student has
at most one guide for a project

■ If there is more than one arrow, there are two ways of defining the
meaning.

● E.g., a ternary relationship R between A, B and C with arrows to B
and C could mean

1. each A entity is associated with a unique entity from B and C or

2. each pair of entities from (A, B) is associated with a unique C
entity, and each pair (A, C) is associated with a unique B

● Each alternative has been used in different formalisms

● To avoid confusion we outlaw more than one arrow

■ Better to use cardinality constraints such as (0,n)

8

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Partially taken from

Klaus R. Dittrich

Let’s design an ER-model

for

parts of the university database

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Partially taken from

Klaus R. Dittrich

Lets design an ER-model

for

parts of the university database

1) Identify Entities

2) Identify Relationship

3) Determine Attributes

4) Determine Cardinality

Constraints

©Silberschatz, Korth and Sudarshan7.45CS425 – Fall 2016 – Boris Glavic

Weak Entity Sets

■ An entity set that does not have a primary key is referred to as a
weak entity set.

■ The existence of a weak entity set depends on the existence of a
identifying entity set

● It must relate to the identifying entity set via a total, one-to-many
relationship set from the identifying to the weak entity set

● Identifying relationship depicted using a double diamond

■ The discriminator (or partial key) of a weak entity set is the set of
attributes that distinguishes among all the entities of a weak entity
set that are associated with the same entity of the identifying entity
set

■ The primary key of a weak entity set is formed by the primary key of
the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set’s discriminator.

©Silberschatz, Korth and Sudarshan7.46CS425 – Fall 2016 – Boris Glavic

Weak Entity Sets (Cont.)

■ We underline the discriminator of a weak entity set with a dashed
line.

■ We put the identifying relationship of a weak entity in a double
diamond.

■ Primary key for section – (course_id, sec_id, semester, year)

course

course_id

title
credits

section

sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan7.47CS425 – Fall 2016 – Boris Glavic

Weak Entity Sets (Cont.)

■ Note: the primary key of the strong entity set is not explicitly stored
with the weak entity set, since it is implicit in the identifying
relationship.

■ If course_id were explicitly stored, section could be made a strong
entity, but then the relationship between section and course would
be duplicated by an implicit relationship defined by the attribute
course_id common to course and section

©Silberschatz, Korth and Sudarshan7.48CS425 – Fall 2016 – Boris Glavic

E-R Diagram for a University Enterprise

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

9

©Silberschatz, Korth and Sudarshan7.49CS425 – Fall 2016 – Boris Glavic

Reduction to Relational Schemas

©Silberschatz, Korth and Sudarshan7.50CS425 – Fall 2016 – Boris Glavic

Reduction to Relation Schemas

■ Entity sets and relationship sets can be expressed uniformly as
relation schemas that represent the contents of the database.

■ A database which conforms to an E-R diagram can be represented by
a collection of relation schemas.

■ For each entity set and relationship set there is a unique relation
schema that is assigned the name of the corresponding entity set or
relationship set.

©Silberschatz, Korth and Sudarshan7.51CS425 – Fall 2016 – Boris Glavic

Representing Entity Sets With Simple
Attributes

■ A strong entity set reduces to a schema with the same attributes
student(ID, name, tot_cred)

■ A weak entity set becomes a table that includes a column for the primary
key of the identifying strong entity set
section (course_id, sec_id, sem, year)

course

course_id

title
credits

section

sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan7.52CS425 – Fall 2016 – Boris Glavic

Representing Relationship Sets

■ A many-to-many relationship set is represented as a schema with
attributes for the primary keys of the two participating entity sets, and any
descriptive attributes of the relationship set.

■ Example: schema for relationship set advisor

advisor = (s_id, i_id)

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.53CS425 – Fall 2016 – Boris Glavic

Redundancy of Schemas

■ Many-to-one and one-to-many relationship sets that are total on the
many-side can be represented by adding an extra attribute to the
many side, containing the primary key of the one side

■ Example: Instead of creating a schema for relationship set inst_dept,
add an attribute dept_name to the schema arising from entity set
instructor

student

ID
name
salary

ID
name
tot_cred

advisor

inst_dept stud_dept

instructor

department

dept_name
building
budget

course_dept

©Silberschatz, Korth and Sudarshan7.54CS425 – Fall 2016 – Boris Glavic

Redundancy of Schemas (Cont.)

■ For one-to-one relationship sets, either side can be chosen to act
as the many side

● That is, extra attribute can be added to either of the tables
corresponding to the two entity sets

● If the relationship is total in both sides, the relation schemas
from the two sides can be merged into one schema

■ If participation is partial on the many side, replacing a schema by
an extra attribute in the schema corresponding to the many side
could result in null values

■ The schema corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.

● Example: The section schema already contains the attributes
that would appear in the sec_course schema

10

©Silberschatz, Korth and Sudarshan7.55CS425 – Fall 2016 – Boris Glavic

Composite and Multivalued Attributes

■ Composite attributes are flattened out by creating a
separate attribute for each component attribute

● Example: given entity set instructor with
composite attribute name with component
attributes first_name and last_name the schema
corresponding to the entity set has two attributes
name_first_name and name_last_name

4 Prefix omitted if there is no ambiguity

■ Ignoring multivalued attributes, extended instructor
schema is

● instructor(ID,
first_name, middle_initial, last_name,
street_number, street_name,

apt_number, city, state, zip_code,
date_of_birth)

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan7.56CS425 – Fall 2016 – Boris Glavic

Composite and Multivalued Attributes

■ A multivalued attribute M of an entity E is represented by a separate
schema EM

● Schema EM has attributes corresponding to the primary key of E
and an attribute corresponding to multivalued attribute M

● Example: Multivalued attribute phone_number of instructor is
represented by a schema:

inst_phone= (ID, phone_number)

● Each value of the multivalued attribute maps to a separate tuple of
the relation on schema EM

4 For example, an instructor entity with primary key 22222 and
phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

©Silberschatz, Korth and Sudarshan7.57CS425 – Fall 2016 – Boris Glavic

Multivalued Attributes (Cont.)

■ Special case:entity time_slot has only one attribute other than the
primary-key attribute, and that attribute is multivalued

● Optimization: Don’t create the relation corresponding to the entity,
just create the one corresponding to the multivalued attribute

● time_slot(time_slot_id, day, start_time, end_time)

● Caveat: time_slot attribute of section (from sec_time_slot) cannot be
a foreign key due to this optimization

time_slot

time_slot_id
{ day
start_time
end_time

}

sec_time_slot

section

sec_id
semester
year

sec_class
©Silberschatz, Korth and Sudarshan7.58CS425 – Fall 2016 – Boris Glavic

Design Issues

■ Use of entity sets vs. attributes

■ Designing phone as an entity allow for primary key constraints for phone

■ Designing phone as an entity allow phone numbers to be used in
relationships with other entities (e.g., student)

■ Use of phone as an entity allows extra information about phone numbers

instructor

ID
name
salary

phone

phone_number
location

instructor

ID
name
salary
phone_number

inst_phone

©Silberschatz, Korth and Sudarshan7.59CS425 – Fall 2016 – Boris Glavic

Design Issues

■ Use of entity sets vs. relationship sets

● Possible guideline is to designate a relationship set to describe an
action that occurs between entities

● Possible hint: the relationship only relates entities, but does not have an
existence by itself. E.g., hasAddress: (department-address)

registration
...

...

...

section

sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

©Silberschatz, Korth and Sudarshan7.60CS425 – Fall 2016 – Boris Glavic

Design Issues

■ Binary versus n-ary relationship sets

● Although it is possible to replace any nonbinary (n-ary, for n > 2)
relationship set by a number of distinct binary relationship sets + an
aritifical entity set, a n-ary relationship set shows more clearly that

several entities participate in a single relationship.

■ Placement of relationship attributes

● e.g., attribute date as attribute of advisor or as attribute of student

● Does not work for N-M relationships!

11

©Silberschatz, Korth and Sudarshan7.61CS425 – Fall 2016 – Boris Glavic

Binary Vs. Non-Binary Relationships

■ Some relationships that appear to be non-binary may be better
represented using binary relationships

● E.g., A ternary relationship parents, relating a child to his/her
father and mother, is best replaced by two binary relationships,
father and mother

4 Using two binary relationships allows partial information (e.g.,
only mother being know)

● But there are some relationships that are naturally non-binary

4 Example: proj_guide

©Silberschatz, Korth and Sudarshan7.62CS425 – Fall 2016 – Boris Glavic

Converting Non-Binary Relationships to Binary Form

■ In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.

● Replace R between entity sets A, B and C by an entity set E, and
three relationship sets:

1. RA, relating E and A 2. RB, relating E and B
3. RC, relating E and C

● Create a special identifying attribute for E

● Add any attributes of R to E

● For each relationship (ai , bi , ci) in R, create

1. a new entity ei in the entity set E 2. add (ei , ai) to RA

3. add (ei , bi) to RB 4. add (ei , ci) to RC

B R C

A

CB E

A

R
A

R
B

R
C

(a) (b)

©Silberschatz, Korth and Sudarshan7.63CS425 – Fall 2016 – Boris Glavic

Converting Non-Binary Relationships

(Cont.)

■ Also need to translate constraints

● Translating all constraints may not be possible

● There may be instances in the translated schema that
cannot correspond to any instance of R

4 Exercise: add constraints to the relationships RA, RB and
RC to ensure that a newly created entity corresponds to
exactly one entity in each of entity sets A, B and C

● We can avoid creating an identifying attribute by making E a
weak entity set (described shortly) identified by the three
relationship sets

©Silberschatz, Korth and Sudarshan7.64CS425 – Fall 2016 – Boris Glavic

Converting Non-Binary Relationships:

Is the New Entity Set E Necessary?

■ Yes, because a non-binary relation ship stores more information that
any number of binary relationships

● Consider again the example (a) below

● Replace R with three binary relationships:

1. RAB, relating A and B 2. RBC, relating B and C
3. RAC, relating A and C

● For each relationship (ai , bi , ci) in R, create

4 1. add (ai , bi) to RAB

4 2. add (bi , ci) to RBC

4 3. add (ai , ci) to RAC

● Consider R = order, A = supplier, B = item, C = customer

(Gunnar, chainsaw, Bob) – Bob ordered a chainsaw from Gunnar

->

(Gunnar, chainsaw), (chainsaw, Bob), (Gunnar, Bob)

Gunnar supplies chainsaws, Bob ordered a chainsaw, Bob ordered
something from Gunnar. E.g., we do not know what Bob ordered from
Gunnar.

B R C

A

(a)

©Silberschatz, Korth and Sudarshan7.65CS425 – Fall 2016 – Boris Glavic

ER-model to Relational Summary

■ Rule 1) Strong entity E

● Create relation with attributes of E

● Primary key is equal to the PK of E

■ Rule 2) Weak entity W identified by E through relationship R

● Create relation with attributes of W and R and PK(E).

● Set PK to discriminator attributes combined with PK(E). PK(E) is a
foreign key to E.

■ Rule 3) Binary relationship R between A and B: one-to-one

● If no side is total add PK of A to as foreign key in B or the other
way around. Add any attributes of the relationship R to A
respective B.

● If one side is total add PK of the other-side as foreign key. Add any
attributes of the relationship R to the total side.

● If both sides are total merge the two relation into a new relation E
and choose either PK(A) as PK(B) as the new PK. Add any
attributes of the relationship R to the new relation E.

©Silberschatz, Korth and Sudarshan7.66CS425 – Fall 2016 – Boris Glavic

ER-model to Relational Summary (Cont.)

■ Rule 4) Binary relationship R between A and B: one-to-many/many-to-
one

● Add PK of the “one” side as foreign key to the “many” side.

● Add any attributes of the relationship R to the “many” side.

■ Rule 5) Binary relationship R between A and B: many-to-many

● Create a new relation R.

● Add PK’s of A and B as attributes + plus all attributes of R.

● The primary key of the relationship is PK(A) + PK(B). The PK
attributes of A/B form a foreign key to A/B

■ Rule 6) N-ary relationship R between E1 … En

● Create a new relation.

● Add all the PK’s of E1 … En. Add all attributes of R to the new
relation.

● The primary key or R is PK(E1) … PK(En). Each PK(Ei) is a foreign
key to the corresponding relation.

12

©Silberschatz, Korth and Sudarshan7.67CS425 – Fall 2016 – Boris Glavic

ER-model to Relational Summary (Cont.)

■ Rule 7) Entity E with multi-valued attribute A

● Create new relation. Add A and PK(E) as attributes.

● PK is all attributes. PK(E) is a foreign key.

©Silberschatz, Korth and Sudarshan7.68CS425 – Fall 2016 – Boris Glavic

E-R Diagram for a University Enterprise

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

©Silberschatz, Korth and Sudarshan7.69CS425 – Fall 2016 – Boris Glavic

Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 1) Strong Entities

● department(dept_name, building, budget)

● instructor(ID, name, salary)

● student(ID, name, tot_cred)

● course(course_id, title, credits)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

■ Rule 2) Weak Entities

● section(course_id, sec_id, semester, year)

©Silberschatz, Korth and Sudarshan7.70CS425 – Fall 2016 – Boris Glavic

Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 3) Relationships one-to-one

● None exist

■ Rule 4) Relationships one-to-many

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year, room_building,

room_number, time_slot_id)

©Silberschatz, Korth and Sudarshan7.71CS425 – Fall 2016 – Boris Glavic

Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 5) Relationships many-to-many

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year,

room_building, room_number, time_slot_id)

● prereq(course_id, prereq_id)

● teaches(ID, course_id, sec_id, semester, year)

● takes(ID, course_id, sec_id, semester, year, grade)

■ Rule 6) N-ary Relationships

● none exist

©Silberschatz, Korth and Sudarshan7.72CS425 – Fall 2016 – Boris Glavic

Translate the University ER-Model

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

■ Rule 7) Multivalued attributes

● department(dept_name, building, budget)

● instructor(ID, name, salary, dept_name)

● student(ID, name, tot_cred, dept_name, instr_ID)

● course(course_id, title, credits, dept_name)

● time_slot(time_slot_id)

● time_slot_day(time_slot_id, start_time, end_time)

● classroom(building,room_number, capacity)

● section(course_id, sec_id, semester, year,

room_building, room_number, time_slot_id)

● prereq(course_id, prereq_id)

● teaches(ID, course_id, sec_id, semester, year)

● takes(ID, course_id, sec_id, semester, year, grade)

13

©Silberschatz, Korth and Sudarshan7.73CS425 – Fall 2016 – Boris Glavic

Extended ER Features

©Silberschatz, Korth and Sudarshan7.74CS425 – Fall 2016 – Boris Glavic

Extended E-R Features: Specialization

■ Top-down design process; we designate subgroupings within an entity set
that are distinctive from other entities in the set.

■ These subgroupings become lower-level entity sets that have attributes or
participate in relationships that do not apply to the higher-level entity set.

■ Depicted by a triangle component labeled ISA (E.g., instructor is a
person).

■ Attribute inheritance – a lower-level entity set inherits all the attributes
and relationship participation of the higher-level entity set to which it is
linked.

©Silberschatz, Korth and Sudarshan7.75CS425 – Fall 2016 – Boris Glavic

Specialization Example

person

ID
name
address

student

instructor

rank

secretary

hours_per_week

employee

salary tot_credits

©Silberschatz, Korth and Sudarshan7.76CS425 – Fall 2016 – Boris Glavic

Extended ER Features: Generalization

■ A bottom-up design process – combine a number of entity sets
that share the same features into a higher-level entity set.

■ Specialization and generalization are simple inversions of each
other; they are represented in an E-R diagram in the same way.

■ The terms specialization and generalization are used
interchangeably.

©Silberschatz, Korth and Sudarshan7.77CS425 – Fall 2016 – Boris Glavic

Specialization and Generalization (Cont.)

■ Can have multiple specializations of an entity set based on different
features.

■ E.g., permanent_employee vs. temporary_employee, in addition to
instructor vs. secretary

■ Each particular employee would be

● a member of one of permanent_employee or temporary_employee,

● and also a member of one of instructor, secretary

■ The ISA relationship also referred to as superclass - subclass
relationship

©Silberschatz, Korth and Sudarshan7.78CS425 – Fall 2016 – Boris Glavic

Design Constraints on a

Specialization/Generalization

■ Constraint on which entities can be members of a given lower-level entity
set.

● condition-defined

4 Example: all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA person.

● user-defined

■ Constraint on whether or not entities may belong to more than one lower-
level entity set within a single generalization.

● Disjoint

4 an entity can belong to only one lower-level entity set

4 Noted in E-R diagram by having multiple lower-level entity sets link
to the same triangle

● Overlapping

4 an entity can belong to more than one lower-level entity set

14

©Silberschatz, Korth and Sudarshan7.79CS425 – Fall 2016 – Boris Glavic

Specialization Example

person

ID
name
address

student

instructor

rank

secretary

hours_per_week

employee

salary tot_credits

Disjoint, employees

are either instructors or

secretaries

Overlapping, a

person can be

both an employee

and a student

©Silberschatz, Korth and Sudarshan7.80CS425 – Fall 2016 – Boris Glavic

Design Constraints on a

Specialization/Generalization (Cont.)

■ Completeness constraint -- specifies whether or not an entity in
the higher-level entity set must belong to at least one of the lower-
level entity sets within a generalization.

● total: an entity must belong to one of the lower-level entity sets

● partial: an entity need not belong to one of the lower-level
entity sets

©Silberschatz, Korth and Sudarshan7.81CS425 – Fall 2016 – Boris Glavic

Aggregation

■ Consider the ternary relationship proj_guide, which we saw earlier

■ Suppose we want to record evaluations of a student by a guide on a
project

project

evaluation

instructor student

eval_ for

proj_ guide

©Silberschatz, Korth and Sudarshan7.82CS425 – Fall 2016 – Boris Glavic

Aggregation (Cont.)

■ Relationship sets eval_for and proj_guide represent overlapping
information

● Every eval_for relationship corresponds to a proj_guide
relationship

● However, some proj_guide relationships may not correspond to
any eval_for relationships

4 So we can’t discard the proj_guide relationship

■ Eliminate this redundancy via aggregation

● Treat relationship as an abstract entity

● Allows relationships between relationships

● Abstraction of relationship into new entity

©Silberschatz, Korth and Sudarshan7.83CS425 – Fall 2016 – Boris Glavic

Aggregation (Cont.)

■ Without introducing redundancy, the following diagram represents:

● A student is guided by a particular instructor on a particular project

● A student, instructor, project combination may have an associated
evaluation

evaluation

proj_ guide
instructor student

eval_ for

project

©Silberschatz, Korth and Sudarshan7.84CS425 – Fall 2016 – Boris Glavic

Representing Specialization via

Schemas

■ Method 1:

● Form a relation schema for the higher-level entity

● Form a relation schema for each lower-level entity set, include
primary key of higher-level entity set and local attributes

schema attributes
person ID, name, street, city
student ID, tot_cred
employee ID, salary

● Drawback: getting information about, an employee requires
accessing two relations, the one corresponding to the low-level
schema and the one corresponding to the high-level schema

15

©Silberschatz, Korth and Sudarshan7.85CS425 – Fall 2016 – Boris Glavic

Representing Specialization as Schemas

(Cont.)

■ Method 2:

● Form a single relation schema for each entity set with all local and
inherited attributes

schema attributes
person ID, name, street, city
student ID, name, street, city, tot_cred
employee ID, name, street, city, salary

● If specialization is total, the schema for the generalized entity set
(person) not required to store information

4 Can be defined as a view relation containing union of
specialization relations

4 But explicit schema may still be needed for foreign key constraints

● Drawback: name, street and city may be stored redundantly for people
who are both students and employees

©Silberschatz, Korth and Sudarshan7.86CS425 – Fall 2016 – Boris Glavic

Representing Specialization as Schemas

(Cont.)

■ Method 3:

● Form a single relation schema for each entity set with all local and
inherited attributes

4 For total and disjoint specialization add a single “type” attribute that
stores the type of an entity

4 For partial and/or overlapping specialization add multiple boolean
“type” attributes

● Drawback: large number of NULL values, potentially large relation

schema attributes

person ID, type, name, street, city, tot_cred, salary

schema attributes

person ID, isEmployee, isStudent, name, street, city, tot_cred, salary

©Silberschatz, Korth and Sudarshan7.87CS425 – Fall 2016 – Boris Glavic

Schemas Corresponding to Aggregation

■ To represent aggregation, create a schema containing

● primary key of the aggregated relationship,

● the primary key of the associated entity set

● any descriptive attributes

©Silberschatz, Korth and Sudarshan7.88CS425 – Fall 2016 – Boris Glavic

Schemas Corresponding to

Aggregation (Cont.)
■ For example, to represent aggregation manages between

relationship works_on and entity set manager, create a schema

eval_for (s_ID, project_id, i_ID, evaluation_id)

evaluation

proj_ guide
instructor student

eval_ for

project

©Silberschatz, Korth and Sudarshan7.89CS425 – Fall 2016 – Boris Glavic

ER-model to Relational Summary (Cont.)

■ Rule 8) Specialization of E into S1, … ,Sn (method 1)

● Create a relation for E with all attributes of E. The PK of E is the
PK.

● For each Si create a relation with PK(E) as PK and foreign key to
relation for E. Add all attributes of Si that do not exist in E.

■ Rule 9) Specialization of E into S1, … ,Sn (method 2)

● Create a relation for E with all attributes of E. The PK of E is the
PK.

● For each Si create a relation with PK(E) as PK and foreign key to
relation for E. Add all attributes of Si.

■ Rule 10) Specialization of E into S1, … ,Sn (method 3)

● Create a new relation with all attributes from E and S1, … ,Sn.

● Add single attribute type or a boolean type attribute for each Si

● The primary key is PK(E)

©Silberschatz, Korth and Sudarshan7.90CS425 – Fall 2016 – Boris Glavic

ER-model to Relational Summary (Cont.)

■ Rule 11) Aggregation: Relationship R1 relates entity sets E1, …, En.
This is related by relationship A to an entity set B

● Create a relation for A with attributes PK(E1) … PK(En) + all
attributes from A + PK(B). PK are all attributes except the ones
from A

16

©Silberschatz, Korth and Sudarshan7.91CS425 – Fall 2016 – Boris Glavic

ER Design Decisions

■ The use of an attribute or entity set to represent an object.

■ Whether a real-world concept is best expressed by an entity set or
a relationship set.

■ The use of a ternary relationship versus a pair of binary
relationships.

■ The use of a strong or weak entity set.

■ The use of specialization/generalization – contributes to modularity
in the design.

■ The use of aggregation – can treat the aggregate entity set as a
single unit without concern for the details of its internal structure.

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Partially taken from

Klaus R. Dittrich

How about doing another ER design

interactively on the board?

©Silberschatz, Korth and Sudarshan7.93CS425 – Fall 2016 – Boris Glavic

Summary of Symbols Used in E-R Notation

E

R

R

A1

A2

A2.1

A2.2

{A3}

A4

E
entity set

relationship set

identifying
relationship set
for weak entity set primary key

discriminating
a!ribute of
weak entity set

total participation
of entity set in
relationship

a!ributes:
simple (A1),
composite (A2) and
multivalued (A3)
derived (A4)

A1

E

A1

E
R E

()

©Silberschatz, Korth and Sudarshan7.94CS425 – Fall 2016 – Boris Glavic

Symbols Used in ER Notation (Cont.)

R

R

R

role-
name

R

E

R
l..h E

E1

E2 E3

E1

E2 E3

E1

E2 E3

many-to-many
relationship

many-to-one
relationship

one-to-one
relationship

cardinality
limits

ISA: generalization
or specialization

disjoint
generalization

total (disjoint)
generalization

role indicator

total

©Silberschatz, Korth and Sudarshan7.95CS425 – Fall 2016 – Boris Glavic

Alternative ER Notations

■ Chen, IDE1FX, …

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

A1
A2

A3

A2.1 A2.2

A4E

generalization ISA ISAtotal
generalizationweak entity set

©Silberschatz, Korth and Sudarshan7.96CS425 – Fall 2016 – Boris Glavic

Alternative ER Notations

Chen IDE1FX (Crows feet notation)

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

R
many-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

R
E1 E2

RE1 E2

17

©Silberschatz, Korth and Sudarshan7.97CS425 – Fall 2016 – Boris Glavic

UML

■ UML: Unified Modeling Language

■ UML has many components to graphically model different aspects
of an entire software system

■ UML Class Diagrams correspond to E-R Diagram, but several
differences.

©Silberschatz, Korth and Sudarshan7.98CS425 – Fall 2016 – Boris Glavic

ER vs. UML Class Diagrams

*Note reversal of position in cardinality constraint depiction

–A1

+M1

E

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes: + = public,
– = private, # = protected)

A1

M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1

role1 role2

relationship
a!ributes E2E1

role1 role2

A1

R

R
cardinality
constraints

E2E1
R

E2E1
0.. * 0..1 0..1 0.. *

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1
role1 role2

A1

() ()

©Silberschatz, Korth and Sudarshan7.99CS425 – Fall 2016 – Boris Glavic

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arrows independent
of disjoint/overlapping

E2 E3

E1

E2 E3

E1

E2 E3

overlapping
generalization

disjoint
generalization

R
E3

E1

E2

R
E3

E1

E2
n-ary
relationships

E1

E2 E3

overlapping

disjoint

E1

©Silberschatz, Korth and Sudarshan7.100CS425 – Fall 2016 – Boris Glavic

UML Class Diagrams (Cont.)

■ Binary relationship sets are represented in UML by just drawing a
line connecting the entity sets. The relationship set name is written
adjacent to the line.

■ The role played by an entity set in a relationship set may also be
specified by writing the role name on the line, adjacent to the entity
set.

■ The relationship set name may alternatively be written in a box,
along with attributes of the relationship set, and the box is
connected, using a dotted line, to the line depicting the relationship
set.

©Silberschatz, Korth and Sudarshan7.101CS425 – Fall 2016 – Boris Glavic

Recap

■ ER-model

● Entities

4 Strong

4 Weak

● Attributes

4 Simple vs. Composite

4 Single-valued vs. Multi-valued

● Relationships

4 Degree (binary vs. N-ary)

● Cardinality constraints

● Specialization/Generalization

4 Total vs. partial

4 Disjoint vs. overlapping

● Aggregation

©Silberschatz, Korth and Sudarshan7.102CS425 – Fall 2016 – Boris Glavic

Recap Cont.

■ ER-Diagrams

● Alternative notations

■ UML-Diagrams

■ Design decisions

● Multi-valued attribute vs. entity

● Entity vs. relationship

● Binary vs. N-ary relationships

● Placement of relationship attributes

● Total 1-1 vs. single entity

■ ER to relational model

● Translation rules

18

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Partially taken from

Klaus R. Dittrich

End of Chapter 7

©Silberschatz, Korth and Sudarshan7.104CS425 – Fall 2016 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL - Advanced

■ Database Design – Database modelling

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan7.105CS425 – Fall 2016 – Boris Glavic

Figure 7.01

instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345

98988

76653

23121

00128

76543

Shankar

Tanaka

Aoi

Chavez

Peltier

Zhang

Brown

44553

©Silberschatz, Korth and Sudarshan7.106CS425 – Fall 2016 – Boris Glavic

Figure 7.02

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

76653

23121

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

©Silberschatz, Korth and Sudarshan7.107CS425 – Fall 2016 – Boris Glavic

Figure 7.03

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121

©Silberschatz, Korth and Sudarshan7.108CS425 – Fall 2016 – Boris Glavic

Figure 7.04

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes

19

©Silberschatz, Korth and Sudarshan7.109CS425 – Fall 2016 – Boris Glavic

Figure 7.05

(b)(a)

a
1

a
2

a
3

a
4

b
1

b
2

b
3

a
2

a
1

a
3

b
1

b
2

b
3

b
4

b
5

A B A B

©Silberschatz, Korth and Sudarshan7.110CS425 – Fall 2016 – Boris Glavic

Figure 7.06

a
a
2

a
3

a
5

a
1

a
2

a
4

a
2

a
1

a
3

a
4

b
1

b
2

b
3

A B BA

b
1

b
2

b
3

b
4

(a) (b)

©Silberschatz, Korth and Sudarshan7.111CS425 – Fall 2016 – Boris Glavic

Figure 7.07

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan7.112CS425 – Fall 2016 – Boris Glavic

Figure 7.08

ID
name
salary

ID
name
tot_cred

date

instructor student

advisor

©Silberschatz, Korth and Sudarshan7.113CS425 – Fall 2016 – Boris Glavic

Figure 7.09
instructor student

ID
name
salary

instructor

ID
name
salary

instructor

ID
name
salary

ID
name
tot_cred

student

ID
name
tot_cred

student

ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

©Silberschatz, Korth and Sudarshan7.114CS425 – Fall 2016 – Boris Glavic

Figure 7.10

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*

20

©Silberschatz, Korth and Sudarshan7.115CS425 – Fall 2016 – Boris Glavic

Figure 7.11

instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan7.116CS425 – Fall 2016 – Boris Glavic

Figure 7.12

course

course_id
title
credits

course_id

prereq_id
prereq

©Silberschatz, Korth and Sudarshan7.117CS425 – Fall 2016 – Boris Glavic

Figure 7.13

course

course_id
title
credits

course_id

prereq_id
prereq

©Silberschatz, Korth and Sudarshan7.118CS425 – Fall 2016 – Boris Glavic

Figure 7.14

course

course_id

title
credits

section

sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan7.119CS425 – Fall 2016 – Boris Glavic

Figure 7.15

time_slotcourse

student

ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}

course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department

dept_name
building
budget

section

sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

©Silberschatz, Korth and Sudarshan7.120CS425 – Fall 2016 – Boris Glavic

Figure 7.17

instructor

ID
name
salary

phone

phone_number
location

instructor

ID
name
salary
phone_number

(a) (b)

inst_phone

21

©Silberschatz, Korth and Sudarshan7.121CS425 – Fall 2016 – Boris Glavic

Figure 7.18

registration
...

...

...

section

sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

©Silberschatz, Korth and Sudarshan7.122CS425 – Fall 2016 – Boris Glavic

Figure 7.19

B R C

A

CB E

A

R
A

R
B

R
C

(a) (b)

©Silberschatz, Korth and Sudarshan7.123CS425 – Fall 2016 – Boris Glavic

Figure 7.20

instructor

student

76766 Crick

Katz

Srinivasan

Kim

Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

76653

23121

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

May 2009

June 2007

June 2006

June 2009

June 2007

May 2007

May 2006

©Silberschatz, Korth and Sudarshan7.124CS425 – Fall 2016 – Boris Glavic

Figure 7.21

person

ID
name
address

student

instructor

rank

secretary

hours_per_week

employee

salary tot_credits

©Silberschatz, Korth and Sudarshan7.125CS425 – Fall 2016 – Boris Glavic

Figure 7.22

project

evaluation

instructor student

eval_ for

proj_ guide

©Silberschatz, Korth and Sudarshan7.126CS425 – Fall 2016 – Boris Glavic

Figure 7.23

evaluation

proj_ guide
instructor student

eval_ for

project

22

©Silberschatz, Korth and Sudarshan7.127CS425 – Fall 2016 – Boris Glavic

Figure 7.24
E

R

R

R

R

R

role-
name

R

E

A1

A2

A2.1

A2.2

{A3}

A4

E

R
l..h E

E1

E2 E3

E1

E2 E3

E1

E2 E3

entity set

relationship set

identifying
relationship set
for weak entity set primary key

many-to-many
relationship

many-to-one
relationship

one-to-one
relationship

cardinality
limits

discriminating
a!ribute of
weak entity set

total participation
of entity set in
relationship

a!ributes:
simple (A1),
composite (A2) and
multivalued (A3)
derived (A4)

ISA: generalization
or specialization

disjoint
generalization

total (disjoint)
generalization

role indicator

total

A1

E

A1

E
R E

()

©Silberschatz, Korth and Sudarshan7.128CS425 – Fall 2016 – Boris Glavic

Figure 7.25

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

R

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

many-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

generalization ISA ISAtotal
generalizationweak entity set

A1
A2

A3

A2.1 A2.2

A4E

R
E1 E2

RE1 E2

©Silberschatz, Korth and Sudarshan7.129CS425 – Fall 2016 – Boris Glavic

Figure 7.26

–A1

+M1

E

E2 E3

E1

E2 E3

E1

E2 E3

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes: + = public,
– = private, # = protected)

overlapping
generalization

disjoint
generalization

A1

M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1

role1 role2

relationship
a!ributes E2E1

role1 role2

A1

R

R
cardinality
constraints

E2E1
R

E2E1
0.. * 0..1 0..1 0.. *

R
E3

E1

E2

R
E3

E1

E2
n-ary
relationships

E1

E2 E3

overlapping

disjoint

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1
role1 role2

A1

() ()

E1

©Silberschatz, Korth and Sudarshan7.130CS425 – Fall 2016 – Boris Glavic

Figure 7.27

B C

A

CB E

A

R
A

R
B

R
C

(a) (b)

(c)

A

B C

R

R
BC

R
AB

R
AC

©Silberschatz, Korth and Sudarshan7.131CS425 – Fall 2016 – Boris Glavic

Figure 7.28

X Y

A B C

©Silberschatz, Korth and Sudarshan7.132CS425 – Fall 2016 – Boris Glavic

Figure 7.29
author

name

address

URL

written_by
published_by

contains

number

number

stocks

book

shopping_basket

basket_id

warehouse

basket_of
ISBN
title
year
price

code
address
phone

publisher

name

address

phone

URL

customer

email
name
address
phone

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2013

Boris Glavic

Chapter 8: Relational Database Design

©Silberschatz, Korth and Sudarshan8.2CS425 – Fall 2016 – Boris Glavic

Chapter 8: Relational Database Design

■ Features of Good Relational Design

■ Atomic Domains and First Normal Form

■ Decomposition Using Functional Dependencies

■ Functional Dependency Theory

■ Algorithms for Functional Dependencies

■ Decomposition Using Multivalued Dependencies

■ More Normal Form

■ Database-Design Process

■ Modeling Temporal Data

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

What is Good Design?

1) Easier: What is Bad Design?

©Silberschatz, Korth and Sudarshan8.4CS425 – Fall 2016 – Boris Glavic

Combine Schemas?

■ Suppose we combine instructor and department into inst_dept

● (No connection to relationship set inst_dept)

■ Result is possible repetition of information

©Silberschatz, Korth and Sudarshan8.5CS425 – Fall 2016 – Boris Glavic

Redundancy is Bad!

■ Update Physics Department

● multiple tuples to update

● Efficiency + potential for errors

■ Delete Physics Department

● update multiple tuples

● Efficiency + potential for errors

■ Departments without instructor or instructors without departments

● Need dummy department and dummy instructor

● Makes aggregation harder and error prone.

©Silberschatz, Korth and Sudarshan8.6CS425 – Fall 2016 – Boris Glavic

A Combined Schema Without Repetition

■ Combining is not always bad!

■ Consider combining relations

● sec_class(sec_id, building, room_number) and

● section(course_id, sec_id, semester, year)

into one relation

● section(course_id, sec_id, semester, year,
building, room_number)

■ No repetition in this case

2

©Silberschatz, Korth and Sudarshan8.7CS425 – Fall 2016 – Boris Glavic

What About Smaller Schemas?

■ Suppose we had started with inst_dept. How would we know to split up
(decompose) it into instructor and department?

■ Write a rule if there were a schema (dept_name, building, budget), then
dept_name would be a candidate key

■ Denote as a functional dependency:

dept_name ® building, budget

■ In inst_dept, because dept_name is not a candidate key, the building

and budget of a department may have to be repeated.

● This indicates the need to decompose inst_dept

■ Not all decompositions are good. Suppose we decompose
employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

■ The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan8.8CS425 – Fall 2016 – Boris Glavic

A Lossy Decomposition

©Silberschatz, Korth and Sudarshan8.9CS425 – Fall 2016 – Boris Glavic

Example of Lossless-Join Decomposition

■ Lossless join decomposition

■ Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)

A B

a
b

1
2

A

a
b

B

1
2

r ÕB,C(r)

ÕA,B (r) ÕB,C (r)
A B

a
b

1
2

C

A
B

B

1
2

C

A
B

C

A
B

ÕA,B(r)

©Silberschatz, Korth and Sudarshan8.10CS425 – Fall 2016 – Boris Glavic

Goals of Lossless-Join Decomposition

■ Lossless-Join decomposition means splitting a table in a way so
that we do not loose information

● That means we should be able to reconstruct the original
table from the decomposed table using joins

A B

a
b

1
2

A

a
b

B

1
2

r ÕB,C(r)

ÕA (r) ÕB (r)
A B

a
b

1
2

C

A
B

B

1
2

C

A
B

C

A
B

ÕA,B(r)

©Silberschatz, Korth and Sudarshan8.11CS425 – Fall 2016 – Boris Glavic

Goal — Devise a Theory for the Following

■ Decide whether a particular relation R is in good form.

■ In the case that a relation R is not in good form, decompose it into a
set of relations {R1, R2, ..., Rn} such that

● each relation is in good form

● the decomposition is a lossless-join decomposition

■ Our theory is based on:

● 1) Models of dependency between attribute values

4 functional dependencies

4 multivalued dependencies

● 2) Concept of lossless decomposition

● 3) Normal Forms Based On

4 Atomicity of values

4 Avoidance of redundancy

4 Lossless decomposition

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Modeling Dependencies between

Attribute Values:

Functional Depedencies

Multivalued Depedencies

3

©Silberschatz, Korth and Sudarshan8.13CS425 – Fall 2016 – Boris Glavic

Functional Dependencies

■ Constraints on the set of legal instances for a relation schema.

■ Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

■ A functional dependency is a generalization of the notion of a key.

● Thus, every key is a functional dependency

©Silberschatz, Korth and Sudarshan8.14CS425 – Fall 2016 – Boris Glavic

Functional Dependencies (Cont.)

■ Let R be a relation schema

a Í R and b Í R

■ The functional dependency

a® b
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes a, they also agree
on the attributes b. That is,

t1[a] = t2 [a] Þ t1[b] = t2 [b]

■ Example: Consider r(A,B) with the following instance of r.

■ On this instance, A ® B does NOT hold, but B ® A does hold.

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan8.15CS425 – Fall 2016 – Boris Glavic

Functional Dependencies (Cont.)

■ Let R be a relation schema

a Í R and b Í R

■ The functional dependency

a® b
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes a, they also agree
on the attributes b. That is,

t1[a] = t2 [a] Þ t1[b] = t2 [b]

■ Example: Consider r(A,B) with the following instance of r.

■ On this instance, A ® B does NOT hold, but B ® A does hold.

1 4
1 5
3 7

A = 1 and B = 4

A = 1 and B = 5

©Silberschatz, Korth and Sudarshan8.16CS425 – Fall 2016 – Boris Glavic

Functional Dependencies (Cont.)

■ K is a superkey for relation schema R if and only if K ® R

■ K is a candidate key for R if and only if

● K ® R, and

● for no a Ì K, a® R

■ Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name® building

and ID à building

but would not expect the following to hold:

dept_name ® salary

©Silberschatz, Korth and Sudarshan8.17CS425 – Fall 2016 – Boris Glavic

Use of Functional Dependencies

■ We use functional dependencies to:

● test relations to see if they are legal under a given set of functional
dependencies.

4 If a relation r is legal under a set F of functional dependencies, we
say that r satisfies F.

● specify constraints on the set of legal relations

4 We say that F holds on R if all legal relations on R satisfy the set
of functional dependencies F.

■ Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.

● For example, a specific instance of instructor may, by chance, satisfy
name ® ID.

©Silberschatz, Korth and Sudarshan8.18CS425 – Fall 2016 – Boris Glavic

Functional Dependencies (Cont.)

■ A functional dependency is trivial if it is satisfied by all instances of a
relation

● Example:

4 ID, name ® ID

4 name ® name

● In general, a® b is trivial if b Í a

4

©Silberschatz, Korth and Sudarshan8.19CS425 – Fall 2016 – Boris Glavic

Closure of a Set of Functional

Dependencies

■ Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

● For example: If A ® B and B ® C, then we can infer that A ®
C

■ The set of all functional dependencies logically implied by F is the
closure of F.

■ We denote the closure of F by F+.

■ F+ is a superset of F.

©Silberschatz, Korth and Sudarshan8.20CS425 – Fall 2016 – Boris Glavic

Functional-Dependency Theory

■ We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.

■ How do we get the initial set of FDs?

● Semantics of the domain we are modelling

● Has to be provided by a human (the designer)

■ Example:

● Relation Citizen(SSN, FirstName, LastName, Address)

● We know that SSN is unique and a person has a a unique SSN

● Thus, SSN ® FirstName, LastName

©Silberschatz, Korth and Sudarshan8.21CS425 – Fall 2016 – Boris Glavic

Closure of a Set of Functional

Dependencies

■ We can find F+, the closure of F, by repeatedly applying
Armstrong’s Axioms:

● if b Í a, then a® b (reflexivity)

● if a® b, then g a ® g b (augmentation)

● if a® b, and b® g, then a® g (transitivity)

■ These rules are

● sound (generate only functional dependencies that actually hold),
and

● complete (generate all functional dependencies that hold).

©Silberschatz, Korth and Sudarshan8.22CS425 – Fall 2016 – Boris Glavic

Example

■ R = (A, B, C, G, H, I)
F = { A ® B

A ® C
CG ® H
CG ® I

B ® H}

■ some members of F+

● A ® H

4 by transitivity from A ® B and B ® H

● AG ® I

4 by augmenting A ® C with G, to get AG ® CG
and then transitivity with CG ® I

● CG ® HI

4 by augmenting CG ® I to infer CG ® CGI,

and augmenting of CG ® H to infer CGI ® HI,

and then transitivity

©Silberschatz, Korth and Sudarshan8.23CS425 – Fall 2016 – Boris Glavic

Prove Additional Implications

■ Prove or disprove the following rules from Amstrong’s axioms

● 1) A ® B, C implies A ® B and A ® C

● 2) A ® B and A ® C implies A ® B, C

● 3) A, B ® B, C implies A ® C

● 4) A ® B and C ® D implies A, C ® B, D

©Silberschatz, Korth and Sudarshan8.24CS425 – Fall 2016 – Boris Glavic

Procedure for Computing F+

■ To compute the closure of a set of functional dependencies F:

F + = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F +

until F + does not change any further

NOTE: We shall see an alternative more efficient procedure for this task
later

5

©Silberschatz, Korth and Sudarshan8.25CS425 – Fall 2016 – Boris Glavic

Closure of Functional Dependencies

(Cont.)

■ Additional rules:

● If a® b holds and a® g holds, then a® b g holds (union)

● If a® b g holds, then a® b holds and a® g holds
(decomposition)

● If a® b holds and g b® d holds, then a g ® d holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

©Silberschatz, Korth and Sudarshan8.26CS425 – Fall 2016 – Boris Glavic

Closure of Attribute Sets

■ Given a set of attributes a, define the closure of a under F (denoted
by a+) as the set of attributes that are functionally determined by a
under F

■ Algorithm to compute a+, the closure of a under F

result := a;
while (changes to result) do

for each b ® g in F do
begin

if b Í result then result := result È g
end

©Silberschatz, Korth and Sudarshan8.27CS425 – Fall 2016 – Boris Glavic

Example of Attribute Set Closure

■ R = (A, B, C, G, H, I)

■ F = {A ® B
A ® C
CG ® H
CG ® I
B ® H}

■ (AG)+

1. result = AG

2. result = ABCG (A ® C and A ® B)

3. result = ABCGH (CG ® H and CG Í AGBC)

4. result = ABCGHI (CG ® I and CG Í AGBCH)

■ Is AG a candidate key?

1. Is AG a super key?

1. Does AG ® R? == Is (AG)+ Ê R

2. Is any subset of AG a superkey?

1. Does A ® R? == Is (A)+ Ê R

2. Does G ® R? == Is (G)+ Ê R

©Silberschatz, Korth and Sudarshan8.28CS425 – Fall 2016 – Boris Glavic

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

■ Testing for superkey:

● To test if a is a superkey, we compute a+, and check if a+ contains
all attributes of R.

■ Testing functional dependencies

● To check if a functional dependency a® b holds (or, in other
words, is in F+), just check if b Í a+.

● That is, we compute a+ by using attribute closure, and then check
if it contains b.

● Is a simple and cheap test, and very useful

■ Computing closure of F

● For each g Í R, we find the closure g+, and for each S Í g+, we
output a functional dependency g ® S.

©Silberschatz, Korth and Sudarshan8.29CS425 – Fall 2016 – Boris Glavic

O(n) Algorithm for Attribute Closure

■ Data Structures

● Enumerate the FDs and attributes

● int[] c: an integer array with one element per FD that is initialized
to the size of the LHS of the FD

● list<int>[] rhs: an array of lists with one element per FD. The
element stores the numeric ID of the attributes of the FDs RHS

● list<int>[] lhs: an array of lists of integers, one element per
attribute. The element for each attribute stores the numeric IDs of
the FDs that have the attribute in its LHS

● set<int> aplus: a set storing the attributes currently established to
be implied by A

● stack<int> todo: a stack of attributes to be processed next

©Silberschatz, Korth and Sudarshan8.30CS425 – Fall 2016 – Boris Glavic

O(n) Algorithm for Attribute Closure

■ Algorithm

● Initialize c, rhs, lhs, aplus to the emptyset, todo to A

while(!todo.isEmpty) {

curA = todo.pop();

aplus.add(curA); // add curA to result

for fd in lhs[curA] { // update how many attribute found for
LHS

c[fd]--; // found a LHS attr for fd

if (c[fd] == 0) {

remove(lhs[curA], fd); // avoid firing twice

for newA in rhs[fd] { // add implied attributes

if (!aplus[newA]) // if attribute is new add to todo

todo.push(newA);

aplus.add(newA);

}

}

}

}

6

©Silberschatz, Korth and Sudarshan8.31CS425 – Fall 2016 – Boris Glavic

Canonical Cover

■ Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

● For example: A ® C is redundant in: {A ® B, B ® C, A ® C}

● Parts of a functional dependency may be redundant

4 E.g.: on RHS: {A ® B, B ® C, A ® CD} can be simplified
to

{A ® B, B ® C, A ® D}

4 E.g.: on LHS: {A ® B, B ® C, AC ® D} can be simplified
to

{A ® B, B ® C, A ® D}

■ Intuitively, a canonical cover of F is a minimal set of functional
dependencies equivalent to F, having no redundant dependencies or
redundant parts of dependencies

©Silberschatz, Korth and Sudarshan8.32CS425 – Fall 2016 – Boris Glavic

Extraneous Attributes

■ Consider a set F of functional dependencies and the functional
dependency a® b in F.

● Attribute A is extraneous in a if A Î a
and F logically implies (F – {a® b}) È {(a – A) ®b}.

● Attribute A is extraneous in b if A Î b
and the set of functional dependencies
(F – {a® b}) È {a®(b – A)} logically implies F.

■ Note: implication in the opposite direction is trivial in each of the
cases above, since a stronger functional dependency always
implies a weaker one

■ Example: Given F = {A ® C, AB ® C }

● B is extraneous in AB ® C because {A ® C, AB ® C} logically
implies A ® C (I.e. the result of dropping B from AB ® C).

■ Example: Given F = {A ® C, AB ® CD}

● C is extraneous in AB ® CD since AB ® C can be inferred even
after deleting C

©Silberschatz, Korth and Sudarshan8.33CS425 – Fall 2016 – Boris Glavic

Testing if an Attribute is Extraneous

■ Consider a set F of functional dependencies and the functional
dependency a® b in F.

■ To test if attribute A Î a is extraneous in a

1. compute ({a} – A)+ using the dependencies in F

2. check that ({a} – A)+ contains b; if it does, A is extraneous in a

■ To test if attribute A Î b is extraneous in b

1. compute a+ using only the dependencies in
F’ = (F – {a® b}) È {a®(b – A)},

2. check that a+ contains A; if it does, A is extraneous in b

©Silberschatz, Korth and Sudarshan8.34CS425 – Fall 2016 – Boris Glavic

Canonical Cover

■ A canonical cover for F is a set of dependencies Fc such that

● F logically implies all dependencies in Fc, and

● Fc logically implies all dependencies in F, and

● No functional dependency in Fc contains an extraneous attribute, and

● Each left side of functional dependency in Fc is unique.

■ To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
a1 ®b1 and a1 ®b2 with a1 ®b1 b2

Find a functional dependency a® b with an
extraneous attribute either in a or in b
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from a® b
until F does not change

■ Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan8.35CS425 – Fall 2016 – Boris Glavic

Computing a Canonical Cover

■ R = (A, B, C)

F = {A ® BC

B ® C

A ® B

AB ® C}

■ Combine A ® BC and A ® B into A ® BC

● Set is now {A ® BC, B ® C, AB ® C}

■ A is extraneous in AB ® C

● Check if the result of deleting A from AB ® C is implied by the other

dependencies

4 Yes: in fact, B ® C is already present!

● Set is now {A ® BC, B ® C}

■ C is extraneous in A ® BC

● Check if A ® C is logically implied by A ® B and the other dependencies

4 Yes: using transitivity on A ® B and B ® C.

– Can use attribute closure of A in more complex cases

■ The canonical cover is: A ® B

B ® C

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Lossless Join-Decomposition

Dependency Preservation

7

©Silberschatz, Korth and Sudarshan8.37CS425 – Fall 2016 – Boris Glavic

So Far

■ Theory of dependencies

■ What is missing?

● When is a decomposition loss-less

4 Lossless-join decomposition

4 Dependencies on the input are preserved

■ What else is missing?

● Define what constitutes a good relation

4 Normal forms

● How to check for a good relation

4 Test normal forms

● How to achieve a good relation

4 Translate into normal form

4 Involves decomposition

©Silberschatz, Korth and Sudarshan8.38CS425 – Fall 2016 – Boris Glavic

Lossless-join Decomposition

■ For the case of R = (R1, R2), we require that for all possible relation
instances r on schema R

r = ÕR1 (r) ÕR2 (r)

■ A decomposition of R into R1 and R2 is lossless join if at least one of
the following dependencies is in F+:

● R1 Ç R2 ® R1

● R1 Ç R2 ® R2

■ The above functional dependencies are a sufficient condition for
lossless join decomposition; the dependencies are a necessary
condition only if all constraints are functional dependencies

©Silberschatz, Korth and Sudarshan8.39CS425 – Fall 2016 – Boris Glavic

Example

■ R = (A, B, C)
F = {A ® B, B ® C)

● Can be decomposed in two different ways

■ R1 = (A, B), R2 = (B, C)

● Lossless-join decomposition:

R1 Ç R2 = {B} and B ® BC

● Dependency preserving

■ R1 = (A, B), R2 = (A, C)

● Lossless-join decomposition:

R1 Ç R2 = {A} and A ® AB

● Not dependency preserving
(cannot check B ® C without computing R1 R2)

©Silberschatz, Korth and Sudarshan8.40CS425 – Fall 2016 – Boris Glavic

Dependency Preservation

■ Let Fi be the set of dependencies F + that include only attributes in
Ri.

4 A decomposition is dependency preserving, if

(F1 È F2 È … È Fn)+ = F +

4 If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is
expensive.

©Silberschatz, Korth and Sudarshan8.41CS425 – Fall 2016 – Boris Glavic

Testing for Dependency Preservation

■ To check if a dependency a® b is preserved in a decomposition
of R into R1, R2, …, Rn we apply the following test (with attribute
closure done with respect to F)

● result = a
while (changes to result) do

for each Ri in the decomposition
t = (result Ç Ri)+ Ç Ri

result = result È t

● If result contains all attributes in b, then the functional

dependency
a® b is preserved.

■ We apply the test on all dependencies in F to check if a
decomposition is dependency preserving

■ This procedure (attribute closure) takes polynomial time, instead of
the exponential time required to compute F+ and (F1 È F2 È … È
Fn)+

©Silberschatz, Korth and Sudarshan8.42CS425 – Fall 2016 – Boris Glavic

Example

■ R = (A, B, C)
F = {A ® B

B ® C}
Key = {A}

■ Decomposition R1 = (A, B), R2 = (B, C)

● Lossless-join decomposition

● Dependency preserving

8

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Normal Forms

©Silberschatz, Korth and Sudarshan8.44CS425 – Fall 2016 – Boris Glavic

So Far

■ Theory of dependencies

■ Decompositions and ways to check whether they are “good”

● Lossless

● Dependency preserving

■ What is missing?

● Define what constitutes a good relation

4 Normal forms

● How to check for a good relation

4 Test normal forms

● How to achieve a good relation

4 Translate into normal form

4 Involves decomposition

©Silberschatz, Korth and Sudarshan8.45CS425 – Fall 2016 – Boris Glavic

Goals of Normalization

■ Let R be a relation scheme with a set F of functional dependencies.

■ Decide whether a relation scheme R is in good form.

■ In the case that a relation scheme R is not in good form,
decompose it into a set of relation scheme {R1, R2, ..., Rn} such that

● each relation scheme is in good form

● the decomposition is a lossless-join decomposition

● Preferably, the decomposition should be dependency preserving.

©Silberschatz, Korth and Sudarshan8.46CS425 – Fall 2016 – Boris Glavic

First Normal Form

■ A domain is atomic if its elements are considered to be indivisible units

● Examples of non-atomic domains:

4 Set of names, composite attributes

4 Identification numbers like CS101 that can be broken up into
parts

■ A relational schema R is in first normal form if the domains of all
attributes of R are atomic

■ Non-atomic values complicate storage and encourage redundant
(repeated) storage of data

● Example: Set of accounts stored with each customer, and set of
owners stored with each account

● We assume all relations are in first normal form

● (revisited in Chapter 22 of the textbook: Object Based Databases)

©Silberschatz, Korth and Sudarshan8.47CS425 – Fall 2016 – Boris Glavic

First Normal Form (Cont’d)

■ Atomicity is actually a property of how the elements of the domain are
used.

● Example: Strings would normally be considered indivisible

● Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

● If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.

● Doing so is a bad idea: leads to encoding of information in
application program rather than in the database.

©Silberschatz, Korth and Sudarshan8.48CS425 – Fall 2016 – Boris Glavic

Second Normal Form

■ A relation schema R in 1NF is in second normal form (2NF) iff

● No non-prime attribute depends on parts of a candidate key

● An attribute is non-prime if it does not belong to any candidate key for
R

9

©Silberschatz, Korth and Sudarshan8.49CS425 – Fall 2016 – Boris Glavic

Second Normal Form Example

■ R(A,B,C,D)

● A,B ® C,D

● A ® C

● B ® D

■ {A,B} is the only candidate key

■ R is not in 2NF, because A->C where A is part of a candidate key and C
is not part of a candidate key

■ Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID,
InstrName, StudentName)

● Indication that we are putting stuff together that does not belong
together

©Silberschatz, Korth and Sudarshan8.50CS425 – Fall 2016 – Boris Glavic

Second Normal Form Interpretation

■ Why is a dependency on parts of a candidate key bad?

● That is why is a relation that is not in 2NF bad?

■ 1) A dependency on part of a candidate key indicates potential for
redudancy

● Advisor(InstrSSN, StudentCWID, InstrName, StudentName)

● StudentCWID ® StudentName

● If a student is advised by multiple instructors we record his name
several times

■ 2) A dependency on parts of a candidate key shows that some
attributes are unrelated to other parts of a candidate key

● That means the table should be split

©Silberschatz, Korth and Sudarshan8.51CS425 – Fall 2016 – Boris Glavic

2NF is What We Want?

■ Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

● A ® B,C,D

● C ® D

■ {Name} is the only candidate key

■ I is in 2NF

■ However, as we have seen before I still has update redundancy that can
cause update anomalies

● We repeat the budget of a department if there is more than one
instructor working for that department

©Silberschatz, Korth and Sudarshan8.52CS425 – Fall 2016 – Boris Glavic

Third Normal Form

■ A relation schema R is in third normal form (3NF) if for all:

a® b in F+

at least one of the following holds:

● a® b is trivial (i.e., b Î a)

● a is a superkey for R

● Each attribute A in b – a is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

Alternatively,

● Every attribute depends directly on a candidate key, i.e., for every
attribute A there is a dependency X ® A, but no dependency Y ® A
where Y is not a candidate key

©Silberschatz, Korth and Sudarshan8.53CS425 – Fall 2016 – Boris Glavic

3NF Example

■ Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

● A ® B,C,D

● C ® D

■ {Name} is the only candidate key

■ I is in 2NF

■ I is not in 3NF

©Silberschatz, Korth and Sudarshan8.54CS425 – Fall 2016 – Boris Glavic

Testing for 3NF

■ Optimization: Need to check only FDs in F, need not check all FDs in
F+.

■ Use attribute closure to check for each dependency a® b, if a is a
superkey.

■ If a is not a superkey, we have to verify if each attribute in b is
contained in a candidate key of R

● this test is rather more expensive, since it involve finding
candidate keys

● testing for 3NF has been shown to be NP-hard

● Interestingly, decomposition into third normal form (described
shortly) can be done in polynomial time

10

©Silberschatz, Korth and Sudarshan8.55CS425 – Fall 2016 – Boris Glavic

3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency a® b in Fc do
if none of the schemas Rj, 1 £ j £ i contains a b

then begin
i := i + 1;
Ri := a b

end
if none of the schemas Rj, 1 £ j £ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
/* Optionally, remove redundant relations */

repeat
if any schema Rj is contained in another schema Rk

then /* delete Rj */
Rj = R;;
i=i-1;

return (R1, R2, ..., Ri)

©Silberschatz, Korth and Sudarshan8.56CS425 – Fall 2016 – Boris Glavic

3NF Decomposition Algorithm (Cont.)

■ Above algorithm ensures:

● each relation schema Ri is in 3NF

● decomposition is dependency preserving and lossless-join

● Proof of correctness is at end of this presentation (click here)

©Silberschatz, Korth and Sudarshan8.57CS425 – Fall 2016 – Boris Glavic

3NF Decomposition: An Example

■ Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type)

■ The functional dependencies for this relation schema are:

1. customer_id, employee_id ® branch_name, type

2. employee_id ® branch_name

3. customer_id, branch_name ® employee_id

■ We first compute a canonical cover

● branch_name is extraneous in the r.h.s. of the 1st dependency

● No other attribute is extraneous, so we get FC =

customer_id, employee_id ® type
employee_id ® branch_name
customer_id, branch_name ® employee_id

©Silberschatz, Korth and Sudarshan8.58CS425 – Fall 2016 – Boris Glavic

3NF Decompsition Example (Cont.)

■ The for loop generates following 3NF schema:

(customer_id, employee_id, type)

(employee_id, branch_name)

(customer_id, branch_name, employee_id)

● Observe that (customer_id, employee_id, type) contains a
candidate key of the original schema, so no further relation schema
needs be added

■ At end of for loop, detect and delete schemas, such as (employee_id,
branch_name), which are subsets of other schemas

● result will not depend on the order in which FDs are considered

■ The resultant simplified 3NF schema is:

(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)

©Silberschatz, Korth and Sudarshan8.59CS425 – Fall 2016 – Boris Glavic

Another 3NF Example

■ Relation dept_advisor:

● dept_advisor (s_ID, i_ID, dept_name)
F = {s_ID, dept_name ® i_ID,

i_ID ® dept_name}

● Two candidate keys: s_ID, dept_name, and i_ID, s_ID

● R is in 3NF

4 s_ID, dept_name ® i_ID s_ID

– dept_name is a superkey

4 i_ID ® dept_name

– dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan8.60CS425 – Fall 2016 – Boris Glavic

Redundancy in 3NF

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

■ repetition of information (e.g., the relationship l1, k1)

l (i_ID, dept_name)

■ need to use null values (e.g., to represent the relationship
l2, k2 where there is no corresponding value for J).

l (i_ID, dept_nameI) if there is no separate relation mapping
instructors to departments

■ There is some redundancy in this schema dept_advisor (s_ID, i_ID,
dept_name)

■ Example of problems due to redundancy in 3NF

● R = (J, K, L)
F = {JK ® L, L ® K }

11

©Silberschatz, Korth and Sudarshan8.61CS425 – Fall 2016 – Boris Glavic

Boyce-Codd Normal Form

■ a® b is trivial (i.e., b Í a)

■ a is a superkey for R

A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F+ of
the form

a® b

where a Í R and b Í R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name® building, budget
holds on instr_dept, but dept_name is not a superkey

©Silberschatz, Korth and Sudarshan8.62CS425 – Fall 2016 – Boris Glavic

BCNF and Dependency Preservation

■ If a relation is in BCNF it is in 3NF

■ Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation

■ Because it is not always possible to achieve both BCNF and
dependency preservation, we usually consider normally third normal
form.

©Silberschatz, Korth and Sudarshan8.63CS425 – Fall 2016 – Boris Glavic

Testing for BCNF

■ To check if a non-trivial dependency a®b causes a violation of BCNF

1. compute a+ (the attribute closure of a), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

■ Simplified test: To check if a relation schema R is in BCNF, it suffices
to check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.

● If none of the dependencies in F causes a violation of BCNF, then
none of the dependencies in F+ will cause a violation of BCNF
either.

■ However, simplified test using only F is incorrect when testing a
relation in a decomposition of R

● Consider R = (A, B, C, D, E), with F = { A ® B, BC ® D}

4 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)

4 Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies
BCNF.

4 In fact, dependency AC ® D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan8.64CS425 – Fall 2016 – Boris Glavic

Testing Decomposition for BCNF

■ To check if a relation Ri in a decomposition of R is in BCNF,

● Either test Ri for BCNF with respect to the restriction of F to Ri

(that is, all FDs in F+ that contain only attributes from Ri)

● or use the original set of dependencies F that hold on R, but with
the following test:

– for every set of attributes a Í Ri, check that a+ (the
attribute closure of a) either includes no attribute of Ri- a,
or includes all attributes of Ri.

4 If the condition is violated by some a® b in F, the
dependency

a® (a+ - a) Ç Ri

can be shown to hold on Ri, and Ri violates BCNF.

4 We use above dependency to decompose Ri

©Silberschatz, Korth and Sudarshan8.65CS425 – Fall 2016 – Boris Glavic

Decomposing a Schema into BCNF

■ Suppose we have a schema R and a non-trivial dependency a®b
causes a violation of BCNF.

We decompose R into:

• (a U b)

• (R - (b - a))

■ In our example,

● a = dept_name

● b = building, budget

and inst_dept is replaced by

● (a U b) = (dept_name, building, budget)

● (R - (b - a)) = (ID, name, salary, dept_name)

©Silberschatz, Korth and Sudarshan8.66CS425 – Fall 2016 – Boris Glavic

BCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let a® b be a nontrivial functional dependency that
holds on Ri such that a® Ri is not in F +,

and a Ç b = Æ;
result := (result – Ri) È (Ri – b) È (a, b);

end
else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

12

©Silberschatz, Korth and Sudarshan8.67CS425 – Fall 2016 – Boris Glavic

Example of BCNF Decomposition

■ R = (A, B, C)
F = {A ® B

B ® C}
Key = {A}

■ R is not in BCNF (B ® C but B is not superkey)

■ Decomposition

● R1 = (B, C)

● R2 = (A,B)

©Silberschatz, Korth and Sudarshan8.68CS425 – Fall 2016 – Boris Glavic

Example of BCNF Decomposition

■ class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

■ Functional dependencies:

● course_id→ title, dept_name, credits

● building, room_number→capacity

● course_id, sec_id, semester, year→building, room_number,
time_slot_id

■ A candidate key {course_id, sec_id, semester, year}.

■ BCNF Decomposition:

● course_id→ title, dept_name, credits holds

4 but course_id is not a superkey.

● We replace class by:

4 course(course_id, title, dept_name, credits)

4 class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan8.69CS425 – Fall 2016 – Boris Glavic

BCNF Decomposition (Cont.)

■ course is in BCNF

● How do we know this?

■ building, room_number→capacity holds on class-1

● but {building, room_number} is not a superkey for class-1.

● We replace class-1 by:

4 classroom (building, room_number, capacity)

4 section (course_id, sec_id, semester, year, building,
room_number, time_slot_id)

■ classroom and section are in BCNF.

©Silberschatz, Korth and Sudarshan8.70CS425 – Fall 2016 – Boris Glavic

BCNF and Dependency Preservation

■ R = (J, K, L)
F = {JK ® L

L ® K }
Two candidate keys = JK and JL

■ R is not in BCNF

■ Any decomposition of R will fail to preserve

JK ® L

This implies that testing for JK ® L requires a join

It is not always possible to get a BCNF decomposition that is
dependency preserving

©Silberschatz, Korth and Sudarshan8.71CS425 – Fall 2016 – Boris Glavic

How good is BCNF?

■ There are database schemas in BCNF that do not seem to be
sufficiently normalized

■ Consider a relation

inst_info (ID, child_name, phone)

● where an instructor may have more than one phone and can have
multiple children

ID child_name phone

99999
99999
99999
99999

David

David

William

Willian

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_info

©Silberschatz, Korth and Sudarshan8.72CS425 – Fall 2016 – Boris Glavic

■ There are no non-trivial functional dependencies and therefore the
relation is in BCNF

■ Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999,
we need to add two tuples

(99999, David, 981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

13

©Silberschatz, Korth and Sudarshan8.73CS425 – Fall 2016 – Boris Glavic

■ Therefore, it is better to decompose inst_info into:

This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.

How good is BCNF? (Cont.)

ID child_name

99999
99999
99999
99999

David

David

William

Willian

inst_child

ID phone

99999
99999
99999
99999

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_phone

©Silberschatz, Korth and Sudarshan8.74CS425 – Fall 2016 – Boris Glavic

Comparison of BCNF and 3NF

■ It is always possible to decompose a relation into a set of relations
that are in 3NF such that:

● the decomposition is lossless

● the dependencies are preserved

■ It is always possible to decompose a relation into a set of relations
that are in BCNF such that:

● the decomposition is lossless

● it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan8.75CS425 – Fall 2016 – Boris Glavic

Summary Normal Forms

■ BCNF -> 3NF -> 2NF -> 1NF

■ 1NF

● atomic attributes

■ 2NF

● no non-trivial dependencies of non-prime attributes on parts of the
key

■ 3NF

● no transitive non-trivial dependencies on the key

■ BCNF

● only non-trivial dependencies on a superkey

©Silberschatz, Korth and Sudarshan8.76CS425 – Fall 2016 – Boris Glavic

Design Goals Revisited

■ Goal for a relational database design is:

● BCNF.

● Lossless join.

● Dependency preservation.

■ If we cannot achieve this, we accept one of

● Lack of dependency preservation

● Redundancy due to use of 3NF

■ Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)

■ Even if we had a dependency preserving decomposition, using SQL we
would not be able to efficiently test a functional dependency whose left
hand side is not a key.

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Multivalued Dependencies and 4NF,

5NF

©Silberschatz, Korth and Sudarshan8.78CS425 – Fall 2016 – Boris Glavic

Multivalued Dependencies

■ Suppose we record names of children, and phone numbers for
instructors:

● inst_child(ID, child_name)

● inst_phone(ID, phone_number)

■ If we were to combine these schemas to get

● inst_info(ID, child_name, phone_number)

● Example data:
(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

■ This relation is in BCNF

● Why?

14

©Silberschatz, Korth and Sudarshan8.79CS425 – Fall 2016 – Boris Glavic

Multivalued Dependencies (MVDs)

■ Let R be a relation schema and let a Í R and b Í R. The
multivalued dependency

a®® b

holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2
in r such that t1[a] = t2 [a], there exist tuples t3 and t4 in r such that:

t1[a] = t2 [a] = t3 [a] = t4 [a]
t3[b] = t1 [b]
t3[R – b] = t2[R – b]
t4 [b] = t2[b]
t4[R – b] = t1[R – b]

©Silberschatz, Korth and Sudarshan8.80CS425 – Fall 2016 – Boris Glavic

MVD (Cont.)

■ Tabular representation of a®® b

©Silberschatz, Korth and Sudarshan8.81CS425 – Fall 2016 – Boris Glavic

Example

■ Let R be a relation schema with a set of attributes that are partitioned
into 3 nonempty subsets.

Y, Z, W

■ We say that Y ®® Z (Y multidetermines Z)
if and only if for all possible relations r (R)

< y1, z1, w1 > Î r and < y1, z2, w2 > Î r

then

< y1, z1, w2 > Î r and < y1, z2, w1 > Î r

■ Note that since the behavior of Z and W are identical it follows that

Y ®® Z if Y ®® W

©Silberschatz, Korth and Sudarshan8.82CS425 – Fall 2016 – Boris Glavic

Example (Cont.)

■ In our example:

ID ®® child_name
ID ®® phone_number

■ The above formal definition is supposed to formalize the notion that given
a particular value of Y (ID) it has associated with it a set of values of Z
(child_name) and a set of values of W (phone_number), and these two
sets are in some sense independent of each other.

■ Note:

● If Y ® Z then Y ®® Z

● Indeed we have (in above notation) Z1 = Z2

The claim follows.

©Silberschatz, Korth and Sudarshan8.83CS425 – Fall 2016 – Boris Glavic

Use of Multivalued Dependencies

■ We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a
given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall
thus concern ourselves only with relations that satisfy a given
set of functional and multivalued dependencies.

■ If a relation r fails to satisfy a given multivalued dependency, we can
construct a relations r¢ that does satisfy the multivalued
dependency by adding tuples to r.

©Silberschatz, Korth and Sudarshan8.84CS425 – Fall 2016 – Boris Glavic

Theory of MVDs

■ From the definition of multivalued dependency, we can derive the
following rule:

● If a® b, then a®® b

That is, every functional dependency is also a multivalued dependency

■ The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.

● We can compute D+ from D, using the formal definitions of

functional dependencies and multivalued dependencies.

● We can manage with such reasoning for very simple multivalued
dependencies, which seem to be most common in practice

● For complex dependencies, it is better to reason about sets of
dependencies using a system of inference rules (see Appendix C).

15

©Silberschatz, Korth and Sudarshan8.85CS425 – Fall 2016 – Boris Glavic

Fourth Normal Form

■ A relation schema R is in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D+ of
the form a®® b, where a Í R and b Í R, at least one of the following
hold:

● a®® b is trivial (i.e., b Í a or a È b = R)

● a is a superkey for schema R

■ If a relation is in 4NF it is in BCNF

©Silberschatz, Korth and Sudarshan8.86CS425 – Fall 2016 – Boris Glavic

Restriction of Multivalued Dependencies

■ The restriction of D to Ri is the set Di consisting of

● All functional dependencies in D+ that include only attributes of Ri

● All multivalued dependencies of the form

a®® (b Ç Ri)

where a Í Ri and a®® b is in D+

©Silberschatz, Korth and Sudarshan8.87CS425 – Fall 2016 – Boris Glavic

4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done)
if (there is a schema Ri in result that is not in 4NF) then

begin

let a®® b be a nontrivial multivalued dependency that holds
on Ri such that a® Ri is not in Di, and aÇb=f;

result := (result - Ri) È (Ri - b) È (a, b);
end

else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join

©Silberschatz, Korth and Sudarshan8.88CS425 – Fall 2016 – Boris Glavic

Example

■ R =(A, B, C, G, H, I)

F ={ A ®® B

B ®® HI

CG ®® H }

■ R is not in 4NF since A ®® B and A is not a superkey for R

■ Decomposition

a) R1 = (A, B) (R1 is in 4NF)

b) R2 = (A, C, G, H, I) (R2 is not in 4NF, decompose into R3 and R4)

c) R3 = (C, G, H) (R3 is in 4NF)

d) R4 = (A, C, G, I) (R4 is not in 4NF, decompose into R5 and R6)

● A ®® B and B ®® HI è A ®® HI, (MVD transitivity), and

● and hence A ®® I (MVD restriction to R4)

e) R5 = (A, I) (R5 is in 4NF)

f)R6 = (A, C, G) (R6 is in 4NF)

©Silberschatz, Korth and Sudarshan8.89CS425 – Fall 2016 – Boris Glavic

Further Normal Forms

■ Join dependencies generalize multivalued dependencies

● lead to project-join normal form (PJNF) (also called fifth normal
form)

■ A class of even more general constraints, leads to a normal form
called domain-key normal form.

■ Problem with these generalized constraints: are hard to reason with,
and no set of sound and complete set of inference rules exists.

■ Hence rarely used

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Final Thoughts on Design Process

16

©Silberschatz, Korth and Sudarshan8.91CS425 – Fall 2016 – Boris Glavic

Overall Database Design Process

■ We have assumed schema R is given

● R could have been generated when converting an ER diagram to a
set of tables.

● R could have been a single relation containing all attributes that are
of interest (called universal relation).

● Normalization breaks R into smaller relations.

● R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.

©Silberschatz, Korth and Sudarshan8.92CS425 – Fall 2016 – Boris Glavic

ER Model and Normalization

■ When an ER diagram is carefully designed, identifying all entities
correctly, the tables generated from the ER diagram should not need
further normalization.

■ However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of
the entity

● Example: an employee entity with attributes
department_name and building,

and a functional dependency
department_name® building

● Good design would have made department an entity

■ Functional dependencies from non-key attributes of a relationship set
possible, but rare --- most relationships are binary

©Silberschatz, Korth and Sudarshan8.93CS425 – Fall 2016 – Boris Glavic

Denormalization for Performance

■ May want to use non-normalized schema for performance

■ For example, displaying prereqs along with course_id, and title requires
join of course with prereq

■ Alternative 1: Use denormalized relation containing attributes of course
as well as prereq with all above attributes

● faster lookup

● extra space and extra execution time for updates

● extra coding work for programmer and possibility of error in extra code

■ Alternative 2: use a materialized view defined as
course prereq

● Benefits and drawbacks same as above, except no extra coding work
for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan8.94CS425 – Fall 2016 – Boris Glavic

Other Design Issues

■ Some aspects of database design are not caught by normalization

■ Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use

● earnings_2004, earnings_2005, earnings_2006, etc., all on the
schema (company_id, earnings).

4 Above are in BCNF, but make querying across years difficult and
needs new table each year

● company_year (company_id, earnings_2004, earnings_2005,
earnings_2006)

4 Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

4 Is an example of a crosstab, where values for one attribute
become column names

4 Used in spreadsheets, and in data analysis tools

©Silberschatz, Korth and Sudarshan8.95CS425 – Fall 2016 – Boris Glavic

Recap

■ Functional and Multi-valued Dependencies

● Axioms

● Closure

● Minimal Cover

● Attribute Closure

■ Redundancy and lossless decomposition

■ Normal-Forms

● 1NF, 2NF, 3NF

● BCNF

● 4NF, 5NF

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

17

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Proof of Correctness of 3NF

Decomposition Algorithm

©Silberschatz, Korth and Sudarshan8.98CS425 – Fall 2016 – Boris Glavic

Correctness of 3NF Decomposition

Algorithm

■ 3NF decomposition algorithm is dependency preserving (since there
is a relation for every FD in Fc)

■ Decomposition is lossless

● A candidate key (C) is in one of the relations Ri in decomposition

● Closure of candidate key under Fc must contain all attributes in
R.

● Follow the steps of attribute closure algorithm to show there is
only one tuple in the join result for each tuple in Ri

©Silberschatz, Korth and Sudarshan8.99CS425 – Fall 2016 – Boris Glavic

Correctness of 3NF Decomposition

Algorithm (Cont’d.)

Claim: if a relation Ri is in the decomposition generated by the

above algorithm, then Ri satisfies 3NF.

■ Let Ri be generated from the dependency a® b

■ Let g ® B be any non-trivial functional dependency on Ri. (We need only
consider FDs whose right-hand side is a single attribute.)

■ Now, B can be in either b or a but not in both. Consider each case
separately.

©Silberschatz, Korth and Sudarshan8.100CS425 – Fall 2016 – Boris Glavic

Correctness of 3NF Decomposition

(Cont’d.)
■ Case 1: If B in b:

● If g is a superkey, the 2nd condition of 3NF is satisfied

● Otherwise a must contain some attribute not in g

● Since g ® B is in F+ it must be derivable from Fc, by using attribute
closure on g.

● Attribute closure not have used a®b. If it had been used, a must
be contained in the attribute closure of g, which is not possible, since
we assumed g is not a superkey.

● Now, using a® (b- {B}) and g ® B, we can derive a®B

(since g Í a b, and B Ï g since g ® B is non-trivial)

● Then, B is extraneous in the right-hand side of a®b; which is not
possible since a®b is in Fc.

● Thus, if B is in b then g must be a superkey, and the second
condition of 3NF must be satisfied.

©Silberschatz, Korth and Sudarshan8.101CS425 – Fall 2016 – Boris Glavic

Correctness of 3NF Decomposition

(Cont’d.)
■ Case 2: B is in a.

● Since a is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.

● In fact, we cannot show that g is a superkey.

● This shows exactly why the third alternative is present in the
definition of 3NF.

Q.E.D.

©Silberschatz, Korth and Sudarshan8.102CS425 – Fall 2016 – Boris Glavic

Figure 8.02

18

©Silberschatz, Korth and Sudarshan8.103CS425 – Fall 2016 – Boris Glavic

Figure 8.03

©Silberschatz, Korth and Sudarshan8.104CS425 – Fall 2016 – Boris Glavic

Figure 8.04

©Silberschatz, Korth and Sudarshan8.105CS425 – Fall 2016 – Boris Glavic

Figure 8.05

©Silberschatz, Korth and Sudarshan8.106CS425 – Fall 2016 – Boris Glavic

Figure 8.06

©Silberschatz, Korth and Sudarshan8.107CS425 – Fall 2016 – Boris Glavic

Figure 8.14

©Silberschatz, Korth and Sudarshan8.108CS425 – Fall 2016 – Boris Glavic

Figure 8.15

19

©Silberschatz, Korth and Sudarshan8.109CS425 – Fall 2016 – Boris Glavic

Figure 8.17

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 9: Transactions

©Silberschatz, Korth and Sudarshan9.2CS425 – Fall 2016 – Boris Glavic

Chapter 9: Transactions

■ Transaction Concept

■ Transaction State

■ Concurrent Executions

■ Serializability

■ Recoverability

■ Implementation of Isolation

■ Transaction Definition in SQL

■ Testing for Serializability.

©Silberschatz, Korth and Sudarshan9.3CS425 – Fall 2016 – Boris Glavic

Transaction Concept

■ A transaction is a unit of program execution that accesses and
possibly updates various data items.

■ E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Two main issues to deal with:

● Recovery: Failures of various kinds, such as hardware failures
and system crashes

● Concurrent: execution of multiple transactions

©Silberschatz, Korth and Sudarshan9.4CS425 – Fall 2016 – Boris Glavic

Example of Fund Transfer

■ Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Atomicity requirement

● if the transaction fails after step 3 and before step 6, money will be lost
leading to an inconsistent database state

4 Failure could be due to software or hardware

● the system should ensure that updates of a partially executed transaction
are not reflected in the database

■ Durability requirement — once the user has been notified that the transaction
has completed (i.e., the transfer of the $50 has taken place), the updates to the
database by the transaction must persist even if there are software or
hardware failures.

©Silberschatz, Korth and Sudarshan9.5CS425 – Fall 2016 – Boris Glavic

Example of Fund Transfer (Cont.)

■ Transaction to transfer $50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

■ Consistency requirement in above example:

● the sum of A and B is unchanged by the execution of the transaction

■ In general, consistency requirements include

4 Explicitly specified integrity constraints such as primary keys and foreign
keys

4 Implicit integrity constraints

– e.g. sum of balances of all accounts, minus sum of loan amounts
must equal value of cash-in-hand

● A transaction must see a consistent database.

● During transaction execution the database may be temporarily inconsistent.

● When the transaction completes successfully the database must be
consistent

4 Erroneous transaction logic can lead to inconsistency

©Silberschatz, Korth and Sudarshan9.6CS425 – Fall 2016 – Boris Glavic

Example of Fund Transfer (Cont.)

■ Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated database, it
will see an inconsistent database (the sum A + B will be less than it
should be).

T1 T2
1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

■ Isolation can be ensured trivially by running transactions serially

● that is, one after the other.

■ However, executing multiple transactions concurrently has significant
benefits, as we will see later.

2

©Silberschatz, Korth and Sudarshan9.7CS425 – Fall 2016 – Boris Glavic

ACID Properties

■ Atomicity. Either all operations of the transaction are properly reflected
in the database or none are.

■ Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

■ Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from other
concurrently executed transactions.

● That is, for every pair of transactions Ti and Tj, it appears to Ti that
either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

■ Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items.To preserve the integrity of data the database
system must ensure:

©Silberschatz, Korth and Sudarshan9.8CS425 – Fall 2016 – Boris Glavic

Transaction State

■ Active – the initial state; the transaction stays in this state while it is
executing

■ Partially committed – after the final statement has been executed.

■ Failed -- after the discovery that normal execution can no longer
proceed.

■ Aborted – after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

● restart the transaction

4 can be done only if no internal logical error

● kill the transaction

■ Committed – after successful completion.

©Silberschatz, Korth and Sudarshan9.9CS425 – Fall 2016 – Boris Glavic

Transaction Model

■ Operations

● Read(A) – read value of data item A

● Write(A) – write a new value of data item A

● Commit – commit changes of the transaction

● Abort – Revert changes made by the transaction

■ Data Items

● Objects in the data base

● Usually we consider tuples (rows) or disk pages

©Silberschatz, Korth and Sudarshan9.10CS425 – Fall 2016 – Boris Glavic

Transaction State (Cont.)

active

failed

partially
commi!ed

commi!ed

aborted

©Silberschatz, Korth and Sudarshan9.11CS425 – Fall 2016 – Boris Glavic

Concurrent Executions

■ Multiple transactions are allowed to run concurrently in the system.
Advantages are:

● increased processor and disk utilization, leading to better
transaction throughput

4 E.g. one transaction can be using the CPU while another is
reading from or writing to the disk

4 In multi-processor systems each statement can use one or
more CPUs

● reduced average response time for transactions: short
transactions need not wait behind long ones.

■ Concurrency control schemes – mechanisms to achieve isolation

● that is, to control the interaction among the concurrent
transactions in order to prevent them from destroying the
consistency of the database

©Silberschatz, Korth and Sudarshan9.12CS425 – Fall 2016 – Boris Glavic

Schedules

■ Schedule – a sequences of instructions that specify the chronological
order in which instructions of concurrent transactions are executed

● a schedule for a set of transactions must consist of all instructions
of those transactions

● must preserve the order in which the instructions appear in each
individual transaction.

■ A transaction that successfully completes its execution will have a
commit instructions as the last statement

● by default transaction assumed to execute commit instruction as its
last step

■ A transaction that fails to successfully complete its execution will have
an abort instruction as the last statement

3

©Silberschatz, Korth and Sudarshan9.13CS425 – Fall 2016 – Boris Glavic

Schedule 1

■ Let T1 transfer $50 from A to B, and T2 transfer 10% of the
balance from A to B.

■ A serial schedule in which T1 is followed by T2 :

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.14CS425 – Fall 2016 – Boris Glavic

Schedule 2

• A serial schedule where T2 is followed by T1

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.15CS425 – Fall 2016 – Boris Glavic

Schedule 3

■ Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is equivalent
to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.

T1 T2

read (A)
A := A – 50

write (A)

read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)

read (B)
B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.16CS425 – Fall 2016 – Boris Glavic

Schedule 4

■ The following concurrent schedule does not preserve the
value of (A + B).

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)

B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.17CS425 – Fall 2016 – Boris Glavic

Serializability

■ Basic Assumption – Each transaction preserves database
consistency.

■ Thus serial execution of a set of transactions preserves
database consistency.

■ A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

©Silberschatz, Korth and Sudarshan9.18CS425 – Fall 2016 – Boris Glavic

Simplified view of transactions

● We ignore operations other than read and write
instructions

● We assume that transactions may perform arbitrary
computations on data in local buffers in between reads
and writes.

● Our simplified schedules consist of only read and write
instructions.

4

©Silberschatz, Korth and Sudarshan9.19CS425 – Fall 2016 – Boris Glavic

Conflicting Instructions

■ Instructions li and lj of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both li and lj,
and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

■ Intuitively, a conflict between li and lj forces a (logical) temporal
order between them.

● If li and lj are consecutive in a schedule and they do not
conflict, their results would remain the same even if they had
been interchanged in the schedule.

©Silberschatz, Korth and Sudarshan9.20CS425 – Fall 2016 – Boris Glavic

Conflict Serializability

■ If a schedule S can be transformed into a schedule S´ by a series of
swaps of non-conflicting instructions, we say that S and S´ are
conflict equivalent.

● That is the order of each pair of conflicting operations in S and S`
is the same

■ We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

©Silberschatz, Korth and Sudarshan9.21CS425 – Fall 2016 – Boris Glavic

Conflict Serializability (Cont.)

■ Schedule 3 can be transformed into Schedule 6, a serial

schedule where T2 follows T1, by series of swaps of non-

conflicting instructions. Therefore Schedule 3 is conflict
serializable.

Schedule 3 Schedule 6

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

©Silberschatz, Korth and Sudarshan9.22CS425 – Fall 2016 – Boris Glavic

Conflict Serializability (Cont.)

■ Example of a schedule that is not conflict serializable:

■ We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

T
3

T4

read (Q)

write (Q)

write (Q)

©Silberschatz, Korth and Sudarshan9.23CS425 – Fall 2016 – Boris Glavic

View Serializability

■ Let S and S´ be two schedules with the same set of transactions. S
and S´ are view equivalent if the following three conditions are met,
for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in
schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value
was produced by transaction Tj (if any), then in schedule S’ also
transaction Ti must read the value of Q that was produced by the
same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation
in schedule S must also perform the final write(Q) operation in
schedule S’.

As can be seen, view equivalence is also based purely on reads and
writes alone.

©Silberschatz, Korth and Sudarshan9.24CS425 – Fall 2016 – Boris Glavic

View Serializability (Cont.)

■ A schedule S is view serializable if it is view equivalent to a serial
schedule.

■ Every conflict serializable schedule is also view serializable.

■ Below is a schedule which is view-serializable but not conflict
serializable.

■ What serial schedule is above equivalent to?

■ Every view serializable schedule that is not conflict serializable has
blind writes.

T27 T28 T29

read (Q)

write (Q)

write (Q)

write (Q)

5

©Silberschatz, Korth and Sudarshan9.25CS425 – Fall 2016 – Boris Glavic

Other Notions of Serializability

■ The schedule below produces same outcome as the serial
schedule < T1, T5 >, yet is not conflict equivalent or view
equivalent to it.

■ Determining such equivalence requires analysis of operations
other than read and write.

T
1

T
5

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

read (B)

B := B 10

write (B)

read (A)

A := A + 10

write (A)

©Silberschatz, Korth and Sudarshan9.26CS425 – Fall 2016 – Boris Glavic

Testing for Serializability

■ Consider some schedule of a set of transactions T1, T2, ..., Tn

■ Precedence graph — a directed graph where the vertices
are the transactions (names).

■ We draw an arc from Ti to Tj if the two transaction conflict,
and Ti accessed the data item on which the conflict arose
earlier.

■ We may label the arc by the item that was accessed.

■ Example 1

T
1

T
2

©Silberschatz, Korth and Sudarshan9.27CS425 – Fall 2016 – Boris Glavic

Test for Conflict Serializability

■ A schedule is conflict serializable if and only
if its precedence graph is acyclic.

■ Cycle-detection algorithms exist which take
order n2 time, where n is the number of

vertices in the graph.

● (Better algorithms take order n + e
where e is the number of edges.)

■ If precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.

● This is a linear order consistent with the
partial order of the graph.

● For example, a serializability order for
Schedule A would be
T5 ® T1 ® T3 ® T2 ® T4

4 Are there others?
(b) (c)

(a)

Tm

Tk

Tk

Tk

Tj

Ti

Tm

Tj

Ti

Tm

Ti

Tj

©Silberschatz, Korth and Sudarshan9.28CS425 – Fall 2016 – Boris Glavic

Test for View Serializability

■ The precedence graph test for conflict serializability cannot be used
directly to test for view serializability.

● Extension to test for view serializability has cost exponential in the
size of the precedence graph.

■ The problem of checking if a schedule is view serializable falls in the
class of NP-complete problems.

● Thus existence of an efficient algorithm is extremely unlikely.

■ However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

©Silberschatz, Korth and Sudarshan9.29CS425 – Fall 2016 – Boris Glavic

Recoverable Schedules

■ Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit operation of Ti

appears before the commit operation of Tj.

■ The following schedule (Schedule 11) is not recoverable if T9 commits

immediately after the read

■ If T8 should abort, T9 would have read (and possibly shown to the user)
an inconsistent database state. Hence, database must ensure that
schedules are recoverable.

Need to address the effect of transaction failures on concurrently
running transactions.

T
8

T
9

read (A)

write (A)

read (B)

read (A)

commit

©Silberschatz, Korth and Sudarshan9.30CS425 – Fall 2016 – Boris Glavic

Cascading Rollbacks

■ Cascading rollback – a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

■ Can lead to the undoing of a significant amount of work

T
10

T
11

T
12

read (A)

read (B)

write (A)

abort

read (A)

write (A)

read (A)

6

©Silberschatz, Korth and Sudarshan9.31CS425 – Fall 2016 – Boris Glavic

Cascadeless Schedules

■ Cascadeless schedules — cascading rollbacks cannot occur; for
each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti, the commit operation of Ti appears before the
read operation of Tj.

■ Every cascadeless schedule is also recoverable

■ It is desirable to restrict the schedules to those that are cascadeless

©Silberschatz, Korth and Sudarshan9.32CS425 – Fall 2016 – Boris Glavic

Concurrency Control

■ A database must provide a mechanism that will ensure that all possible
schedules are

● either conflict or view serializable, and

● are recoverable and preferably cascadeless

■ A policy in which only one transaction can execute at a time generates
serial schedules, but provides a poor degree of concurrency

● Are serial schedules recoverable/cascadeless?

■ Testing a schedule for serializability after it has executed is a little too
late!

■ Goal – to develop concurrency control protocols that will assure
serializability.

©Silberschatz, Korth and Sudarshan9.33CS425 – Fall 2016 – Boris Glavic

Concurrency Control (Cont.)

■ Schedules must be conflict or view serializable, and recoverable,
for the sake of database consistency, and preferably cascadeless.

■ A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of
concurrency.

■ Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they
incur.

■ Some schemes allow only conflict-serializable schedules to be
generated, while others allow view-serializable schedules that are
not conflict-serializable.

©Silberschatz, Korth and Sudarshan9.34CS425 – Fall 2016 – Boris Glavic

Concurrency Control vs. Serializability Tests

■ Concurrency-control protocols allow concurrent schedules, but ensure
that the schedules are conflict/view serializable, and are recoverable
and cascadeless .

■ Concurrency control protocols generally do not examine the
precedence graph as it is being created

● Instead a protocol imposes a discipline that avoids nonseralizable
schedules.

● We study such protocols in Chapter 10.

■ Different concurrency control protocols provide different tradeoffs
between the amount of concurrency they allow and the amount of
overhead that they incur.

■ Tests for serializability help us understand why a concurrency control
protocol is correct.

©Silberschatz, Korth and Sudarshan9.35CS425 – Fall 2016 – Boris Glavic

Weak Levels of Consistency

■ Some applications are willing to live with weak levels of consistency,
allowing schedules that are not serializable

● E.g. a read-only transaction that wants to get an approximate total
balance of all accounts

● E.g. database statistics computed for query optimization can be
approximate (why?)

● Such transactions need not be serializable with respect to other
transactions

■ Tradeoff accuracy for performance

©Silberschatz, Korth and Sudarshan9.36CS425 – Fall 2016 – Boris Glavic

Levels of Consistency in SQL-92

■ Serializable — default

■ Repeatable read — only committed records to be read, repeated
reads of same record must return same value. However, a
transaction may not be serializable – it may find some records
inserted by a transaction but not find others.

■ Read committed — only committed records can be read, but
successive reads of a record may return different (but committed)
values.

■ Read uncommitted — even uncommitted records may be read.

■ Lower degrees of consistency useful for gathering approximate
information about the database

■ Warning: some database systems do not ensure serializable
schedules by default

● E.g. Oracle and PostgreSQL by default support a level of
consistency called snapshot isolation (not part of the SQL
standard)

7

©Silberschatz, Korth and Sudarshan9.37CS425 – Fall 2016 – Boris Glavic

Transaction Definition in SQL

■ Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

■ In SQL, a transaction begins implicitly.

■ A transaction in SQL ends by:

● Commit work commits current transaction and begins a new
one.

● Rollback work causes current transaction to abort.

■ In almost all database systems, by default, every SQL statement
also commits implicitly if it executes successfully

● Implicit commit can be turned off by a database directive

4 E.g. in JDBC, connection.setAutoCommit(false);

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 10

©Silberschatz, Korth and Sudarshan9.39CS425 – Fall 2016 – Boris Glavic

Recap

■ Transactions

● ACID – Properties

■ Schedules

● Serial

● Equivalence

4 Conflict-equivalent

4 View-equivalent

● Serializability

4 = Equivalent to a serial schedule

● Recoverable

● Cascading Aborts

■ Transactions in SQL

©Silberschatz, Korth and Sudarshan9.40CS425 – Fall 2016 – Boris Glavic

Figure 14.01

active

failed

partially
commi!ed

commi!ed

aborted

©Silberschatz, Korth and Sudarshan9.41CS425 – Fall 2016 – Boris Glavic

Figure 14.02

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.42CS425 – Fall 2016 – Boris Glavic

Figure 14.03

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)
B := B + temp
write (B)
commit

8

©Silberschatz, Korth and Sudarshan9.43CS425 – Fall 2016 – Boris Glavic

Figure 14.04

T1 T2

read (A)
A := A – 50

write (A)

read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)

read (B)
B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.44CS425 – Fall 2016 – Boris Glavic

Figure 14.05

T1 T2

read (A)
A := A – 50

write (A)
read (B)
B := B + 50
write (B)
commit

read (A)
temp := A * 0.1

A := A temp
write (A)
read (B)

B := B + temp
write (B)
commit

©Silberschatz, Korth and Sudarshan9.45CS425 – Fall 2016 – Boris Glavic

Figure 14.06

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

©Silberschatz, Korth and Sudarshan9.46CS425 – Fall 2016 – Boris Glavic

Figure 14.07

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

©Silberschatz, Korth and Sudarshan9.47CS425 – Fall 2016 – Boris Glavic

Figure 14.08

T
1

T
2

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

©Silberschatz, Korth and Sudarshan9.48CS425 – Fall 2016 – Boris Glavic

Figure 14.09

T
3

T4

read (Q)

write (Q)

write (Q)

9

©Silberschatz, Korth and Sudarshan9.49CS425 – Fall 2016 – Boris Glavic

Figure 14.10

(a) (b)

T1 T2 T2 T1

©Silberschatz, Korth and Sudarshan9.50CS425 – Fall 2016 – Boris Glavic

Figure 14.11

T
1

T
2

©Silberschatz, Korth and Sudarshan9.51CS425 – Fall 2016 – Boris Glavic

Figure 14.12

(b) (c)

(a)

Tm

Tk

Tk

Tk

Tj

Ti

Tm

Tj

Ti

Tm

Ti

Tj

©Silberschatz, Korth and Sudarshan9.52CS425 – Fall 2016 – Boris Glavic

Figure 14.13

T
1

T
5

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

read (B)

B := B 10

write (B)

read (A)

A := A + 10

write (A)

©Silberschatz, Korth and Sudarshan9.53CS425 – Fall 2016 – Boris Glavic

Figure 14.14

T
8

T
9

read (A)

write (A)

read (B)

read (A)

commit

©Silberschatz, Korth and Sudarshan9.54CS425 – Fall 2016 – Boris Glavic

Figure 14.15

T
10

T
11

T
12

read (A)

read (B)

write (A)

abort

read (A)

write (A)

read (A)

10

©Silberschatz, Korth and Sudarshan9.55CS425 – Fall 2016 – Boris Glavic

Figure 14.16

T
1

T
4

T
5

T
3

T
2

1

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 10 : Concurrency Control

©Silberschatz, Korth and Sudarshan10.2CS425 – Fall 2016 – Boris Glavic

Chapter 10: Concurrency Control

■ Lock-Based Protocols

■ Timestamp-Based Protocols

■ Validation-Based Protocols

■ Multiple Granularity

■ Multiversion Schemes

■ Insert and Delete Operations

■ Concurrency in Index Structures

©Silberschatz, Korth and Sudarshan10.3CS425 – Fall 2016 – Boris Glavic

Intuition of Lock-based Protocols

■ Transactions have to acquire locks on data items before accessing them

■ If a lock is hold by one transaction on a data item this restricts the ability
of other transactions to acquire locks for that data item

■ By locking a data item we want to ensure that no access to that data
item is possible that would lead to non-serializable schedules

■ The trick is to design a lock model and protocol that guarantees that

■ Lock-based concurrency protocols are a form of pessimistic
concurrency control mechanism

● We avoid ever getting into a state that can lead to a non-serializable
schedule

■ Alternative concurrency control mechanism do not avoid conflicts, but
determine later on (at commit time) whether committing a transaction
would cause a non-serializable schedule to be generated

● Optimistic concurrency control mechanism

©Silberschatz, Korth and Sudarshan10.4CS425 – Fall 2016 – Boris Glavic

Lock-Based Protocols

■ A lock is a mechanism to control concurrent access to a data item

■ Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

■ Lock requests are made to concurrency-control manager.

● Transaction do not access data items before having acquired a lock on

that data item

● Transactions release their locks on a data item only after they have
accessed a data item

©Silberschatz, Korth and Sudarshan10.5CS425 – Fall 2016 – Boris Glavic

Lock-Based Protocols (Cont.)

■ Lock-compatibility matrix

■ A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

■ Any number of transactions can hold shared locks on an item,

● but if any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item.

■ If a lock cannot be granted, the requesting transaction is made to wait till
all incompatible locks held by other transactions have been released.
The lock is then granted.

S X

S true false

X false false

©Silberschatz, Korth and Sudarshan10.6CS425 – Fall 2016 – Boris Glavic

Lock-Based Protocols (Cont.)

■ Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

■ Locking as above is not sufficient to guarantee serializability — if A and B
get updated in-between the read of A and B, the displayed sum would be
wrong.

■ A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

2

©Silberschatz, Korth and Sudarshan10.7CS425 – Fall 2016 – Boris Glavic

Pitfalls of Lock-Based Protocols

■ Consider the partial schedule

■ Neither T3 nor T4 can make progress — executing lock-S(B) causes T4

to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

■ Such a situation is called a deadlock.

● To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

©Silberschatz, Korth and Sudarshan10.8CS425 – Fall 2016 – Boris Glavic

Pitfalls of Lock-Based Protocols (Cont.)

■ The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

■ Starvation is also possible if the concurrency control manager is
badly designed. For example:

● A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock
on the same item.

● The same transaction is repeatedly rolled back due to deadlocks.

■ Concurrency control managers can be designed to prevent starvation.

©Silberschatz, Korth and Sudarshan10.9CS425 – Fall 2016 – Boris Glavic

The Two-Phase Locking Protocol

■ This is a protocol which ensures conflict-serializable schedules.

■ Phase 1: Growing Phase

● transaction may obtain locks

● transaction may not release locks

■ Phase 2: Shrinking Phase

● transaction may release locks

● transaction may not obtain locks

■ The protocol assures serializability. It can be proved that the

transactions can be serialized in the order of their lock points (i.e.

the point where a transaction acquired its final lock).

©Silberschatz, Korth and Sudarshan10.10CS425 – Fall 2016 – Boris Glavic

The Two-Phase Locking Protocol (Cont.)

■ Two-phase locking does not ensure freedom from deadlocks

■ Cascading roll-back is possible under two-phase locking. To avoid

this, follow a modified protocol called strict two-phase locking
(S2PL). Here a transaction must hold all its exclusive locks till it

commits/aborts.

■ Rigorous two-phase locking (SS2PL) is even stricter: here all locks
are held till commit/abort. In this protocol transactions can be

serialized in the order in which they commit.

©Silberschatz, Korth and Sudarshan10.11CS425 – Fall 2016 – Boris Glavic

The Two-Phase Locking Protocol (Cont.)

■ There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

■ However, in the absence of extra information (e.g., ordering of access
to data), two-phase locking is needed for conflict serializability in the
following sense:

Given a transaction Ti that does not follow two-phase locking, we can
find a transaction Tj that uses two-phase locking, and a schedule for Ti

and Tj that is not conflict serializable.

©Silberschatz, Korth and Sudarshan10.12CS425 – Fall 2016 – Boris Glavic

Lock Conversions

■ Two-phase locking with lock conversions:

– First Phase:

● can acquire a lock-S on item

● can acquire a lock-X on item

● can convert a lock-S to a lock-X (upgrade)

– Second Phase:

● can release a lock-S

● can release a lock-X

● can convert a lock-X to a lock-S (downgrade)

■ This protocol assures serializability. But still relies on the programmer to
insert the various locking instructions.

3

©Silberschatz, Korth and Sudarshan10.13CS425 – Fall 2016 – Boris Glavic

Automatic Acquisition of Locks

■ A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

■ The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

©Silberschatz, Korth and Sudarshan10.14CS425 – Fall 2016 – Boris Glavic

Automatic Acquisition of Locks (Cont.)

■ write(D) is processed as:

if Ti has a lock-X on D
then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D
then

upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

■ All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan10.15CS425 – Fall 2016 – Boris Glavic

Implementation of Locking

■ A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests

■ The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)

■ The requesting transaction waits until its request is answered

■ The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

■ The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

©Silberschatz, Korth and Sudarshan10.16CS425 – Fall 2016 – Boris Glavic

Lock Table

■ Black rectangles indicate granted locks,

white ones indicate waiting requests

■ Lock table also records the type of lock

granted or requested

■ New request is added to the end of the

queue of requests for the data item, and

granted if it is compatible with all earlier

locks

■ Unlock requests result in the request

being deleted, and later requests are

checked to see if they can now be

granted

■ If transaction aborts, all waiting or

granted requests of the transaction are

deleted

● lock manager may keep a list of

locks held by each transaction, to

implement this efficientlygranted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

©Silberschatz, Korth and Sudarshan10.17CS425 – Fall 2016 – Boris Glavic

Deadlock Handling

■ Consider the following two transactions:

T1: write (X) T2: write(Y)

write(Y) write(X)

■ Schedule with deadlock

©Silberschatz, Korth and Sudarshan10.18CS425 – Fall 2016 – Boris Glavic

Deadlock Handling

■ System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

■ Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :

● Require that each transaction locks all its data items before it
begins execution (predeclaration).

4 Not practical

● Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

4

©Silberschatz, Korth and Sudarshan10.19CS425 – Fall 2016 – Boris Glavic

More Deadlock Prevention Strategies

■ Following schemes use transaction timestamps for the sake of deadlock
prevention alone.

● Preemptive: Transaction holding a lock is aborted to make lock
available

■ wait-die scheme — non-preemptive

● older transaction may wait for younger one to release data item.
Younger transactions never wait for older ones; they are rolled back
instead.

● a transaction may die several times before acquiring needed data
item

■ wound-wait scheme — preemptive

● older transaction wounds (forces rollback) of younger transaction
instead of waiting for it. Younger transactions may wait for older
ones.

● may be fewer rollbacks than wait-die scheme.

©Silberschatz, Korth and Sudarshan10.20CS425 – Fall 2016 – Boris Glavic

Deadlock prevention (Cont.)

■ Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older transactions
thus have precedence over newer ones, and starvation is hence
avoided.

■ Timeout-Based Schemes:

● a transaction waits for a lock only for a specified amount of time.
After that, the wait times out and the transaction is rolled back.

● thus deadlocks are not possible

● simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

©Silberschatz, Korth and Sudarshan10.21CS425 – Fall 2016 – Boris Glavic

Deadlock Detection

■ Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),

● V is a set of vertices (all the transactions in the system)

● E is a set of edges; each element is an ordered pair Ti ®Tj.

■ If Ti ® Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.

■ When Ti requests a data item currently being held by Tj, then the edge
Ti Tj is inserted in the wait-for graph. This edge is removed only when
Tj is no longer holding a data item needed by Ti.

■ The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look
for cycles.

©Silberschatz, Korth and Sudarshan10.22CS425 – Fall 2016 – Boris Glavic

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

T
18

T
20

T
17

T
19

T
18

T
20

T
17

T
19

©Silberschatz, Korth and Sudarshan10.23CS425 – Fall 2016 – Boris Glavic

Deadlock Recovery

■ When deadlock is detected :

● Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum
cost.

● Rollback -- determine how far to roll back transaction

4 Total rollback: Abort the transaction and then restart it.

4 More effective to roll back transaction only as far as necessary
to break deadlock.

● Starvation happens if same transaction is always chosen as
victim. Include the number of rollbacks in the cost factor to avoid
starvation

©Silberschatz, Korth and Sudarshan10.24CS425 – Fall 2016 – Boris Glavic

Weak Levels of Consistency

■ Degree-two consistency: differs from two-phase locking in that S-locks
may be released at any time, and locks may be acquired at any time

● X-locks must be held till end of transaction

● Serializability is not guaranteed, programmer must ensure that no
erroneous database state will occur]

■ Cursor stability:

● For reads, each tuple is locked, read, and lock is immediately
released

● X-locks are held till end of transaction

● Special case of degree-two consistency

5

©Silberschatz, Korth and Sudarshan10.25CS425 – Fall 2016 – Boris Glavic

Weak Levels of Consistency in SQL

■ SQL allows non-serializable executions

● Serializable: is the default

● Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained)

4 However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see
others inserted by T2

● Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

● Read uncommitted: allows even uncommitted data to be read

■ In many database systems, read committed is the default consistency
level

● has to be explicitly changed to serializable when required

4 set isolation level serializable

©Silberschatz, Korth and Sudarshan10.26CS425 – Fall 2016 – Boris Glavic

Recap

■ Concurrency Control

● Pessimistic: Prevent bad things from happening

4 Locking Protocols

● Optimistic: Detect that bad things have happened and resolve the

problem

■ Two-Phase Locking (2PL)

● Two types of locks:

4 Shared (S) locks for read-only access

4 Exclusive (X) locks for write + read access

● Lock compatibility

● Transactions cannot acquire locks after they have released a lock

4 Divides transaction into growing and shrinking phase

● Ensures conflict-serializability

● Cascading rollbacks are possible

● Deadlocks are possible

©Silberschatz, Korth and Sudarshan10.27CS425 – Fall 2016 – Boris Glavic

Recap

■ Strict Two-Phase Locking (S2PL)

● Exclusive locks are held until transaction commit

● Prevents cascading rollbacks

● Deadlocks are still possible

■ Strict Strong Two-Phase Locking (SS2PL)

● All locks are held until transaction commit

● Enables serializablility in commit order

■ Deadlocks

● Deadlock Prevention

4 Wait-die: Younger transaction that waits for older is rolled back

4 Wound-wait: If older waits for younger, then younger is rolled back

● Deadlock Detection

4 Cycle Detection in Waits-for graph

– Expensive

4 Timeout modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot
Isolation examples

©Silberschatz, Korth and Sudarshan10.29CS425 – Fall 2016 – Boris Glavic

Multiple Granularity

■ Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones

■ Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

■ When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.

■ Granularity of locking (level in tree where locking is done):

● fine granularity (lower in tree): high concurrency, high locking
overhead

● coarse granularity (higher in tree): low locking overhead, low

concurrency

©Silberschatz, Korth and Sudarshan10.30CS425 – Fall 2016 – Boris Glavic

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

● database

● area

● file

● record

r
a
1

r
a
2

r
a
n

r
b
1

r
b
k

r
c
1

r
c
m

F
a

F
b

F
c

A
1

A
2

DB

6

©Silberschatz, Korth and Sudarshan10.31CS425 – Fall 2016 – Boris Glavic

Intention Lock Modes

■ In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

● intention-shared (IS): indicates explicit locking at a lower level of
the tree but only with shared locks.

● intention-exclusive (IX): indicates explicit locking at a lower level
with exclusive or shared locks

● shared and intention-exclusive (SIX): the subtree rooted by that
node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

■ intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

©Silberschatz, Korth and Sudarshan10.32CS425 – Fall 2016 – Boris Glavic

Compatibility Matrix with Intention Lock Modes

■ The compatibility matrix for all lock modes is:

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

©Silberschatz, Korth and Sudarshan10.33CS425 – Fall 2016 – Boris Glavic

Multiple Granularity Locking Scheme

■ Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any
mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q
is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently
locked by Ti.

■ Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

■ Lock granularity escalation: in case there are too many locks at a
particular level, switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan10.34CS425 – Fall 2016 – Boris Glavic

Timestamp-Based Protocols

■ Each transaction is issued a timestamp when it enters the system. If an old
transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj).

■ The protocol manages concurrent execution such that the time-stamps
determine the serializability order.

■ In order to assure such behavior, the protocol maintains for each data Q two

timestamp values:

● W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

● R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

©Silberschatz, Korth and Sudarshan10.35CS425 – Fall 2016 – Boris Glavic

Timestamp-Based Protocols (Cont.)

■ The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

■ Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) £ W-timestamp(Q), then Ti needs to read a value of Q
that was already overwritten.

■ Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti)³ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

©Silberschatz, Korth and Sudarshan10.36CS425 – Fall 2016 – Boris Glavic

Timestamp-Based Protocols (Cont.)

■ Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was needed previously, and the system assumed that
that value would never be produced.

■ Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q.

■ Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

7

©Silberschatz, Korth and Sudarshan10.37CS425 – Fall 2016 – Boris Glavic

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

©Silberschatz, Korth and Sudarshan10.38CS425 – Fall 2016 – Boris Glavic

Correctness of Timestamp-Ordering Protocol

■ The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

■ Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

■ But the schedule may not be cascade-free, and may not even be
recoverable.

©Silberschatz, Korth and Sudarshan10.39CS425 – Fall 2016 – Boris Glavic

Recoverability and Cascade Freedom

■ Problem with timestamp-ordering protocol:

● Suppose Ti aborts, but Tj has read a data item written by Ti

● Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

● Further, any transaction that has read a data item written by Tj must
abort

● This can lead to cascading rollback --- that is, a chain of rollbacks

■ Solution 1:

● A transaction is structured such that its writes are all performed at
the end of its processing

● All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

● A transaction that aborts is restarted with a new timestamp

■ Solution 2: Limited form of locking: wait for data to be committed before
reading it

■ Solution 3: Use commit dependencies to ensure recoverability

©Silberschatz, Korth and Sudarshan10.40CS425 – Fall 2016 – Boris Glavic

Thomas’ Write Rule

■ Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

■ When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}.

● Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be ignored.

■ Otherwise this protocol is the same as the timestamp ordering
protocol.

■ Thomas' Write Rule allows greater potential concurrency.

● Allows some view-serializable schedules that are not conflict-

serializable.

©Silberschatz, Korth and Sudarshan10.41CS425 – Fall 2016 – Boris Glavic

Validation-Based Protocol

■ Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only to
temporary local variables

2. Validation phase: Transaction Ti performs a ``validation test''
to determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

■ The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases in
that order.

● Assume for simplicity that the validation and write phase occur
together, atomically and serially

4 I.e., only one transaction executes validation/write at a time.

■ Also called as optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation

©Silberschatz, Korth and Sudarshan10.42CS425 – Fall 2016 – Boris Glavic

Validation-Based Protocol (Cont.)

■ Each transaction Ti has 3 timestamps

● Start(Ti) : the time when Ti started its execution

● Validation(Ti): the time when Ti entered its validation phase

● Finish(Ti) : the time when Ti finished its write phase

■ Serializability order is determined by timestamp given at validation
time, to increase concurrency.

● Thus TS(Ti) is given the value of Validation(Ti).

■ This protocol is useful and gives greater degree of concurrency if
probability of conflicts is low.

● because the serializability order is not pre-decided, and

● relatively few transactions will have to be rolled back.

8

©Silberschatz, Korth and Sudarshan10.43CS425 – Fall 2016 – Boris Glavic

Validation Test for Transaction Tj

■ If for all Ti with TS (Ti) < TS (Tj) either one of the following condition
holds:

● finish(Ti) < start(Tj)

● start(Tj) < finish(Ti) < validation(Tj) and the set of data items
written by Ti does not intersect with the set of data items read by
Tj.

then validation succeeds and Tj can be committed. Otherwise,
validation fails and Tj is aborted.

■ Justification: Either the first condition is satisfied, and there is no
overlapped execution, or the second condition is satisfied and

■ the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.

■ the writes of Ti do not affect reads of Tj since Tj does not read
any item written by Ti.

©Silberschatz, Korth and Sudarshan10.44CS425 – Fall 2016 – Boris Glavic

Schedule Produced by Validation

■ Example of schedule produced using validation

©Silberschatz, Korth and Sudarshan10.45CS425 – Fall 2016 – Boris Glavic

Multiversion Schemes

■ Multiversion schemes keep old versions of data item to increase
concurrency.

● Multiversion Timestamp Ordering

● Multiversion Two-Phase Locking

■ Each successful write results in the creation of a new version of the
data item written.

■ Use timestamps to label versions.

■ When a read(Q) operation is issued, select an appropriate version of
Q based on the timestamp of the transaction, and return the value of
the selected version.

■ reads never have to wait as an appropriate version is returned
immediately.

©Silberschatz, Korth and Sudarshan10.46CS425 – Fall 2016 – Boris Glavic

Multiversion Timestamp Ordering

■ Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each
version Qk contains three data fields:

● Content -- the value of version Qk.

● W-timestamp(Qk) -- timestamp of the transaction that created
(wrote) version Qk

● R-timestamp(Qk) -- largest timestamp of a transaction that
successfully read version Qk

■ when a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti).

■ R-timestamp of Qk is updated whenever a transaction Tj reads Qk, and
TS(Tj) > R-timestamp(Qk).

©Silberschatz, Korth and Sudarshan10.47CS425 – Fall 2016 – Boris Glavic

Multiversion Timestamp Ordering (Cont)

■ Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let
Qk denote the version of Q whose write timestamp is the largest write
timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the

content of version Qk.

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. else a new version of Q is created.

■ Observe that

● Reads always succeed

● A write by Ti is rejected if some other transaction Tj that (in the
serialization order defined by the timestamp values) should read
Ti's write, has already read a version created by a transaction older
than Ti.

■ Protocol guarantees serializability

©Silberschatz, Korth and Sudarshan10.48CS425 – Fall 2016 – Boris Glavic

Multiversion Two-Phase Locking

■ Differentiates between read-only transactions and update transactions

■ Update transactions acquire read and write locks, and hold all locks up
to the end of the transaction. That is, update transactions follow rigorous
two-phase locking.

● Each successful write results in the creation of a new version of the
data item written.

● each version of a data item has a single timestamp whose value is
obtained from a counter ts-counter that is incremented during
commit processing.

■ Read-only transactions are assigned a timestamp by reading the current
value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.

9

©Silberschatz, Korth and Sudarshan10.49CS425 – Fall 2016 – Boris Glavic

Multiversion Two-Phase Locking (Cont.)

■ When an update transaction wants to read a data item:

● it obtains a shared lock on it, and reads the latest version.

■ When it wants to write an item

● it obtains X lock on; it then creates a new version of the item and
sets this version's timestamp to ¥.

■ When update transaction Ti completes, commit processing occurs:

● Ti sets timestamp on the versions it has created to ts-counter + 1

● Ti increments ts-counter by 1

■ Read-only transactions that start after Ti increments ts-counter will see
the values updated by Ti.

■ Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

■ Only serializable schedules are produced.

©Silberschatz, Korth and Sudarshan10.50CS425 – Fall 2016 – Boris Glavic

MVCC: Implementation Issues

■ Creation of multiple versions increases storage overhead

● Extra tuples

● Extra space in each tuple for storing version information

■ Versions can, however, be garbage collected

● E.g. if Q has two versions Q5 and Q9, and the oldest active
transaction has timestamp > 9, than Q5 will never be required
again

©Silberschatz, Korth and Sudarshan10.51CS425 – Fall 2016 – Boris Glavic

Snapshot Isolation

■ Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows

● Poor performance results

■ Solution 1: Give logical snapshot of database state to read only
transactions, read-write transactions use normal locking

● Multiversion 2-phase locking

● Works well, but how does system know a transaction is read only?

■ Solution 2: Give snapshot of database state to every transaction,
updates alone use 2-phase locking to guard against concurrent
updates

● Problem: variety of anomalies such as lost update can result

● Partial solution: snapshot isolation level (next slide)

4 Proposed by Berenson et al, SIGMOD 1995

4 Variants implemented in many database systems

– E.g. Oracle, PostgreSQL, SQL Server 2005

©Silberschatz, Korth and Sudarshan10.52CS425 – Fall 2016 – Boris Glavic

Snapshot Isolation

■ A transaction T1 executing with Snapshot

Isolation

● takes snapshot of committed data at

start

● always reads/modifies data in its own

snapshot

● updates of concurrent transactions are

not visible to T1

● writes of T1 complete when it commits

● First-committer-wins rule:

4 Commits only if no other concurrent

transaction has already written data

that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) à 0

R(Y)à 1

W(X:=2)

W(Z:=3)

Commit

R(Z) à 0

R(Y) à 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

©Silberschatz, Korth and Sudarshan10.53CS425 – Fall 2016 – Boris Glavic

Snapshot Read
■ Concurrent updates invisible to snapshot read

©Silberschatz, Korth and Sudarshan10.54CS425 – Fall 2016 – Boris Glavic

Snapshot Write: First Committer Wins

● Variant: First-updater-wins

4 Check for concurrent updates when write occurs by locking item

– But lock should be held till all concurrent transactions have finished

4 (Oracle uses this plus some extra features)

4 Differs only in when abort occurs, otherwise equivalent

10

©Silberschatz, Korth and Sudarshan10.55CS425 – Fall 2016 – Boris Glavic

Benefits of SI

■ Reading is never blocked,

● and also doesn’t block other txns activities

■ Performance similar to Read Committed

■ Avoids the usual anomalies

● No dirty read

● No lost update

● No non-repeatable read

● Predicate based selects are repeatable (no phantoms)

■ Problems with SI

● SI does not always give serializable executions

4 Serializable: among two concurrent txns, one sees the effects
of the other

4 In SI: neither sees the effects of the other

● Result: Integrity constraints can be violated

©Silberschatz, Korth and Sudarshan10.56CS425 – Fall 2016 – Boris Glavic

Snapshot Isolation

■ E.g. of problem with SI

● T1: x:=y

● T2: y:= x

● Initially x = 3 and y = 17

4 Serial execution: x = ??, y = ??

4 if both transactions start at the same time, with snapshot
isolation: x = ?? , y = ??

■ Called skew write

■ Skew also occurs with inserts

● E.g:

4 Find max order number among all orders

4 Create a new order with order number = previous max + 1

©Silberschatz, Korth and Sudarshan10.57CS425 – Fall 2016 – Boris Glavic

Snapshot Isolation Anomalies

■ SI breaks serializability when txns modify different items, each based on a

previous state of the item the other modified

● Not very common in practice

4 E.g., the TPC-C benchmark runs correctly under SI

4 when txns conflict due to modifying different data, there is usually also

a shared item they both modify too (like a total quantity) so SI will abort

one of them

● But does occur

4 Application developers should be careful about write skew

■ SI can also cause a read-only transaction anomaly, where read-only

transaction may see an inconsistent state even if updaters are serializable

● We omit details

■ Using snapshots to verify primary/foreign key integrity can lead to

inconsistency

● Integrity constraint checking usually done outside of snapshot

©Silberschatz, Korth and Sudarshan10.58CS425 – Fall 2016 – Boris Glavic

SI In Oracle and PostgreSQL

■ Warning: SI used when isolation level is set to serializable, by Oracle, and
PostgreSQL versions prior to 9.1

● PostgreSQL’s implementation of SI (versions prior to 9.1) described in
Section 26.4.1.3

● Oracle implements first updater wins rule (variant of first committer
wins)

4 concurrent writer check is done at time of write, not at commit time

4 Allows transactions to be rolled back earlier

4 Oracle and PostgreSQL < 9.1 do not support true serializable
execution

● PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot
Isolation” (SSI)

4 Which guarantees true serializabilty including handling predicate
reads (coming up)

©Silberschatz, Korth and Sudarshan10.59CS425 – Fall 2016 – Boris Glavic

SI In Oracle and PostgreSQL

■ Can sidestep SI for specific queries by using select .. for update in Oracle
and PostgreSQL

● E.g.,

1. select max(orderno) from orders for update

2. read value into local variable maxorder

3. insert into orders (maxorder+1, …)

● Select for update (SFU) treats all data read by the query as if it were
also updated, preventing concurrent updates

● Does not always ensure serializability since phantom phenomena can
occur (coming up)

■ In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks
when the transaction completes, even if other concurrent transactions are
active

● Not quite same as SFU in Oracle, which keeps locks until all

● concurrent transactions have completed

©Silberschatz, Korth and Sudarshan10.60CS425 – Fall 2016 – Boris Glavic

Insert and Delete Operations

■ If two-phase locking is used :

● A delete operation may be performed only if the transaction
deleting the tuple has an exclusive lock on the tuple to be deleted.

● A transaction that inserts a new tuple into the database is given an
X-mode lock on the tuple

■ Insertions and deletions can lead to the phantom phenomenon.

● A transaction that scans a relation

4 (e.g., find sum of balances of all accounts in Perryridge)

and a transaction that inserts a tuple in the relation

4 (e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any tuple in
common.

● If only tuple locks are used, non-serializable schedules can result

4 E.g. the scan transaction does not see the new account, but
reads some other tuple written by the update transaction

11

©Silberschatz, Korth and Sudarshan10.61CS425 – Fall 2016 – Boris Glavic

Insert and Delete Operations (Cont.)

■ The transaction scanning the relation is reading information that indicates
what tuples the relation contains, while a transaction inserting a tuple
updates the same information.

● The conflict should be detected, e.g. by locking the information.

■ One solution:

● Associate a data item with the relation, to represent the information
about what tuples the relation contains.

● Transactions scanning the relation acquire a shared lock in the data
item,

● Transactions inserting or deleting a tuple acquire an exclusive lock on
the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

■ Above protocol provides very low concurrency for insertions/deletions.

■ Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

©Silberschatz, Korth and Sudarshan10.62CS425 – Fall 2016 – Boris Glavic

Index Locking Protocol

■ Index locking protocol:

● Every relation must have at least one index.

● A transaction can access tuples only after finding them through one or
more indices on the relation

● A transaction Ti that performs a lookup must lock all the index leaf
nodes that it accesses, in S-mode

4 Even if the leaf node does not contain any tuple satisfying the index
lookup (e.g. for a range query, no tuple in a leaf is in the range)

● A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

4 must update all indices to r

4 must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

● The rules of the two-phase locking protocol must be observed

■ Guarantees that phantom phenomenon won’t occur

©Silberschatz, Korth and Sudarshan10.63CS425 – Fall 2016 – Boris Glavic

Next-Key Locking

■ Index-locking protocol to prevent phantoms required locking entire leaf

● Can result in poor concurrency if there are many inserts

■ Alternative: for an index lookup

● Lock all values that satisfy index lookup (match lookup value, or
fall in lookup range)

● Also lock next key value in index

● Lock mode: S for lookups, X for insert/delete/update

■ Ensures that range queries will conflict with inserts/deletes/updates

● Regardless of which happens first, as long as both are concurrent

©Silberschatz, Korth and Sudarshan10.64CS425 – Fall 2016 – Boris Glavic

Concurrency in Index Structures

■ Indices are unlike other database items in that their only job is to help in
accessing data.

■ Index-structures are typically accessed very often, much more than
other database items.

● Treating index-structures like other database items, e.g. by 2-phase
locking of index nodes can lead to low concurrency.

■ There are several index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.

● It is acceptable to have nonserializable concurrent access to an
index as long as the accuracy of the index is maintained.

4 In particular, the exact values read in an internal node of a
B+-tree are irrelevant so long as we land up in the correct leaf
node.

©Silberschatz, Korth and Sudarshan10.65CS425 – Fall 2016 – Boris Glavic

Concurrency in Index Structures (Cont.)

■ Example of index concurrency protocol:

■ Use crabbing instead of two-phase locking on the nodes of the B+-tree, as

follows. During search/insertion/deletion:

● First lock the root node in shared mode.

● After locking all required children of a node in shared mode, release the lock

on the node.

● During insertion/deletion, upgrade leaf node locks to exclusive mode.

● When splitting or coalescing requires changes to a parent, lock the parent in

exclusive mode.

■ Above protocol can cause excessive deadlocks

● Searches coming down the tree deadlock with updates going up the tree

● Can abort and restart search, without affecting transaction

■ Better protocols are available; see Section 16.9 for one such protocol, the B-link

tree protocol

● Intuition: release lock on parent before acquiring lock on child

4 And deal with changes that may have happened between lock release

and acquire

©Silberschatz, Korth and Sudarshan10.66CS425 – Fall 2016 – Boris Glavic

Figure 15.01

S X

S true false

X false false

12

©Silberschatz, Korth and Sudarshan10.67CS425 – Fall 2016 – Boris Glavic

Figure 15.04

©Silberschatz, Korth and Sudarshan10.68CS425 – Fall 2016 – Boris Glavic

Figure 15.07

©Silberschatz, Korth and Sudarshan10.69CS425 – Fall 2016 – Boris Glavic

Figure 15.08

©Silberschatz, Korth and Sudarshan10.70CS425 – Fall 2016 – Boris Glavic

Figure 15.09

©Silberschatz, Korth and Sudarshan10.71CS425 – Fall 2016 – Boris Glavic

Figure 15.10

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

©Silberschatz, Korth and Sudarshan10.72CS425 – Fall 2016 – Boris Glavic

Figure 15.11

A

CB

F

E

IH

J

D

G

13

©Silberschatz, Korth and Sudarshan10.73CS425 – Fall 2016 – Boris Glavic

Figure 15.12

©Silberschatz, Korth and Sudarshan10.74CS425 – Fall 2016 – Boris Glavic

Figure 15.13

T
18

T
20

T
17

T
19

©Silberschatz, Korth and Sudarshan10.75CS425 – Fall 2016 – Boris Glavic

Figure 15.14

T
18

T
20

T
17

T
19

©Silberschatz, Korth and Sudarshan10.76CS425 – Fall 2016 – Boris Glavic

Figure 15.15

r
a
1

r
a
2

r
a
n

r
b
1

r
b
k

r
c
1

r
c
m

F
a

F
b

F
c

A
1

A
2

DB

©Silberschatz, Korth and Sudarshan10.77CS425 – Fall 2016 – Boris Glavic

Figure 15.16

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

©Silberschatz, Korth and Sudarshan10.78CS425 – Fall 2016 – Boris Glavic

Figure 15.17

14

©Silberschatz, Korth and Sudarshan10.79CS425 – Fall 2016 – Boris Glavic

Figure 15.18

©Silberschatz, Korth and Sudarshan10.80CS425 – Fall 2016 – Boris Glavic

Figure 15.19

©Silberschatz, Korth and Sudarshan10.81CS425 – Fall 2016 – Boris Glavic

Figure 15.20

©Silberschatz, Korth and Sudarshan10.82CS425 – Fall 2016 – Boris Glavic

Figure 15.21

History

Elec. Eng.

Biology Comp. Sci. Elec. Eng. Finance History

Music

Music Physics

©Silberschatz, Korth and Sudarshan10.83CS425 – Fall 2016 – Boris Glavic

Figure 15.22

History

Elec. Eng.

Biology .celEyrtsimehC Eng. FinanceComp. Sci.

Music

Music Physics

Comp. Sci.

History

©Silberschatz, Korth and Sudarshan10.84CS425 – Fall 2016 – Boris Glavic

Figure 15.23

S X I

S true false false

X false false false

I false false true

15

©Silberschatz, Korth and Sudarshan10.85CS425 – Fall 2016 – Boris Glavic

Figure in-15.1

T27 T28 T29

read (Q)

write (Q)

write (Q)

write (Q)

1!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Chapter 11: Indexing and Storage!

©Silberschatz, Korth and Sudarshan!11.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 11: Indexing and Storage!

■  DBMS Storage!

●  Memory hierarchy!

●  File Organization!

●  Buffering!

■  Indexing!

●  Basic Concepts!

●  B+-Trees!

●  Static Hashing!

●  Index Definition in SQL!

●  Multiple-Key Access!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Memory Hierarchy!

©Silberschatz, Korth and Sudarshan!11.4!CS425 – Fall 2013 – Boris Glavic!

DBMS Storage!

■  Modern Computers have different types of memory!

●  Cache, Main Memory, Harddisk, SSD, …!

■  Memory types have different characteristics in terms of!

●  Persistent vs. volatile!

●  Speed (random vs. sequential access)!

●  Size!

●  Price – this usually determines size!

■  Database systems are designed to be use these different memory
types effectively!

●  Need for persistent storage: the state of the database needs to be
written to persistent storage !

! guarantee database content is not lost when the computer is
shutdown!

●  Moving data between different types of memory!

! Want to use fast memory to speed-up operations!

! Need slower memory for the size!

©Silberschatz, Korth and Sudarshan!11.5!CS425 – Fall 2013 – Boris Glavic!

Storage Hierarchy!

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

S
iz

e
!

S
p

e
e

d
!

Persistent!

storage!

©Silberschatz, Korth and Sudarshan!11.6!CS425 – Fall 2013 – Boris Glavic!

Main Memory vs. Disk!

■  Why do we not only use main memory!

●  What if database does not fit into main memory?!

●  Main memory is volatile!

■  Main memory vs. disk!

●  Given available main memory when do we keep which part of the
database in main memory!

! Buffer manager: Component of DBMS that decides when to

move data between disk and main memory!

●  How do we ensure transaction property durability!

! Buffer manager needs to make sure data written by committed
transactions is written to disk to ensure durability!

2!

©Silberschatz, Korth and Sudarshan!11.7!CS425 – Fall 2013 – Boris Glavic!

Magnetic Hard Disk Mechanism!

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives!

track t

sector s

spindle

cylinder c

platter

arm

read–write
head

arm assembly

rotation

©Silberschatz, Korth and Sudarshan!11.8!CS425 – Fall 2013 – Boris Glavic!

Performance Measures of Disks!

■  Access time – the time it takes from when a read or write request is issued to
when data transfer begins. Consists of: !

●  Seek time – time it takes to reposition the arm over the correct track. !

!  Average seek time is 1/2 the worst case seek time.!

–  Would be 1/3 if all tracks had the same number of sectors, and we
ignore the time to start and stop arm movement!

!  4 to 10 milliseconds on typical disks!

●  Rotational latency – time it takes for the sector to be accessed to appear
under the head. !

!  Average latency is 1/2 of the worst case latency.!

!  4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)!

■  Data-transfer rate – the rate at which data can be retrieved from or stored to
the disk.!

●  25 to 100 MB per second max rate, lower for inner tracks!

●  Multiple disks may share a controller, so rate that controller can handle is
also important!

!  E.g. SATA: 150 MB/sec, SATA-II 3Gb (300 MB/sec)!

!  Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)!

!  Fiber Channel (FC2Gb or 4Gb): 256 to 512 MB/s!

©Silberschatz, Korth and Sudarshan!11.9!CS425 – Fall 2013 – Boris Glavic!

Random vs. Sequential Access!

■  Transfer of data from disk has a minimal size = 1 block!

●  Reading 1 byte is as fast as reading one block (e.g., 4KB)!

■  Random Access!

●  Read data from anywhere on the disk!

●  Need to get to the right track (seek time)!

●  Need to wait until the right sector is under the arm (on avg ½ time
for one rotation) (rotational delay)!

●  Then can transfer data at ~ transfer rate!

■  Sequential Access!

●  Read data that is on the current track + sector!

●  can transfer data at ~ transfer rate!

■  Reading large number of small pieces of data randomly is very slow
compared to sequential access!

●  Thus, try layout data on disk in a way that enables sequential
access!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

File Organization!

©Silberschatz, Korth and Sudarshan!11.11!CS425 – Fall 2013 – Boris Glavic!

File Organization!

■  The database is stored as a collection of files. Each file stores
records (tuples from a table). A record is a sequence of fields

(the attributes of a tuple).!

■  Reading one record of a time from disk would be very slow
(random access)!

●  Organize our database files in pages (size of block or larger)!

●  Read/write data in units of pages!

●  One page will usually contain several records!

■  One approach:!

●  assume record size is fixed!

●  each file has records of one particular type only !

●  different files are used for different relations!

This case is easiest to implement; will consider variable length
records later.!

©Silberschatz, Korth and Sudarshan!11.12!CS425 – Fall 2013 – Boris Glavic!

Fixed-Length Records!

■  Simple approach:!

●  Store record i starting from byte n * (i – 1), where n is the size of
each record. Put maximal P / n records on each page.!

●  Record access is simple but records may cross blocks!

! Modification: do not allow records to cross block boundaries!

!

■  Deletion of record i:  

alternatives:"

●  move records i + 1, . . ., n  
to i, . . . , n – 1!

●  move record n to i!

●  do not move records, but  
link all free records on a  

free list!

Srinivasan Comp. Sci. 65000

Wu Finance 90000

Mozart Music 40000

Einstein Physics 95000

El Said History 60000

Gold Physics 87000

Katz Comp. Sci. 75000

Califieri History 62000

Singh Finance 80000

Crick Biology 72000

Brandt Comp. Sci. 92000

15151

10101

12121

22222

32343

33456

45565

58583

76543

76766

83821

98345 Kim Elec. Eng. 80000

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

record 9

record 10

record 11

3!

©Silberschatz, Korth and Sudarshan!11.13!CS425 – Fall 2013 – Boris Glavic!

Free Lists!

■  Store the address of the first deleted record in the file header.!

■  Use this first record to store the address of the second deleted record,
and so on!

■  Can think of these stored addresses as pointers since they point to
the location of a record.!

header

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

record 9

record 10

record 11

72000

92000

80000

65000

40000

95000

87000

62000

76766

83821

98345

10101

15151

22222

33456

58583

76543

Crick

Brandt

Kim

Srinivasan

Mozart

Einstein

Gold

Califieri

Singh

Biology

Elec. Eng.

Comp. Sci.

Comp. Sci.

Music

Physics

Physics

History

Finance 80000

©Silberschatz, Korth and Sudarshan!11.14!CS425 – Fall 2013 – Boris Glavic!

Variable-Length Records!

■  Variable-length records arise in database systems in several ways:!

●  Storage of multiple record types in a file.!

●  Record types that allow variable lengths for one or more fields such as
strings (varchar)!

●  Record types that allow repeating fields (used in some older data
models).!

■  Attributes are stored in order!

■  Variable length attributes represented by fixed size (offset, length), with
actual data stored after all fixed length attributes!

■  Null values represented by null-value bitmap!

!

21, 5 26, 10 36, 10 65000 10101 Srinivasan Comp. Sci.

Bytes 0 4 8 12 20 21 26 36 45

0000
Null bitmap (stored in 1 byte)

©Silberschatz, Korth and Sudarshan!11.15!CS425 – Fall 2013 – Boris Glavic!

Variable-Length Records: Slotted Page Structure!

■  Slotted page header contains:!

●  number of record entries!

●  end of free space in the block!

●  location and size of each record!

■  Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.!

■  Pointers should not point directly to record — instead they should
point to the entry for the record in header.!

EntriesSize
Location

Block Header Records

Free Space

End of Free Space

©Silberschatz, Korth and Sudarshan!11.16!CS425 – Fall 2013 – Boris Glavic!

Organization of Records in Files!

■  Heap – a record can be placed anywhere in the file where there
is space!

●  Deletion efficient!

●  Insertion efficient!

●  Search is expensive!

! Example: Get instructor with name Glavic!

–  Have to search through all instructors!

■  Sequential – store records in sequential order, based on the
value of some search key of each record!

●  Deletion expensive and/or waste of space!

●  Insertion expensive and/or waste of space!

●  Search is efficient (e.g., binary search)!

! As long as the search is on the search key we are
ordering on!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Buffering!

©Silberschatz, Korth and Sudarshan!11.18!CS425 – Fall 2013 – Boris Glavic!

Buffer Manager!

■  Buffer Manager!

●  Responsible for loading pages from disk and writing modified
pages back to disk!

■  Handling blocks!

1.  If the block is already in the buffer, the buffer manager
returns the address of the block in main memory!

2.  If the block is not in the buffer, the buffer manager!

1.  Allocates space in the buffer for the block!

1.  Replacing (throwing out) some other block, if required,
to make space for the new block.!

2.  Replaced block written back to disk only if it was
modified since the most recent time that it was written

to/fetched from the disk.!

2.  Reads the block from the disk to the buffer, and returns
the address of the block in main memory to requester. !

4!

©Silberschatz, Korth and Sudarshan!11.19!CS425 – Fall 2013 – Boris Glavic!

Buffer-Replacement Policies!

■  Most operating systems replace the block least recently used
(LRU strategy)!

■  Idea behind LRU – use past pattern of block references as a
predictor of future references!

■  Queries have well-defined access patterns (such as sequential

scans), and a database system can use the information in a user’s
query to predict future references!

●  LRU can be a bad strategy for certain access patterns involving
repeated scans of data!

! For example: when computing the join of 2 relations r and s
by a nested loops  
 for each tuple tr of r do  

 for each tuple ts of s do  

 if the tuples tr and ts match …!

●  Mixed strategy with hints on replacement strategy provided  
by the query optimizer is preferable!

©Silberschatz, Korth and Sudarshan!11.20!CS425 – Fall 2013 – Boris Glavic!

Buffer-Replacement Policies (Cont.)!

■  Pinned block – memory block that is not allowed to be written
back to disk. E.g., an operation still needs this block.!

■  Toss-immediate strategy – frees the space occupied by a block
as soon as the final tuple of that block has been processed!

■  Most recently used (MRU) strategy – system must pin the

block currently being processed. After the final tuple of that block
has been processed, the block is unpinned, and it becomes the

most recently used block.!

■  Buffer manager can use statistical information regarding the

probability that a request will reference a particular relation!

●  E.g., the data dictionary is frequently accessed. Heuristic:
keep data-dictionary blocks in main memory buffer!

■  Buffer managers also support forced output of blocks for the
purpose of recovery (more in Chapter 16 in the textbook)!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Indexing and Hashing!

©Silberschatz, Korth and Sudarshan!11.22!CS425 – Fall 2013 – Boris Glavic!

Basic Concepts!

■  Indexing mechanisms used to speed up access to desired data.!

●  E.g., author catalog in library!

■  Search Key - attribute or set of attributes used to look up records in a
file.!

■  An index file consists of records (called index entries) of the form 
 

!

■  Index files are typically much smaller than the original file !

■  Two basic kinds of indices:!

●  Ordered indices: search keys are stored in some sorted order!

●  Hash indices: search keys are distributed uniformly across
buckets using a hash function . !

search-key! pointer!

©Silberschatz, Korth and Sudarshan!11.23!CS425 – Fall 2013 – Boris Glavic!

Index Evaluation Metrics!

■  Access types supported efficiently. E.g., !

●  records with a specified value in the attribute!

●  or records with an attribute value falling in a specified range of
values.!

■  Access time!

■  Insertion time!

■  Deletion time!

■  Space overhead!

©Silberschatz, Korth and Sudarshan!11.24!CS425 – Fall 2013 – Boris Glavic!

Ordered Indices!

■  In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.!

■  Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.!

●  Also called clustering index!

●  The search key of a primary index is usually but not necessarily the
primary key.!

■  Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called  
non-clustering index.!

■  Index-sequential file: ordered sequential file with a primary index.!

5!

©Silberschatz, Korth and Sudarshan!11.25!CS425 – Fall 2013 – Boris Glavic!

Secondary Indices Example!

■  Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.!

■  Secondary indices have to be dense!

Secondary index on salary field of instructor!

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstein Physics 95000

32343 El Said History 60000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

58583 Califieri History 62000

76543 Singh Finance 80000

76766 Crick Biology 72000

83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000

©Silberschatz, Korth and Sudarshan!11.26!CS425 – Fall 2013 – Boris Glavic!

Primary and Secondary Indices!

■  Indices offer substantial benefits when searching for records.!

■  BUT: Updating indices imposes overhead on database
modification --when a file is modified, every index on the file

must be updated, !

■  Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive !

●  Each record access may fetch a new block from disk!

●  Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access!

©Silberschatz, Korth and Sudarshan!11.27!CS425 – Fall 2013 – Boris Glavic!

Multilevel Index!

■  If primary index does not fit in memory, access becomes

expensive.!

■  Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.!

●  outer index – a sparse index of primary index!

●  inner index – the primary index file!

■  If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.!

■  Indices at all levels must be updated on insertion or deletion

from the file.!

©Silberschatz, Korth and Sudarshan!11.28!CS425 – Fall 2013 – Boris Glavic!

Multilevel Index (Cont.)!

…

…
…

…

outer index

index

block 0

index

block 1

data

block 0

data

block 1

inner index

©Silberschatz, Korth and Sudarshan!11.29!CS425 – Fall 2013 – Boris Glavic!

Index Update: Deletion!

■  Single-level index entry deletion:!

●  Dense indices – deletion of search-key is similar to file record
deletion.!

●  Sparse indices –!

!  if an entry for the search key exists in the index, it is

deleted by replacing the entry in the index with the next

search-key value in the file (in search-key order). !

! If the next search-key value already has an index entry, the
entry is deleted instead of being replaced.!

10101
32343
76766

10101 Srinivasan

45565 Katz

58583 Califieri

76543 Singh

76766 Crick

83821 Brandt

98345 Kim

12121 Wu

15151 Mozart

22222 Einstein
32343 El Said

33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.

History

Finance

Biology

Elec. Eng.

Finance

Music

Physics
History

Physics

65000

75000

62000

80000

72000

92000

80000

90000

40000

95000
60000

87000
■  If deleted record was the

only record in the file with its

particular search-key value,

the search-key is deleted

from the index also.!

©Silberschatz, Korth and Sudarshan!11.30!CS425 – Fall 2013 – Boris Glavic!

Index Update: Insertion!

■  Single-level index insertion:!

●  Perform a lookup using the search-key value appearing in
the record to be inserted.!

●  Dense indices – if the search-key value does not appear in
the index, insert it.!

●  Sparse indices – if index stores an entry for each block of

the file, no change needs to be made to the index unless a

new block is created. !

! If a new block is created, the first search-key value
appearing in the new block is inserted into the index.!

■  Multilevel insertion and deletion: algorithms are simple
extensions of the single-level algorithms!

6!

©Silberschatz, Korth and Sudarshan!11.31!CS425 – Fall 2013 – Boris Glavic!

Secondary Indices!

■  Frequently, one wants to find all the records whose values in

a certain field (which is not the search-key of the primary

index) satisfy some condition.!

●  Example 1: In the instructor relation stored sequentially by
ID, we may want to find all instructors in a particular

department!

●  Example 2: as above, but where we want to find all
instructors with a specified salary or with salary in a

specified range of values!

■  We can have a secondary index with an index record for

each search-key value!

©Silberschatz, Korth and Sudarshan!11.32!CS425 – Fall 2013 – Boris Glavic!

B+-Tree Index!

■  Disadvantage of indexed-sequential files!

●  performance degrades as file grows, since many overflow
blocks get created. !

●  Periodic reorganization of entire file is required.!

■  Advantage of B+-tree index files: !

●  automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions. !

●  Reorganization of entire file is not required to maintain
performance.!

■  (Minor) disadvantage of B+-trees: !

●  extra insertion and deletion overhead, space overhead.!

■  Advantages of B+-trees outweigh disadvantages!

●  B+-trees are used extensively!

B+-tree indices are an alternative to indexed-sequential files.!

©Silberschatz, Korth and Sudarshan!11.33!CS425 – Fall 2013 – Boris Glavic!

Example of B+-Tree!

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222

32343

33456

45565

58583

76543

76766

83821

98345 Kim Elec. Eng. 80000

©Silberschatz, Korth and Sudarshan!11.34!CS425 – Fall 2013 – Boris Glavic!

B+-Tree Index Files (Cont.)!

■  All paths from root to leaf are of the same length!

■  Each node that is not a root or a leaf has between ⎡n/2⎤ and
n children.!

■  A leaf node has between ⎡(n–1)/2⎤ and n–1 values!

■  Special cases: !

●  If the root is not a leaf, it has at least 2 children.!

●  If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.!

A B+-tree is a rooted tree satisfying the following properties:!

©Silberschatz, Korth and Sudarshan!11.35!CS425 – Fall 2013 – Boris Glavic!

B+-Tree Node Structure!

■  Typical node  

 

 

!

●  Ki are the search-key values !

●  Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).!

■  The search-keys in a node are ordered !

! ! K1 < K2 < K3 < . . . < Kn–1!

 (Initially assume no duplicate keys, address duplicates later)!

!

!

!

P1 K1 P2 Pn-1 Kn-1 Pn…

©Silberschatz, Korth and Sudarshan!11.36!CS425 – Fall 2013 – Boris Glavic!

Leaf Nodes in B+-Trees!

■  For i = 1, 2, . . ., n–1, pointer Pi points to a file record with

search-key value Ki, !

■  If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than or equal to Lj’s search-key values!

■  Pn points to next leaf node in search-key order!

Properties of a leaf node:!

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583

76543
76766
83821
98345 Kim Elec. Eng. 80000

leaf node

Pointer to next leaf nodeBrandt Califieri Crick

7!

©Silberschatz, Korth and Sudarshan!11.37!CS425 – Fall 2013 – Boris Glavic!

Non-Leaf Nodes in B+-Trees!

■  Non leaf nodes form a multi-level sparse index on the leaf

nodes. For a non-leaf node with m pointers:!

●  All the search-keys in the subtree to which P1 points are
less than K1 !

●  For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which
Pi points have values greater than or equal to Ki–1 and less

than Ki "

●  All the search-keys in the subtree to which Pn points have

values greater than or equal to Kn–1!

P1 K1 P2 Pn-1 Kn-1 Pn…

©Silberschatz, Korth and Sudarshan!11.38!CS425 – Fall 2013 – Boris Glavic!

Example of B+-tree!

■  Leaf nodes must have between 3 and 5 values  

(⎡(n–1)/2⎤ and n –1, with n = 6).!

■  Non-leaf nodes other than root must have between 3
and 6 children (⎡(n/2⎤ and n with n =6).!

■  Root must have at least 2 children.!

B+-tree for instructor file (n = 6)!

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

©Silberschatz, Korth and Sudarshan!11.39!CS425 – Fall 2013 – Boris Glavic!

Observations about B+-trees!

■  Since the inter-node connections are done by pointers,

logically close blocks need not be physically close.!

■  The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.!

■  The B+-tree contains a relatively small number of levels!

! Level below root has at least 2* ⎡n/2⎤ values!

! Next level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values!

! .. etc.!

●  If there are K search-key values in the file, the tree height is
no more than ⎡ log⎡n/2⎤(K)⎤!

●  thus searches can be conducted efficiently.!

■  Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time

(as we shall see).!

©Silberschatz, Korth and Sudarshan!11.40!CS425 – Fall 2013 – Boris Glavic!

Queries on B+-Trees!
■  Find record with search-key value V."

1.  C=root"

2.  While C is not a leaf node {!

1.  Let i be least value s.t. V ≤ Ki.!

2.  If no such exists, set C = last non-null pointer in C !

3.  Else { if (V= Ki) Set C = Pi +1 else set C = Pi}!

}!

3.  Let i be least value s.t. Ki = V"

4.  If there is such a value i, follow pointer Pi to the desired record.!

5.  Else no record with search-key value k exists.!

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

©Silberschatz, Korth and Sudarshan!11.41!CS425 – Fall 2013 – Boris Glavic!

Handling Duplicates!

■  With duplicate search keys!

●  In both leaf and internal nodes, !

! we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1!

! but can guarantee K1 ≤ K2 ≤ K3 ≤ . . . ≤ Kn–1!

●  Search-keys in the subtree to which Pi points !

! are ≤ Ki,, but not necessarily < Ki,!

! To see why, suppose same search key value V is
present in two leaf node Li and Li+1. Then in parent node
Ki must be equal to V

!

©Silberschatz, Korth and Sudarshan!11.42!CS425 – Fall 2013 – Boris Glavic!

Handling Duplicates!

■  We modify find procedure as follows !

●  traverse Pi even if V = Ki!

● As soon as we reach a leaf node C check if C has

only search key values less than V"

! if so set C = right sibling of C before checking

whether C contains V"

■  Procedure printAll!

●  uses modified find procedure to find first

occurrence of V"

●  Traverse through consecutive leaves to find all

occurrences of V!

** Errata note: modified find procedure missing in first printing of 6th edition!

8!

©Silberschatz, Korth and Sudarshan!11.43!CS425 – Fall 2013 – Boris Glavic!

Queries on B+-Trees (Cont.)!

■  If there are K search-key values in the file, the height of the tree is no
more than ⎡log⎡n/2⎤(K)⎤.!

■  A node is generally the same size as a disk block, typically 4
kilobytes!

●  and n is typically around 100 (40 bytes per index entry).!

■  With 1 million search key values and n = 100!

●  at most log50(1,000,000) = 4 nodes are accessed in a lookup.!

■  Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup!

●  above difference is significant since every node access may need
a disk I/O, costing around 20 milliseconds!

©Silberschatz, Korth and Sudarshan!11.44!CS425 – Fall 2013 – Boris Glavic!

Updates on B+-Trees: Insertion!

1.  Find the leaf node in which the search-key value would appear!

2.  If the search-key value is already present in the leaf node!

1.  Add record to the file!

2.  If necessary add a pointer to the bucket.!

3.  If the search-key value is not present, then !

1.  add the record to the main file (and create a bucket if

necessary)!

2.  If there is room in the leaf node, insert (key-value, pointer)
pair in the leaf node!

3.  Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.!

©Silberschatz, Korth and Sudarshan!11.45!CS425 – Fall 2013 – Boris Glavic!

Updates on B+-Trees: Insertion (Cont.)!

■  Splitting a leaf node:!

●  take the n (search-key value, pointer) pairs (including the one
being inserted) in sorted order. Place the first ⎡n/2⎤ in the original

node, and the rest in a new node.!

●  let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split. !

●  If the parent is full, split it and propagate the split further up.!

■  Splitting of nodes proceeds upwards till a node that is not full is found. !

●  In the worst case the root node may be split increasing the height
of the tree by 1. !

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams!
Next step: insert entry with (Califieri,pointer-to-new-node) into parent!

Adams Califieri CrickBrandt

©Silberschatz, Korth and Sudarshan!11.46!CS425 – Fall 2013 – Boris Glavic!

B+-Tree Insertion!

B+-Tree before and after insertion of Adams !

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick

©Silberschatz, Korth and Sudarshan!11.47!CS425 – Fall 2013 – Boris Glavic!

B+-Tree Insertion!

Srinivasan

Gold

Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

B+-Tree before and after insertion of Lamport !

©Silberschatz, Korth and Sudarshan!11.48!CS425 – Fall 2013 – Boris Glavic!

■  Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N!

●  Copy N to an in-memory area M with space for n+1 pointers and n
keys!

●  Insert (k,p) into M!

●  Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N!

●  Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node
N’!

●  Insert (K ⎡n/2⎤,N’) into parent N!

■  Read pseudocode in book!!

Crick!

Insertion in B+-Trees (Cont.)!

Adams Brandt Califieri Crick! Adams Brandt!

 Califieri! !

9!

©Silberschatz, Korth and Sudarshan!11.49!CS425 – Fall 2013 – Boris Glavic!

Examples of B+-Tree Deletion!

■  Deleting Srinivasan causes merging of under-full leaves!

Before and after deleting Srinivasan !

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

©Silberschatz, Korth and Sudarshan!11.50!CS425 – Fall 2013 – Boris Glavic!

Examples of B+-Tree Deletion (Cont.)!

Deletion of Singh and Wu from result of previous example!

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

■  Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling!

■  Search-key value in the parent changes as a result!

©Silberschatz, Korth and Sudarshan!11.51!CS425 – Fall 2013 – Boris Glavic!

Example of B+-tree Deletion (Cont.)!

Before and after deletion of Gold from earlier example!

■  Node with Gold and Katz became underfull, and was merged with its sibling !

■  Parent node becomes underfull, and is merged with its sibling!

●  Value separating two nodes (at the parent) is pulled down when merging!

■  Root node then has only one child, and is deleted!

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

©Silberschatz, Korth and Sudarshan!11.52!CS425 – Fall 2013 – Boris Glavic!

Updates on B+-Trees: Deletion!

■  Find the record to be deleted, and remove it from the main file and
from the bucket (if present)!

■  Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty!

■  If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node, then merge siblings:!

●  Insert all the search-key values in the two nodes into a single node
(the one on the left), and delete the other node.!

●  Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted
node, from its parent, recursively using the above procedure.!

©Silberschatz, Korth and Sudarshan!11.53!CS425 – Fall 2013 – Boris Glavic!

Updates on B+-Trees: Deletion!

■  Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then

redistribute pointers:!

●  Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.!

●  Update the corresponding search-key value in the parent of the
node.!

■  The node deletions may cascade upwards till a node which has ⎡n/2⎤
or more pointers is found. !

■  If the root node has only one pointer after deletion, it is deleted and
the sole child becomes the root. !

©Silberschatz, Korth and Sudarshan!11.54!CS425 – Fall 2013 – Boris Glavic!

Non-Unique Search Keys!

■  Alternatives to scheme described earlier!

●  Buckets on separate block (bad idea)!

●  List of tuple pointers with each key!

! Extra code to handle long lists!

! Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)!

! Low space overhead, no extra cost for queries!

●  Make search key unique by adding a record-identifier!

! Extra storage overhead for keys!

! Simpler code for insertion/deletion!

! Widely used!

10!

©Silberschatz, Korth and Sudarshan!11.55!CS425 – Fall 2013 – Boris Glavic!

B+-Tree File Organization!

■  Index file degradation problem is solved by using B+-Tree indices.!

■  Data file degradation problem is solved by using B+-Tree File
Organization.!

■  The leaf nodes in a B+-tree file organization store records, instead of
pointers.!

■  Leaf nodes are still required to be half full!

●  Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of

pointers in a nonleaf node.!

■  Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B+-tree index.!

©Silberschatz, Korth and Sudarshan!11.56!CS425 – Fall 2013 – Boris Glavic!

B+-Tree File Organization (Cont.)!

■  Good space utilization important since records use more space than
pointers. !

■  To improve space utilization, involve more sibling nodes in redistribution
during splits and merges!

●  Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entries!

!

Example of B+-tree File Organization!

⎣ ⎦3/2n

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Hashing!

©Silberschatz, Korth and Sudarshan!11.58!CS425 – Fall 2013 – Boris Glavic!

Static Hashing!

■  A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block). !

■  In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.!

■  Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B."

■  Hash function is used to locate records for access, insertion as well
as deletion.!

■  Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to

locate a record. !

©Silberschatz, Korth and Sudarshan!11.59!CS425 – Fall 2013 – Boris Glavic!

Example of Hash File Organization!

■  There are 10 buckets,!

■  The binary representation of the ith character is assumed to be the
integer i.!

■  The hash function returns the sum of the binary representations of
the characters modulo 10!

●  E.g. h(Music) = 1 h(History) = 2  
 h(Physics) = 3 h(Elec. Eng.) = 3!

 

Hash file organization of instructor file, using dept_name as key  

 (See figure in next slide.)!

©Silberschatz, Korth and Sudarshan!11.60!CS425 – Fall 2013 – Boris Glavic!

Example of Hash File Organization !

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).!

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

bucket 7

45565

15151 Mozart Music 40000

80000

Wu12121 Finance 90000

76543 FinanceSingh

10101 Comp. Sci.Srinivasan

Katz Comp. Sci. 75000

92000

6500032343

58583

El Said

Califieri

History

History

80000

60000

Einstein

Gold

Kim

22222

33456

98345

Physics

Physics

Elec. Eng.

95000

87000

80000

Brandt83821 Comp. Sci.

76766 Crick Biology 72000

11!

©Silberschatz, Korth and Sudarshan!11.61!CS425 – Fall 2013 – Boris Glavic!

Hash Functions!

■  Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key

values in the file.!

■  An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.!

■  Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of

search-key values in the file.!

■  Typical hash functions perform computation on the internal binary

representation of the search-key. !

●  For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .!

©Silberschatz, Korth and Sudarshan!11.62!CS425 – Fall 2013 – Boris Glavic!

Handling of Bucket Overflows!

■  Bucket overflow can occur because of !

●  Insufficient buckets !

●  Skew in distribution of records. This can occur due to two
reasons:!

! multiple records have same search-key value!

! chosen hash function produces non-uniform distribution of key
values!

■  Although the probability of bucket overflow can be reduced, it cannot
be eliminated; it is handled by using overflow buckets.!

©Silberschatz, Korth and Sudarshan!11.63!CS425 – Fall 2013 – Boris Glavic!

Handling of Bucket Overflows (Cont.)!

■  Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.!

■  Above scheme is called closed hashing. !

●  An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.!

overflow buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3

©Silberschatz, Korth and Sudarshan!11.64!CS425 – Fall 2013 – Boris Glavic!

Hash Indices!

■  Hashing can be used not only for file organization, but also for index-
structure creation. !

■  A hash index organizes the search keys, with their associated record
pointers, into a hash file structure.!

■  Strictly speaking, hash indices are always secondary indices !

●  if the file itself is organized using hashing, a separate primary
hash index on it using the same search-key is unnecessary. !

●  However, we use the term hash index to refer to both secondary

index structures and hash organized files. !

©Silberschatz, Korth and Sudarshan!11.65!CS425 – Fall 2013 – Boris Glavic!

Example of Hash Index!
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565

76543

10101

15151

33456

58583

83821

22222

98345

bucket 7

12121

32343

76766 Crick

76543 Singh

32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim

12121 Wu

Biology

Physics

Finance

History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.

Finance

72000

80000

60000
62000
40000
95000
87000

65000
75000
92000
80000

90000

hash index on instructor, on attribute ID!

©Silberschatz, Korth and Sudarshan!11.66!CS425 – Fall 2013 – Boris Glavic!

Deficiencies of Static Hashing!

■  In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time. !

●  If initial number of buckets is too small, and file grows, performance
will degrade due to too much overflows.!

●  If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).!

●  If database shrinks, again space will be wasted.!

■  One solution: periodic re-organization of the file with a new hash

function!

●  Expensive, disrupts normal operations!

■  Better solution: allow the number of buckets to be modified dynamically. !

12!

©Silberschatz, Korth and Sudarshan!11.67!CS425 – Fall 2013 – Boris Glavic!

Index Definition in SQL!

■  Create an index!

! !create index <index-name> on <relation-name>  
! ! !(<attribute-list>)!

E.g.: create index b-index on branch(branch_name)!

■  Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate key.!

●  Not really required if SQL unique integrity constraint is supported!

■  To drop an index !

! ! !drop index <index-name>!

■  Most database systems allow specification of type of index, and
clustering.!

Modified from:!

Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter!

©Silberschatz, Korth and Sudarshan!11.69!CS425 – Fall 2013 – Boris Glavic!

Figure 11.01!

10101 Srinivasan

45565 Katz

58583 Califieri

76543 Singh

76766 Crick

83821 Brandt

98345 Kim

12121 Wu

15151 Mozart

22222 Einstein

32343 El Said

33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.

History

Finance

Biology

Elec. Eng.

Finance

Music

Physics

History

Physics

65000

75000

62000

80000

72000

92000

80000

90000

40000

95000

60000

87000

©Silberschatz, Korth and Sudarshan!11.70!CS425 – Fall 2013 – Boris Glavic!

Figure 11.15 !

©Silberschatz, Korth and Sudarshan!11.71!CS425 – Fall 2013 – Boris Glavic!

Partitioned Hashing!

■  Hash values are split into segments that depend on each
attribute of the search-key.!

! !(A1, A2, . . . , An) for n attribute search-key!

■  Example: n = 2, for customer, search-key being  
(customer-street, customer-city)!

! !search-key value "hash value  
"(Main, Harrison) !101 111  
!(Main, Brooklyn) !101 001  

!(Park, Palo Alto) !010 010  

!(Spring, Brooklyn) !001 001  
!(Alma, Palo Alto) !110 010!

■  To answer equality query on single attribute, need to look up
multiple buckets. Similar in effect to grid files. !

©Silberschatz, Korth and Sudarshan!11.72!CS425 – Fall 2013 – Boris Glavic!

Grid Files!

■  Structure used to speed the processing of general multiple search-
key queries involving one or more comparison operators.!

■  The grid file has a single grid array and one linear scale for each
search-key attribute. The grid array has number of dimensions
equal to number of search-key attributes.!

■  Multiple cells of grid array can point to same bucket!

■  To find the bucket for a search-key value, locate the row and column
of its cell using the linear scales and follow pointer!

13!

©Silberschatz, Korth and Sudarshan!11.73!CS425 – Fall 2013 – Boris Glavic!

Example Grid File for account!

©Silberschatz, Korth and Sudarshan!11.74!CS425 – Fall 2013 – Boris Glavic!

Queries on a Grid File!

■  A grid file on two attributes A and B can handle queries of all following
forms with reasonable efficiency !

●  (a1 ≤ A ≤ a2)!

●  (b1 ≤ B ≤ b2)!

●  (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.!

■  E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use linear scales to find
corresponding candidate grid array cells, and look up all the buckets

pointed to from those cells.!

©Silberschatz, Korth and Sudarshan!11.75!CS425 – Fall 2013 – Boris Glavic!

Grid Files (Cont.)!

■  During insertion, if a bucket becomes full, new bucket can be created
if more than one cell points to it. !

●  Idea similar to extendable hashing, but on multiple dimensions!

●  If only one cell points to it, either an overflow bucket must be
created or the grid size must be increased!

■  Linear scales must be chosen to uniformly distribute records across
cells. !

●  Otherwise there will be too many overflow buckets.!

■  Periodic re-organization to increase grid size will help.!

●  But reorganization can be very expensive.!

■  Space overhead of grid array can be high.!

■  R-trees (Chapter 23) are an alternative !

