
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 10 : Concurrency Control

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.2CS425 – Fall 2013 – Boris Glavic

Intuition of Lock-based Protocols

n Transactions have to acquire locks on data items before accessing them

n If a lock is hold by one transaction on a data item this restricts the ability

of other transactions to acquire locks for that data item

n By locking a data item we want to ensure that no access to that data

item is possible that would lead to non-serializable schedules

n The trick is to design a lock model and protocol that guarantees that

n Lock-based concurrency protocols are a form of pessimistic

concurrency control mechanism

l We avoid ever getting into a state that can lead to a non-serializable

schedule

n Alternative concurrency control mechanism do not avoid conflicts, but

determine later on (at commit time) whether committing a transaction

would cause a non-serializable schedule to be generated

l Optimistic concurrency control mechanism

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.3CS425 – Fall 2013 – Boris Glavic

Lock-Based Protocols

n A lock is a mechanism to control concurrent access to a data item

n Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

n Lock requests are made to concurrency-control manager.

l Transaction do not access data items before having acquired a lock on

that data item

l Transactions release their locks on a data item only after they have

accessed a data item

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.4CS425 – Fall 2013 – Boris Glavic

Lock-Based Protocols (Cont.)

n Lock-compatibility matrix

n A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions

n Any number of transactions can hold shared locks on an item,

l but if any transaction holds an exclusive lock on the item no other

transaction may hold any lock on the item.

n If a lock cannot be granted, the requesting transaction is made to wait till

all incompatible locks held by other transactions have been released.

The lock is then granted.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.5CS425 – Fall 2013 – Boris Glavic

Lock-Based Protocols (Cont.)

n Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

n Locking as above is not sufficient to guarantee serializability — if A and B

get updated in-between the read of A and B, the displayed sum would be

wrong.

n A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of

possible schedules.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.6CS425 – Fall 2013 – Boris Glavic

Pitfalls of Lock-Based Protocols

n Consider the partial schedule

n Neither T3 nor T4 can make progress — executing lock-S(B) causes T4

to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

n Such a situation is called a deadlock.

l To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.7CS425 – Fall 2013 – Boris Glavic

Pitfalls of Lock-Based Protocols (Cont.)

n The potential for deadlock exists in most locking protocols. Deadlocks

are a necessary evil.

n Starvation is also possible if the concurrency control manager is

badly designed. For example:

l A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock

on the same item.

l The same transaction is repeatedly rolled back due to deadlocks.

n Concurrency control managers can be designed to prevent starvation.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.8CS425 – Fall 2013 – Boris Glavic

The Two-Phase Locking Protocol

n This is a protocol which ensures conflict-serializable schedules.

n Phase 1: Growing Phase

l transaction may obtain locks

l transaction may not release locks

n Phase 2: Shrinking Phase

l transaction may release locks

l transaction may not obtain locks

n The protocol assures serializability. It can be proved that the

transactions can be serialized in the order of their lock points (i.e.

the point where a transaction acquired its final lock).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.9CS425 – Fall 2013 – Boris Glavic

The Two-Phase Locking Protocol (Cont.)

n Two-phase locking does not ensure freedom from deadlocks

n Cascading roll-back is possible under two-phase locking. To avoid

this, follow a modified protocol called strict two-phase locking

(S2PL). Here a transaction must hold all its exclusive locks till it

commits/aborts.

n Rigorous two-phase locking (SS2PL) is even stricter: here all locks

are held till commit/abort. In this protocol transactions can be

serialized in the order in which they commit.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.10CS425 – Fall 2013 – Boris Glavic

The Two-Phase Locking Protocol (Cont.)

n There can be conflict serializable schedules that cannot be obtained if

two-phase locking is used.

n However, in the absence of extra information (e.g., ordering of access

to data), two-phase locking is needed for conflict serializability in the

following sense:

Given a transaction Ti that does not follow two-phase locking, we can

find a transaction Tj that uses two-phase locking, and a schedule for Ti

and Tj that is not conflict serializable.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.11CS425 – Fall 2013 – Boris Glavic

Lock Conversions

n Two-phase locking with lock conversions:

– First Phase:

l can acquire a lock-S on item

l can acquire a lock-X on item

l can convert a lock-S to a lock-X (upgrade)

– Second Phase:

l can release a lock-S

l can release a lock-X

l can convert a lock-X to a lock-S (downgrade)

n This protocol assures serializability. But still relies on the programmer to

insert the various locking instructions.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.12CS425 – Fall 2013 – Boris Glavic

Automatic Acquisition of Locks

n A transaction Ti issues the standard read/write instruction, without

explicit locking calls.

n The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.13CS425 – Fall 2013 – Boris Glavic

Automatic Acquisition of Locks (Cont.)

n write(D) is processed as:

if Ti has a lock-X on D

then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D

then

upgrade lock on D to lock-X

else

grant Ti a lock-X on D

write(D)
end;

n All locks are released after commit or abort

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.14CS425 – Fall 2013 – Boris Glavic

Implementation of Locking

n A lock manager can be implemented as a separate process to which

transactions send lock and unlock requests

n The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of

a deadlock)

n The requesting transaction waits until its request is answered

n The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests

n The lock table is usually implemented as an in-memory hash table

indexed on the name of the data item being locked

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.15CS425 – Fall 2013 – Boris Glavic

Lock Table

n Lock table also records the type of lock

granted or requested

n New request is added to the end of the

queue of requests for the data item, and

granted if it is compatible with all earlier

locks

n Unlock requests result in the request

being deleted, and later requests are

checked to see if they can now be

granted

n If transaction aborts, all waiting or

granted requests of the transaction are

deleted

l lock manager may keep a list of

locks held by each transaction, to

implement this efficiently

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.16CS425 – Fall 2013 – Boris Glavic

Deadlock Handling

n Consider the following two transactions:

T1: write (X) T2: write(Y)

write(Y) write(X)

n Schedule with deadlock

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.17CS425 – Fall 2013 – Boris Glavic

Deadlock Handling

n System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

n Deadlock prevention protocols ensure that the system will never

enter into a deadlock state. Some prevention strategies :

l Require that each transaction locks all its data items before it

begins execution (predeclaration).

 Not practical

l Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the

partial order (graph-based protocol).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.18CS425 – Fall 2013 – Boris Glavic

More Deadlock Prevention Strategies

n Following schemes use transaction timestamps for the sake of deadlock

prevention alone.

l Preemptive: Transaction holding a lock is aborted to make lock

available

n wait-die scheme — non-preemptive

l older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled back

instead.

l a transaction may die several times before acquiring needed data

item

n wound-wait scheme — preemptive

l older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older

ones.

l may be fewer rollbacks than wait-die scheme.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.19CS425 – Fall 2013 – Boris Glavic

Deadlock prevention (Cont.)

n Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older transactions

thus have precedence over newer ones, and starvation is hence

avoided.

n Timeout-Based Schemes:

l a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.

l thus deadlocks are not possible

l simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.20CS425 – Fall 2013 – Boris Glavic

Deadlock Detection

n Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),

l V is a set of vertices (all the transactions in the system)

l E is a set of edges; each element is an ordered pair Ti Tj.

n If Ti Tj is in E, then there is a directed edge from Ti to Tj, implying

that Ti is waiting for Tj to release a data item.

n When Ti requests a data item currently being held by Tj, then the edge

Ti Tj is inserted in the wait-for graph. This edge is removed only when

Tj is no longer holding a data item needed by Ti.

n The system is in a deadlock state if and only if the wait-for graph has a

cycle. Must invoke a deadlock-detection algorithm periodically to look

for cycles.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.21CS425 – Fall 2013 – Boris Glavic

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.22CS425 – Fall 2013 – Boris Glavic

Deadlock Recovery

n When deadlock is detected :

l Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum

cost.

l Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as necessary

to break deadlock.

l Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid

starvation

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.23CS425 – Fall 2013 – Boris Glavic

Weak Levels of Consistency

n Degree-two consistency: differs from two-phase locking in that S-locks

may be released at any time, and locks may be acquired at any time

l X-locks must be held till end of transaction

l Serializability is not guaranteed, programmer must ensure that no

erroneous database state will occur]

n Cursor stability:

l For reads, each tuple is locked, read, and lock is immediately

released

l X-locks are held till end of transaction

l Special case of degree-two consistency

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.24CS425 – Fall 2013 – Boris Glavic

Weak Levels of Consistency in SQL

n SQL allows non-serializable executions

l Serializable: is the default

l Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained)

 However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see
others inserted by T2

l Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

l Read uncommitted: allows even uncommitted data to be read

n In many database systems, read committed is the default consistency
level

l has to be explicitly changed to serializable when required

 set isolation level serializable

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.25CS425 – Fall 2013 – Boris Glavic

Recap

n Concurrency Control

l Pessimistic: Prevent bad things from happening

 Locking Protocols

l Optimistic: Detect that bad things have happened and resolve the
problem

n Two-Phase Locking (2PL)

l Two types of locks:

 Shared (S) locks for read-only access

 Exclusive (X) locks for write + read access

l Lock compatibility

l Transactions cannot acquire locks after they have released a lock

 Divides transaction into growing and shrinking phase

l Ensures conflict-serializability

l Cascading rollbacks are possible

l Deadlocks are possible

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan10.26CS425 – Fall 2013 – Boris Glavic

Recap

n Strict Two-Phase Locking (S2PL)

l Exclusive locks are held until transaction commit

l Prevents cascading rollbacks

l Deadlocks are still possible

n Strict Strong Two-Phase Locking (SS2PL)

l All locks are held until transaction commit

l Enables serializablility in commit order

n Deadlocks

l Deadlock Prevention

 Wait-die: Younger transaction that waits for older is rolled back

 Wound-wait: If older waits for younger, then younger is rolled back

l Deadlock Detection

 Cycle Detection in Waits-for graph

– Expensive

 Timeout

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot

Isolation examples

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

