
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 9: Transactions 

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.2CS425 – Fall 2013 – Boris Glavic

Transaction Concept

n A transaction is a unit of program execution that accesses and  

possibly updates various data items.

n E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

n Two main issues to deal with:

l Recovery: Failures of various kinds, such as hardware failures 

and system crashes

l Concurrent: execution of multiple transactions

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.3CS425 – Fall 2013 – Boris Glavic

Example of Fund Transfer

n Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

n Atomicity requirement

l if the transaction fails after step 3 and before step 6, money will be “lost”
leading to an inconsistent database state

 Failure could be due to software or hardware

l the system should ensure that updates of a partially executed transaction 

are not reflected in the database

n Durability requirement — once the user has been notified that the transaction 

has completed (i.e., the transfer of the $50 has taken place), the updates to the 

database by the transaction must persist even if there are software or 

hardware failures.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.4CS425 – Fall 2013 – Boris Glavic

Example of Fund Transfer (Cont.)

n Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

n Consistency requirement in above example:

l the sum of A and B is unchanged by the execution of the transaction

n In general, consistency requirements include 

 Explicitly specified integrity constraints such as primary keys and foreign 
keys

 Implicit integrity constraints

– e.g. sum of balances of all accounts, minus sum of loan amounts 
must equal value of cash-in-hand

l A transaction must see a consistent database.

l During transaction execution the database may be temporarily inconsistent.

l When the transaction completes successfully the database must be 
consistent

 Erroneous transaction logic can lead to inconsistency

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.5CS425 – Fall 2013 – Boris Glavic

Example of Fund Transfer (Cont.)

n Isolation requirement — if between steps 3 and 6, another 
transaction T2 is allowed to access the partially updated database, it 
will see an inconsistent database (the sum  A + B will be less than it 
should be).

T1                                        T2

1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

n Isolation can be ensured trivially by running transactions serially

l that is, one after the other.   

n However, executing multiple transactions concurrently has significant 
benefits, as we will see later.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.6CS425 – Fall 2013 – Boris Glavic

ACID Properties

n Atomicity. Either all operations of the transaction are properly reflected 

in the database or none are.

n Consistency. Execution of a transaction in isolation preserves the 

consistency of the database.

n Isolation. Although multiple transactions may execute concurrently, 

each transaction must be unaware of other concurrently executing 

transactions.  Intermediate transaction results must be hidden from other 

concurrently executed transactions.  

l That is, for every pair of transactions Ti and Tj, it appears to Ti that 

either Tj, finished execution before Ti started, or Tj started execution 

after Ti finished.

n Durability.  After a transaction completes successfully, the changes it 
has made to the database persist, even if there are system failures. 

A  transaction is a unit of program execution that accesses and possibly 

updates various data items.To preserve the integrity of data the database 

system must ensure:

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.7CS425 – Fall 2013 – Boris Glavic

Transaction State

n Active – the initial state; the transaction stays in this state while it is 

executing

n Partially committed – after the final statement has been executed.

n Failed -- after the discovery that normal execution can no longer 

proceed.

n Aborted – after the transaction has been rolled back and the 

database restored to its state prior to the start of the transaction.  

Two options after it has been aborted:

l restart the transaction

 can be done only if no internal logical error

l kill the transaction

n Committed – after successful completion.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.8CS425 – Fall 2013 – Boris Glavic

Transaction Model

n Operations

l Read(A) – read value of data item A

l Write(A) – write a new value of data item A

l Commit – commit changes of the transaction

l Abort – Revert changes made by the transaction

n Data Items

l Objects in the data base

l Usually we consider tuples (rows) or disk pages

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.9CS425 – Fall 2013 – Boris Glavic

Transaction State (Cont.)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.10CS425 – Fall 2013 – Boris Glavic

Concurrent Executions

n Multiple transactions are allowed to run concurrently in the system.  

Advantages are:

l increased processor and disk utilization, leading to better 
transaction throughput

 E.g. one transaction can be using the CPU while another is 

reading from or writing to the disk

 In multi-processor systems each statement can use one or 

more CPUs

l reduced average response time for transactions: short 

transactions need not wait behind long ones.

n Concurrency control schemes – mechanisms  to achieve isolation

l that is, to control the interaction among the concurrent 

transactions in order to prevent them from destroying the 

consistency of the database

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.11CS425 – Fall 2013 – Boris Glavic

Schedules

n Schedule – a sequences of instructions that specify the chronological 

order in which instructions of concurrent transactions are executed

l a schedule for a set of transactions must consist of all instructions 

of those transactions

l must preserve the order in which the instructions appear in each 

individual transaction.

n A transaction that successfully completes its execution will have a 

commit instructions as the last statement 

l by default transaction assumed to execute commit instruction as its 

last step

n A transaction that fails to successfully complete its execution will have 

an abort instruction as the last statement 

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.12CS425 – Fall 2013 – Boris Glavic

Schedule 1

n Let T1 transfer $50 from A to B, and T2 transfer 10% of the 
balance from A to B.

n A serial schedule in which T1 is followed by T2 :

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.13CS425 – Fall 2013 – Boris Glavic

Schedule 2

• A serial schedule where T2 is followed by T1

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.14CS425 – Fall 2013 – Boris Glavic

Schedule 3

n Let T1 and T2 be the transactions defined previously. The 
following schedule is not a serial schedule, but it is equivalent
to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.15CS425 – Fall 2013 – Boris Glavic

Schedule 4

n The following concurrent schedule does not preserve the 
value of (A + B ).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.16CS425 – Fall 2013 – Boris Glavic

Serializability

n Basic Assumption – Each transaction preserves database 

consistency.

n Thus serial execution of a set of transactions preserves 

database consistency.

n A (possibly concurrent) schedule is serializable if it is 

equivalent to a serial schedule.  Different forms of schedule 

equivalence give rise to the notions of:

1. conflict serializability

2. view serializability

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.17CS425 – Fall 2013 – Boris Glavic

Simplified view of transactions

l We ignore operations other than read and write

instructions

l We assume that transactions may perform arbitrary 

computations on data in local buffers in between reads 

and writes.  

l Our simplified schedules consist of only read and write 

instructions.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.18CS425 – Fall 2013 – Boris Glavic

Conflicting Instructions 

n Instructions li and lj of transactions Ti and Tj respectively, conflict

if and only if there exists some item Q accessed by both li and lj, 

and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q).   li and lj don’t conflict.

2. li = read(Q),  lj = write(Q).  They conflict.

3. li = write(Q), lj = read(Q).   They conflict

4. li = write(Q), lj = write(Q).  They conflict

n Intuitively, a conflict between li and lj forces a (logical) temporal 

order between them.  

l If li and lj are consecutive in a schedule and they do not 

conflict, their results would remain the same even if they had 

been interchanged in the schedule.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.19CS425 – Fall 2013 – Boris Glavic

Conflict Serializability

n If a schedule S can be transformed into a schedule S´ by a series of 

swaps of non-conflicting instructions, we say that S and S´ are 

conflict equivalent.

l That is the order of each pair of conflicting operations in S and S` 

is the same

n We say that a schedule S is conflict serializable if it is conflict 

equivalent to a serial schedule

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.20CS425 – Fall 2013 – Boris Glavic

Conflict Serializability (Cont.)

n Example of a schedule that is not conflict serializable:

n We are unable to swap instructions in the above schedule to 
obtain either the serial schedule < T3, T4 >, or the serial 

schedule < T4, T3 >.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.21CS425 – Fall 2013 – Boris Glavic

View Serializability

n Let S and S´ be two schedules with the same set of transactions.  S

and S´ are view equivalent if the following three conditions are met, 

for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in 

schedule S’ also transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value 

was produced by transaction Tj (if any), then in schedule S’ also 

transaction Ti must read the value of Q that was produced by the 

same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation 

in schedule S must also perform the final write(Q) operation in 

schedule S’.

As can be seen, view equivalence is also based purely on reads and 

writes alone.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.22CS425 – Fall 2013 – Boris Glavic

View Serializability (Cont.)

n A schedule S is view serializable if it is view equivalent to a serial 

schedule.

n Every conflict serializable schedule is also view serializable.

n Below is a schedule which is view-serializable but not conflict 

serializable.

n What serial schedule is above equivalent to?

n Every view serializable schedule that is not conflict serializable has 

blind writes.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.23CS425 – Fall 2013 – Boris Glavic

Other Notions of Serializability

n The schedule below produces same outcome as the serial 
schedule < T1, T5 >, yet is not conflict equivalent or view 

equivalent to it.

n Determining such equivalence requires analysis of operations 

other than read and write.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.24CS425 – Fall 2013 – Boris Glavic

Testing for Serializability

n Consider some schedule of a set of transactions T1, T2, ..., Tn

n Precedence graph — a directed graph where the vertices 

are the transactions (names).

n We draw an arc from Ti to Tj if the two transaction conflict, 

and Ti accessed the data item on which the conflict arose 

earlier.

n We may label the arc by the item that was accessed.

n Example 1

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.25CS425 – Fall 2013 – Boris Glavic

Test for Conflict Serializability

n A schedule is conflict serializable if and only 

if its precedence graph is acyclic.

n Cycle-detection algorithms exist which take 
order n2 time, where n is the number of 

vertices in the graph.  

l (Better algorithms take order n + e

where e is the number of edges.)

n If precedence graph is acyclic, the 

serializability order can be obtained by a 
topological sorting of the graph. 

l This is a linear order consistent with the 

partial order of the graph.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.26CS425 – Fall 2013 – Boris Glavic

Test for View Serializability

n The precedence graph test for conflict serializability cannot be used 

directly to test for view serializability.

l Extension to test for view serializability has cost exponential in the 

size of the precedence graph.

n The problem of checking if a schedule is view serializable falls in the 
class of NP-complete problems. 

l Thus existence of an efficient algorithm is extremely unlikely.

n However practical algorithms that just check some sufficient

conditions for view serializability can still be used.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.27CS425 – Fall 2013 – Boris Glavic

Recoverable Schedules

n Recoverable schedule — if a transaction Tj reads a data item 

previously written by a transaction Ti , then the commit operation of Ti

appears before the commit operation of Tj.

n The following schedule (Schedule 11) is not recoverable if T9 commits 

immediately after the read

n If T8 should abort, T9 would have read (and possibly shown to the user) 

an inconsistent database state.  Hence, database must ensure that 

schedules are recoverable.

Need to address the effect of transaction failures on concurrently 

running transactions.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.28CS425 – Fall 2013 – Boris Glavic

Cascading Rollbacks

n Cascading rollback – a single transaction failure leads to a 

series of transaction rollbacks.  Consider the following schedule 

where none of the transactions has yet committed (so the 

schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

n Can lead to the undoing of a significant amount of work

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.29CS425 – Fall 2013 – Boris Glavic

Cascadeless Schedules

n Cascadeless schedules — cascading rollbacks cannot occur; for 
each pair of transactions Ti and Tj such that Tj reads a data item 

previously written by Ti, the commit operation of Ti appears before the 

read operation of Tj.

n Every cascadeless schedule is also recoverable

n It is desirable to restrict the schedules to those that are cascadeless

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.30CS425 – Fall 2013 – Boris Glavic

Concurrency Control

n A database must provide a mechanism that will ensure that all possible 

schedules are 

l either conflict or view serializable, and 

l are recoverable and preferably cascadeless

n A policy in which only one transaction can execute at a time generates 

serial schedules, but provides a poor degree of concurrency

l Are serial schedules recoverable/cascadeless?

n Testing a schedule for serializability after it has executed is a little too 

late!

n Goal – to develop concurrency control protocols that will assure 

serializability.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.31CS425 – Fall 2013 – Boris Glavic

Concurrency Control (Cont.)

n Schedules must be conflict or view serializable, and recoverable, 

for the sake of database consistency, and preferably cascadeless.

n A policy in which only one transaction can execute at a time 

generates serial schedules, but provides a poor degree of 

concurrency.

n Concurrency-control schemes tradeoff between the amount of 

concurrency they allow and the amount of overhead that they 

incur.

n Some schemes allow only conflict-serializable schedules to be 

generated, while others allow  view-serializable schedules that are 

not conflict-serializable.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.32CS425 – Fall 2013 – Boris Glavic

Concurrency Control vs. Serializability Tests

n Concurrency-control protocols allow concurrent schedules, but ensure 

that the schedules are conflict/view serializable, and are recoverable 

and cascadeless .

n Concurrency control protocols generally do not examine the 

precedence graph as it is being created

l Instead a protocol imposes a discipline that avoids nonseralizable

schedules.

l We study such protocols in Chapter 10.

n Different concurrency control protocols provide different tradeoffs 

between the amount of concurrency they allow and the amount of 

overhead that they incur.

n Tests for serializability help us understand why a concurrency control 

protocol is correct.   

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.33CS425 – Fall 2013 – Boris Glavic

Weak Levels of Consistency

n Some applications are willing to live with weak levels of consistency, 

allowing schedules that are not serializable

l E.g. a read-only transaction that wants to get an approximate total 

balance of all accounts 

l E.g. database statistics computed for query optimization can be 

approximate (why?)

l Such transactions need not be serializable with respect to other 

transactions

n Tradeoff accuracy for performance

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.34CS425 – Fall 2013 – Boris Glavic

Levels of Consistency in SQL-92

n Serializable — default

n Repeatable read — only committed records to be read, repeated 

reads of same record must return same value.  However, a 

transaction may not be serializable – it may find some records 

inserted by a transaction but not find others.

n Read committed — only committed records can be read, but 

successive reads of a record may return different (but committed) 

values.

n Read uncommitted — even uncommitted records may be read. 

n Lower degrees of consistency useful for gathering approximate

information about the database 

n Warning: some database systems do not ensure serializable

schedules by default

l E.g. Oracle and PostgreSQL by default support a level of 

consistency called snapshot isolation (not part of the SQL 

standard)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


©Silberschatz, Korth and Sudarshan9.35CS425 – Fall 2013 – Boris Glavic

Transaction Definition in SQL

n Data manipulation language must include a construct for 

specifying the set of actions that comprise a transaction.

n In SQL, a transaction begins implicitly.

n A transaction in SQL ends by:

l Commit work commits current transaction and begins a new 

one.

l Rollback work causes current transaction to abort.

n In almost all database systems, by default, every SQL statement 

also commits implicitly if it executes successfully

l Implicit commit can be turned off by a database directive

 E.g. in JDBC,     connection.setAutoCommit(false);

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/


modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of Chapter 10

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

