
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Summer 2016

Jason Arnold

Chapter 8: Relational Database Design

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

What is Good Design?

1) Easier: What is Bad Design?

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.3CS425 – Fall 2013 – Boris Glavic

Combine Schemas?

n Suppose we combine instructor and department into inst_dept

l (No connection to relationship set inst_dept)

n Result is possible repetition of information

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.4CS425 – Fall 2013 – Boris Glavic

Redundancy is Bad!

n Update Physics Department

l multiple tuples to update

l Efficiency + potential for errors

n Delete Physics Department

l update multiple tuples

l Efficiency + potential for errors

n Departments without instructor or instructors without departments

l Need dummy department and dummy instructor

l Makes aggregation harder and error prone.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.5CS425 – Fall 2013 – Boris Glavic

A Combined Schema Without Repetition

n Combining is not always bad!

n Consider combining relations

l sec_class(course_id, sec_id, building, room_number) and

l section(course_id, sec_id, semester, year)

into one relation

l section(course_id, sec_id, semester, year,

building, room_number)

n No repetition in this case

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.6CS425 – Fall 2013 – Boris Glavic

What About Smaller Schemas?

n Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?

n Write a rule “if there were a schema (dept_name, building, budget), then

dept_name would be a candidate key”

n Denote as a functional dependency:

dept_name  building, budget

n In inst_dept, because dept_name is not a candidate key, the building

and budget of a department may have to be repeated.

l This indicates the need to decompose inst_dept

n Not all decompositions are good. Suppose we decompose
employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

n The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.7CS425 – Fall 2013 – Boris Glavic

A Lossy Decomposition

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.8CS425 – Fall 2013 – Boris Glavic

Goals of Lossless-Join Decomposition

n Lossless-Join decomposition means splitting a table in a way so

that we do not loose information

l That means we should be able to reconstruct the original

table from the decomposed table using joins

A B




1
2

A





B

1

2

r B,C(r)

A (r) B (r)
A B




1
2

C

A

B

B

1

2

C

A
B

C

A
B

A,B(r)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.9CS425 – Fall 2013 – Boris Glavic

Goal — Devise a Theory for the Following

n Decide whether a particular relation R is in “good” form.

n In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

l each relation is in good form

l the decomposition is a lossless-join decomposition

n Our theory is based on:

l 1) Models of dependency between attribute values

 functional dependencies

 multivalued dependencies

l 2) Concept of lossless decomposition

l 3) Normal Forms Based On

 Atomicity of values

 Avoidance of redundancy

 Lossless decomposition

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.10CS425 – Fall 2013 – Boris Glavic

Functional Dependencies

n Constraints on the set of legal instances for a relation schema.

n Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

n A functional dependency is a generalization of the notion of a key.

l Thus, every key is a functional dependency

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.11CS425 – Fall 2013 – Boris Glavic

Functional Dependencies (Cont.)

n Let R be a relation schema

  R and   R

n The functional dependency

  
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 []  t1[] = t2 []

n Example: Consider r(A,B) with the following instance of r.

n On this instance, A  B does NOT hold, but B  A does hold.

1 4

1 5

3 7

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.12CS425 – Fall 2013 – Boris Glavic

Functional Dependencies (Cont.)

n Let R be a relation schema

  R and   R

n The functional dependency

  
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 []  t1[] = t2 []

n Example: Consider r(A,B) with the following instance of r.

n On this instance, A  B does NOT hold, but B  A does hold.

1 4

1 5

3 7

A = 1 and B = 4

A = 1 and B = 5

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.13CS425 – Fall 2013 – Boris Glavic

Functional Dependencies (Cont.)

n K is a superkey for relation schema R if and only if K  R

n K is a candidate key for R if and only if

l K  R, and

l for no   K,   R

n Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name building

and ID  building

but would not expect the following to hold:

dept_name  salary

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.14CS425 – Fall 2013 – Boris Glavic

Functional Dependencies (Cont.)

n A functional dependency is trivial if it is satisfied by all instances of a

relation

l Example:

 ID, name  ID

 name  name

l In general,    is trivial if   

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.15CS425 – Fall 2013 – Boris Glavic

Closure of a Set of Functional

Dependencies

n Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

l For example: If A  B and B  C, then we can infer that A 

C

n The set of all functional dependencies logically implied by F is the

closure of F.

n We denote the closure of F by F+.

n F+ is a superset of F.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.16CS425 – Fall 2013 – Boris Glavic

Functional-Dependency Theory

n We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional

dependencies.

n How do we get the initial set of FDs?

l Semantics of the domain we are modelling

l Has to be provided by a human (the designer)

n Example:

l Relation Citizen(SSN, FirstName, LastName, Address)

l We know that SSN is unique and a person has a a unique SSN

l Thus, SSN  FirstName, LastName

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.17CS425 – Fall 2013 – Boris Glavic

Closure of a Set of Functional

Dependencies

n We can find F+, the closure of F, by repeatedly applying

Armstrong’s Axioms:

l if   , then    (reflexivity)

l if   , then      (augmentation)

l if   , and   , then    (transitivity)

n These rules are

l sound (generate only functional dependencies that actually hold),

and

l complete (generate all functional dependencies that hold).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.18CS425 – Fall 2013 – Boris Glavic

Example

n R = (A, B, C, G, H, I)

F = { A  B

A  C

CG  H

CG  I

B  H}

n some members of F+

l A  H

 by transitivity from A  B and B  H

l AG  I

 by augmenting A  C with G, to get AG  CG

and then transitivity with CG  I

l CG  HI

 by augmenting CG  I to infer CG  CGI,

and augmenting of CG  H to infer CGI  HI,

and then transitivity

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.19CS425 – Fall 2013 – Boris Glavic

Procedure for Computing F+

n To compute the closure of a set of functional dependencies F:

F + = F

repeat
for each functional dependency f in F+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +

until F + does not change any further

NOTE: We shall see an alternative more efficient procedure for this task

later

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.20CS425 – Fall 2013 – Boris Glavic

Closure of Functional Dependencies

(Cont.)

n Additional rules:

l If    holds and    holds, then     holds (union)

l If     holds, then    holds and    holds

(decomposition)

l If    holds and     holds, then     holds

(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.21CS425 – Fall 2013 – Boris Glavic

Closure of Attribute Sets

n Given a set of attributes , define the closure of  under F (denoted

by +) as the set of attributes that are functionally determined by 
under F

n Algorithm to compute +, the closure of  under F

result := ;

while (changes to result) do

for each    in F do

begin
if   result then result := result  

end

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.22CS425 – Fall 2013 – Boris Glavic

Example of Attribute Set Closure

n R = (A, B, C, G, H, I)

n F = {A  B
A  C
CG  H
CG  I
B  H}

n (AG)+

1. result = AG

2. result = ABCG (A  C and A  B)

3. result = ABCGH (CG  H and CG  AGBC)

4. result = ABCGHI (CG  I and CG  AGBCH)

n Is AG a candidate key?

1. Is AG a super key?

1. Does AG  R? == Is (AG)+  R

2. Is any subset of AG a superkey?

1. Does A  R? == Is (A)+  R

2. Does G  R? == Is (G)+  R

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.23CS425 – Fall 2013 – Boris Glavic

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

n Testing for superkey:

l To test if  is a superkey, we compute +, and check if + contains
all attributes of R.

n Testing functional dependencies

l To check if a functional dependency    holds (or, in other
words, is in F+), just check if   +.

l That is, we compute + by using attribute closure, and then check

if it contains .

l Is a simple and cheap test, and very useful

n Computing closure of F

l For each   R, we find the closure +, and for each S  +, we

output a functional dependency   S.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.24CS425 – Fall 2013 – Boris Glavic

Canonical Cover

n Sets of functional dependencies may have redundant dependencies

that can be inferred from the others

l For example: A  C is redundant in: {A  B, B  C, A  C}

l Parts of a functional dependency may be redundant

 E.g.: on RHS: {A  B, B  C, A  CD} can be simplified

to
{A  B, B  C, A  D}

 E.g.: on LHS: {A  B, B  C, AC  D} can be simplified

to
{A  B, B  C, A  D}

n Intuitively, a canonical cover of F is a “minimal” set of functional

dependencies equivalent to F, having no redundant dependencies or

redundant parts of dependencies

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.25CS425 – Fall 2013 – Boris Glavic

Extraneous Attributes

n Consider a set F of functional dependencies and the functional

dependency    in F.

l Attribute A is extraneous in  if A  

and F logically implies (F – {  })  {( – A)  }.

l Attribute A is extraneous in  if A  

and the set of functional dependencies
(F – {  })  { ( – A)} logically implies F.

n Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always

implies a weaker one

n Example: Given F = {A  C, AB  C }

l B is extraneous in AB  C because {A  C, AB  C} logically

implies A  C (I.e. the result of dropping B from AB  C).

n Example: Given F = {A  C, AB  CD}

l C is extraneous in AB  CD since AB  C can be inferred even

after deleting C

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Lossless Join-Decomposition

Dependency Preservation

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.27CS425 – Fall 2013 – Boris Glavic

So Far

n Theory of dependencies

n What is missing?

l When is a decomposition loss-less

 Lossless-join decomposition

 Dependencies on the input are preserved

n What else is missing?

l Define what constitutes a good relation

 Normal forms

l How to check for a good relation

 Test normal forms

l How to achieve a good relation

 Translate into normal form

 Involves decomposition

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.28CS425 – Fall 2013 – Boris Glavic

Lossless-join Decomposition

n For the case of R = (R1, R2), we require that for all possible relation

instances r on schema R

r = R1 (r) R2 (r)

n A decomposition of R into R1 and R2 is lossless join if at least one of

the following dependencies is in F+:

l R1  R2  R1

l R1  R2  R2

n The above functional dependencies are a sufficient condition for

lossless join decomposition; the dependencies are a necessary

condition only if all constraints are functional dependencies

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.29CS425 – Fall 2013 – Boris Glavic

Example

n R = (A, B, C)

F = {A  B, B  C)

l Can be decomposed in two different ways

n R1 = (A, B), R2 = (B, C)

l Lossless-join decomposition:

R1  R2 = {B} and B  BC

l Dependency preserving

n R1 = (A, B), R2 = (A, C)

l Lossless-join decomposition:

R1  R2 = {A} and A  AB

l Not dependency preserving
(cannot check B  C without computing R1 R2)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.30CS425 – Fall 2013 – Boris Glavic

Dependency Preservation

n Let Fi be the set of dependencies F + that include only attributes in

Ri.

 A decomposition is dependency preserving, if

(F1  F2 …  Fn)
+ = F +

 If it is not, then checking updates for violation of functional

dependencies may require computing joins, which is

expensive.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.31CS425 – Fall 2013 – Boris Glavic

Example

n R = (A, B, C)

F = {A  B

B  C}

Key = {A}

n Decomposition R1 = (A, B), R2 = (B, C)

l Lossless-join decomposition

l Dependency preserving

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Normal Forms

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.33CS425 – Fall 2013 – Boris Glavic

So Far

n Theory of dependencies

n Decompositions and ways to check whether they are “good”

l Lossless

l Dependency preserving

n What is missing?

l Define what constitutes a good relation

 Normal forms

l How to check for a good relation

 Test normal forms

l How to achieve a good relation

 Translate into normal form

 Involves decomposition

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.34CS425 – Fall 2013 – Boris Glavic

Goals of Normalization

n Let R be a relation scheme with a set F of functional dependencies.

n Decide whether a relation scheme R is in “good” form.

n In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn} such that

l each relation scheme is in good form

l the decomposition is a lossless-join decomposition

l Preferably, the decomposition should be dependency preserving.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.35CS425 – Fall 2013 – Boris Glavic

First Normal Form

n A domain is atomic if its elements are considered to be indivisible units

l Examples of non-atomic domains:

 Set of names, composite attributes

 Identification numbers like CS101 that can be broken up into

parts

n A relational schema R is in first normal form if the domains of all

attributes of R are atomic

n Non-atomic values complicate storage and encourage redundant

(repeated) storage of data

l Example: Set of accounts stored with each customer, and set of

owners stored with each account

l We assume all relations are in first normal form

l (revisited in Chapter 22 of the textbook: Object Based Databases)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.36CS425 – Fall 2013 – Boris Glavic

First Normal Form (Cont’d)

n Atomicity is actually a property of how the elements of the domain are

used.

l Example: Strings would normally be considered indivisible

l Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

l If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.

l Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.37CS425 – Fall 2013 – Boris Glavic

Second Normal Form

n A relation schema R in 1NF is in second normal form (2NF) iff

l No non-prime attribute depends on parts of a candidate key

l An attribute is non-prime if it does not belong to any candidate key for

R

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.38CS425 – Fall 2013 – Boris Glavic

Second Normal Form Example

n R(A,B,C,D)

l A,B  C,D

l A  C

l B  D

n {A,B} is the only candidate key

n R is not in 2NF, because A->C where A is part of a candidate key and C

is not part of a candidate key

n Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID,

InstrName, StudentName)

l Indication that we are putting stuff together that does not belong

together

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.39CS425 – Fall 2013 – Boris Glavic

Second Normal Form Interpretation

n Why is a dependency on parts of a candidate key bad?

l That is why is a relation that is not in 2NF bad?

n 1) A dependency on part of a candidate key indicates potential for

redudancy

l Advisor(InstrSSN, StudentCWID, InstrName, StudentName)

l StudentCWID  StudentName

l If a student is advised by multiple instructors we record his name

several times

n 2) A dependency on parts of a candidate key shows that some

attributes are unrelated to other parts of a candidate key

l That means the table should be split

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.40CS425 – Fall 2013 – Boris Glavic

2NF is What We Want?

n Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

l A  B,C,D

l C  D

n {Name} is the only candidate key

n I is in 2NF

n However, as we have seen before I still has update redundancy that can

cause update anomalies

l We repeat the budget of a department if there is more than one

instructor working for that department

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.41CS425 – Fall 2013 – Boris Glavic

Third Normal Form

n A relation schema R is in third normal form (3NF) if for all:

   in F+

at least one of the following holds:

l    is trivial (i.e.,   )

l  is a superkey for R

l Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

Alternatively,

l Every attribute depends directly on a candidate key, i.e., for every

attribute A there is a dependency X  A, but no dependency Y  A

where Y is not a candidate key

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.42CS425 – Fall 2013 – Boris Glavic

3NF Example

n Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

l A  B,C,D

l C  D

n {Name} is the only candidate key

n I is in 2NF

n I is not in 3NF

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.43CS425 – Fall 2013 – Boris Glavic

Testing for 3NF

n Optimization: Need to check only FDs in F, need not check all FDs in

F+.

n Use attribute closure to check for each dependency   , if  is a

superkey.

n If  is not a superkey, we have to verify if each attribute in  is
contained in a candidate key of R

l this test is rather more expensive, since it involve finding

candidate keys

l testing for 3NF has been shown to be NP-hard

l Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.44CS425 – Fall 2013 – Boris Glavic

2NF/3NF Decomposition: An Example

n Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type)

n The functional dependencies for this relation schema are:

1. customer_id, employee_id  branch_name, type

2. employee_id  branch_name

3. customer_id, branch_name  employee_id

n We first compute a canonical cover

l branch_name is extraneous in the r.h.s. of the 1st dependency

l No other attribute is extraneous, so we get FC =

customer_id, employee_id  type

employee_id  branch_name

customer_id, branch_name  employee_id

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.45CS425 – Fall 2013 – Boris Glavic

Another 3NF Example

n Relation dept_advisor:

l dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name  i_ID,

i_ID  dept_name}

l Two candidate keys: s_ID, dept_name, and i_ID, s_ID

l R is in 3NF

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.46CS425 – Fall 2013 – Boris Glavic

Redundancy in 3NF

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

n repetition of information (e.g., the relationship l1, k1)

 (i_ID, dept_name)

n need to use null values (e.g., to represent the relationship
l2, k2 where there is no corresponding value for J).

 (i_ID, dept_nameI) if there is no separate relation mapping

instructors to departments

n There is some redundancy in this schema dept_advisor (s_ID, i_ID,

dept_name)

n Example of problems due to redundancy in 3NF

l R = (J, K, L)

F = {JK  L, L  K }

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.47CS425 – Fall 2013 – Boris Glavic

Boyce-Codd Normal Form (BCNF)

n A relation schema R is in BCNF if for all:

   in F+

at least one of the following holds:

l    is trivial (i.e.,   )

l  is a superkey for R

l Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.48CS425 – Fall 2013 – Boris Glavic

BCNF and Dependency Preservation

n If a relation is in BCNF it is in 3NF

n Constraints, including functional dependencies, are costly to check in

practice unless they pertain to only one relation

n Because it is not always possible to achieve both BCNF and
dependency preservation, we usually consider normally third normal

form.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.49CS425 – Fall 2013 – Boris Glavic

Comparison of BCNF and 3NF

n It is always possible to decompose a relation into a set of relations

that are in 3NF such that:

l the decomposition is lossless

l the dependencies are preserved

n It is always possible to decompose a relation into a set of relations

that are in BCNF such that:

l the decomposition is lossless

l it may not be possible to preserve dependencies.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.50CS425 – Fall 2013 – Boris Glavic

Summary Normal Forms

n BCNF -> 3NF -> 2NF -> 1NF

n 1NF

l atomic attributes

n 2NF

l no non-trivial dependencies of non-prime attributes on parts of the

key

n 3NF

l no transitive non-trivial dependencies on the key

n 4NF and 5NF

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Final Thoughts on Design Process

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.52CS425 – Fall 2013 – Boris Glavic

Overall Database Design Process

n We have assumed schema R is given

l R could have been generated when converting an ER diagram to a

set of tables.

l R could have been a single relation containing all attributes that are

of interest (called universal relation).

l Normalization breaks R into smaller relations.

l R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.53CS425 – Fall 2013 – Boris Glavic

ER Model and Normalization

n When an ER diagram is carefully designed, identifying all entities

correctly, the tables generated from the ER diagram should not need

further normalization.

n However, in a real (imperfect) design, there can be functional

dependencies from non-key attributes of an entity to other attributes of

the entity

l Example: an employee entity with attributes

department_name and building,

and a functional dependency
department_name building

l Good design would have made department an entity

n Functional dependencies from non-key attributes of a relationship set

possible, but rare --- most relationships are binary

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.54CS425 – Fall 2013 – Boris Glavic

Denormalization for Performance

n May want to use non-normalized schema for performance

n For example, displaying prereqs along with course_id, and title requires

join of course with prereq

n Alternative 1: Use denormalized relation containing attributes of course

as well as prereq with all above attributes

l faster lookup

l extra space and extra execution time for updates

l extra coding work for programmer and possibility of error in extra code

n Alternative 2: use a materialized view defined as
course prereq

l Benefits and drawbacks same as above, except no extra coding work

for programmer and avoids possible errors

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.55CS425 – Fall 2013 – Boris Glavic

Other Design Issues

n Some aspects of database design are not caught by normalization

n Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use

l earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).

 Above are in BCNF, but make querying across years difficult and

needs new table each year

l company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)

 Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.

 Is an example of a crosstab, where values for one attribute

become column names

 Used in spreadsheets, and in data analysis tools

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan8.56CS425 – Fall 2013 – Boris Glavic

Recap

n Functional and Multi-valued Dependencies

l Axioms

l Closure

l Minimal Cover

l Attribute Closure

n Redundancy and lossless decomposition

n Normal-Forms

l 1NF, 2NF, 3NF

l BCNF

l 4NF, 5NF

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

