CS425 — Summer 2016
Jason Arnold
Chapter 8: Relational Database Design

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

What is Good Design?
1) Easier: What is Bad Design?

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Combine Schemas?

n Suppose we combine instructor and department into inst_dept
(No connection to relationship set inst_dept)

n Result is possible repetition of information

ID | name salary | dept_name | building | budget
22222 | Einstein | 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter | 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. | Taylor 85000
76766 | Crick 72000 | Biology Watson 90000

10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000

15151 | Mozart 40000 | Music Packard 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter | 120000

CS425 - Fall 2013 — Boris Glavic 8.3 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Redundancy is Bad!

‘ ID | name | salary | dept_name | building | budget

i 22222 | Einstein | 95000 | Physics Watson 70000

n Update PhySICS Department 12121 | Wu 90000 | Finance Painter | 120000
: 32343 | El Said 60000 | History Painter 50000

multiple tuples to update 45565 | Katz, 75000 | Comp. Sci. | Taylor | 100000

. . . 98345 | Kim 80000 | Elec.Eng. | Taylor 85000
Efficiency + potential for errors 76766 | Crick 72000 | Biology | Watson | 90000

. 10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000

n Delete Physics Department 58583 | Califieri | 62000 | History | Painter | 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000

i 15151 | Mozart 40000 | Music Packard | 80000

update mUItIple tuples 33456 | Gold 87000 | Physics Watson 70000

76543 | Singh 80000 | Finance Painter | 120000

Efficiency + potential for errors
n Departments without instructor or instructors without departments

Need dummy department and dummy instructor

Makes aggregation harder and error prone.

CS425 - Fall 2013 — Boris Glavic 8.4 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

A Combined Schema Without Repetition

n Combining is not always bad!
n Consider combining relations
sec class(course _id, sec id, building, room _number) and
section(course _id, sec_id, semester, year)
into one relation

section(course _id, sec_id, semester, yeatr,
building, room_number)

n No repetition in this case

CS425 - Fall 2013 — Boris Glavic 8.5 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

S’

What About Smaller Schemas?

Suppose we had started with inst _dept. How would we know to split up
(decompose) it into instructor and department?

Write a rule “if there were a schema (dept_name, building, budget), then
dept_name would be a candidate key”

Denote as a functional dependency:
dept _name — building, budget

In inst_dept, because dept name is not a candidate key, the building
and budget of a department may have to be repeated.

This indicates the need to decompose inst _dept

Not all decompositions are good. Suppose we decompose
employee(ID, name, street, city, salary) into

employee (ID, name)
employee2 (name, street, city, salary)

The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.

CS425 - Fall 2013 — Boris Glavic 8.6 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

A Lossy Decomposition

CS425 - Fall 2013 — Boris Glavic

8.7

ID name | street city salary

57766 | Kim | Main | Perryridge | 75000

98776 | Kim | North | Hampton 67000

employee

Y Y

ID name name | street city salary
57766 | Kim Kim | Main Perryridge | 75000
98776 | Kim Kim | North | Hampton 67000

\ natural join /

ID | name | street city salary

57766 | Kim | Main Perryridge | 75000

57766 | Kim | North | Hampton 67000

98776 | Kim | Main | Perryridge | 75000

98776 | Kim | North | Hampton 67000

©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Goals of Lossless-Join Decomposition

n Lossless-Join decomposition means splitting a table in a way so
that we do not loose information

That means we should be able to reconstruct the original
table from the decomposed table using joins

Al B|C A | B B C
al|l 1] A al| 1 1 A
pl2|B p 2 2 B
r [14,5(1) [1g,c(n)
A|B|C
[1, (r) XI5 (r)
a | 1] A
£|12|B

CS425 - Fall 2013 — Boris Glavic 8.8 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

i-| Goal — Devise a Theory for the Following

n Decide whether a particular relation R is in “good” form.

n In the case that a relation R is not in “good” form, decompose it into a
set of relations {R,, R,, ..., R,} such that

each relation is in good form
the decomposition is a lossless-join decomposition
n Our theory is based on:
1) Models of dependency between attribute values
» functional dependencies
» multivalued dependencies
2) Concept of lossless decomposition
3) Normal Forms Based On
» Atomicity of values
» Avoidance of redundancy
» Lossless decomposition

CS425 - Fall 2013 — Boris Glavic 8.9 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional Dependencies

n Constraints on the set of legal instances for a relation schema.

n Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

n A functional dependency is a generalization of the notion of a key.
Thus, every key is a functional dependency

CS425 - Fall 2013 — Boris Glavic 8.10 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional Dependencies (Cont.)

n Let R be a relation schema
acR and R
n The functional dependency

oa—>pf
holds on R if and only if for any legal relations r(R), whenever any
two tuples t, and ¢, of r agree on the attributes o, they also agree
on the attributes . That is,

tila] =t [a] = 48] =L I[B]

n Example: Consider r(A,B) with the following instance of r.

1 4
1 5
3 7

n On this instance, A — B does NOT hold, but B - A does hold.

CS425 - Fall 2013 — Boris Glavic 8.11 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional Dependencies (Cont.)

n Let R be a relation schema
acR and R
n The functional dependency

oa—>pf
holds on R if and only if for any legal relations r(R), whenever any
two tuples t, and ¢, of r agree on the attributes o, they also agree
on the attributes . That is,

tila] =t [a] = 48] =L I[B]

n Example: Consider r(A,B) with the following instance of r.

/\
1\[4) |A=1andB=4
1/\5 A=1andB=5

n On this instance, A — B does NOT hold, but B - A does hold.

CS425 - Fall 2013 — Boris Glavic 8.12 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional Dependencies (Cont.)

K is a superkey for relation schema R ifand only if K > R
K is a candidate key for R if and only if

K-> R, and

fornoac K a—> R

Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:
dept_name— building
and ID - building
but would not expect the following to hold:

dept_name — salary

CS425 - Fall 2013 — Boris Glavic 8.13 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional Dependencies (Cont.)

n A functional dependency is trivial if it is satisfied by all instances of a
relation

Example:
» ID, name — ID
» hame — hame
In general, o — gis trivial if <

CS425 - Fall 2013 — Boris Glavic 8.14 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Closure of a Set of Functional
Dependencies

n Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A— Band B — C, then we can infer that A —
C

n The set of all functional dependencies logically implied by F is the
closure of F.

n We denote the closure of F by F*,
n F*is asuperset of F.

CS425 - Fall 2013 — Boris Glavic 8.15 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Functional-Dependency Theory

n We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional
dependencies.

n How do we get the initial set of FDs?
Semantics of the domain we are modelling
Has to be provided by a human (the designer)
n Example:
Relation Citizen(SSN, FirstName, LastName, Address)
We know that SSN is unique and a person has a a unique SSN
Thus, SSN — FirstName, LastName

CS425 - Fall 2013 — Boris Glavic 8.16 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Closure of a Set of Functional
Dependencies

n We can find F* the closure of F, by repeatedly applying
Armstrong’ s Axioms:

if B a,thena — f (reflexivity)
ifa— g thenyoa —> vy f (augmentation)
ifa — g, and f— y,then o - y (transitivity)

n These rules are

sound (generate only functional dependencies that actually hold),
and

complete (generate all functional dependencies that hold).

CS425 - Fall 2013 — Boris Glavic 8.17 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Example

n R=(A B C, G H,I
F={ A—>B
A—>C
CG—->H
CG—1

B — H}

n some members of F*
A—>H
» by transitivity from A - Band B—> H
AG - |

» by augmenting A —» C with G, to get AG —» CG
and then transitivity with CG — |

CG — HI
» by augmenting CG — [/ to infer CG — CGl,
and augmenting of CG — H to infer CGIl — HI,
and then transitivity

CS425 - Fall 2013 — Boris Glavic 8.18 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Procedure for Computing F*

n To compute the closure of a set of functional dependencies F:

F*=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F *
for each pair of functional dependencies f,and f, in F *
if f; and f, can be combined using transitivity
then add the resulting functional dependency to F *
until F * does not change any further

NOTE: We shall see an alternative more efficient procedure for this task
later

CS425 - Fall 2013 — Boris Glavic 8.19 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Closure of Functional Dependencies
(Cont.)

n Additional rules:
If o« - S holds and o — v holds, then oo — £y holds (union)

If o — £y holds, then o — £ holds and o — y holds
(decomposition)

If o — £ holds and y #— 0o holds, then a y — & holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’ s axioms.

CS425 - Fall 2013 — Boris Glavic 8.20 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Closure of Attribute Sets

n Given a set of attributes «, define the closure of o under F (denoted

by a*) as the set of attributes that are functionally determined by «
under F

n Algorithm to compute a*, the closure of o under F

result .= a;
while (changes to result) do
foreach —» yin Fdo
begin
if B < result then result := result U y
end

CS425 - Fall 2013 — Boris Glavic 8.21 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Example of Attribute Set Closure

n R=(AB,C, G H,lI

n F={A—>B
A->C
CG—->H
CG -1

B — Hj}
n (AG)*
1. result = AG
2. result=ABCG (A—> Cand A— B)
3. result =ABCGH (CG —»> Hand CG c AGBC)
4. result = ABCGHI (CG — land CG c AGBCH)
n Is AG a candidate key?

Is AG a super key?

1. Does AG—> R?==Is (AG)*o R
Is any subset of AG a superkey?

1. DoesA—> R?==Is(A)*oR

2. DoesG—>R?==1s(G)"'oR

CS425 - Fall 2013 — Boris Glavic 8.22 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
n Testing for superkey:

To test if a is a superkey, we compute o> and check if o* contains
all attributes of R.

n Testing functional dependencies

To check if a functional dependency o — B holds (or, in other
words, is in F*), just check if B < a*.

That is, we compute a* by using attribute closure, and then check
if it contains .

Is a simple and cheap test, and very useful
n Computing closure of F

For each y — R, we find the closure y*, and for each S c y*, we
output a functional dependency y — S.

CS425 - Fall 2013 — Boris Glavic 8.23 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Canonical Cover

n Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

For example: A —» Cisredundantin: {A—-B, B—>C,A— C}

Parts of a functional dependency may be redundant

» E.g..onRHS: {A—> B, B—> C, A— CD} can be simplified
to
{A>B, B>C, A—D}

» E.g.:onLHS: {A—> B, B—> C, AC — D} can be simplified
to
{A>B, B>C, A->D}

n Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies or
redundant parts of dependencies

CS425 - Fall 2013 — Boris Glavic 8.24 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Extraneous Attributes

n Consider a set F of functional dependencies and the functional
dependency o — B in F.

Attribute A is extraneous in o if A € o
and F logically implies (F —{a. = B}) U {(a0. —A) — B}.

Attribute A is extraneous in B if A €
and the set of functional dependencies
(F —{o — B}) U {ao > (B — A)} logically implies F.

n Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always
implies a weaker one

n Example: Given F={A—> C,AB— C}

B is extraneous in AB — C because {A — C, AB — C} logically
implies A — C (l.e. the result of dropping B from AB — C).

n Example: Given F={A —> C, AB— CD}

C is extraneous in AB — CD since AB — C can be inferred even
after deleting C

CS425 - Fall 2013 — Boris Glavic 8.25 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Lossless Join-Decomposition
Dependency Preservation

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

So Far

n Theory of dependencies
n What is missing?

When is a decomposition loss-less
Lossless-join decomposition
Dependencies on the input are preserved

n What else is missing?

Define what constitutes a good relation
Normal forms

How to check for a good relation
Test normal forms

How to achieve a good relation
Translate into normal form
Involves decomposition

CS425 - Fall 2013 - Boris Glavic 8.27

©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Lossless-join Decomposition

n Forthe case of R = (R,, R,), we require that for all possible relation
instances r on schema R

r=1Ilgs (r)xX Iz, (r)

n A decomposition of R into R, and R, is lossless join if at least one of
the following dependencies is in F*:

R,Nn R, > R,
RiNnR, > R,

n The above functional dependencies are a sufficient condition for
lossless join decomposition; the dependencies are a necessary
condition only if all constraints are functional dependencies

CS425 - Fall 2013 — Boris Glavic 8.28 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Example

n R=(A B, C)
F={A—> B, B—> C)

Can be decomposed in two different ways
n R,=(A B), R,=(B, C)
Lossless-join decomposition:
R, " R,={B}and B — BC
Dependency preserving
n R,=(A B), R,=(A C)
Lossless-join decomposition:
R, nR,={A}and A »> AB

Not dependency preserving
(cannot check B — C without computing R, X R,)

CS425 - Fall 2013 — Boris Glavic 8.29 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Dependency Preservation

n Let F; be the set of dependencies F * that include only attributes in
R.

» A decomposition is dependency preserving, if
(FLOFR,uU...UF)"=F"
» If it is not, then checking updates for violation of functional

dependencies may require computing joins, which is
expensive.

CS425 - Fall 2013 — Boris Glavic 8.30 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Example

n R=(A B, C)

F={A->B
B — C}
Key = {A}

n Decomposition R, = (A, B), R, = (B, C)
Lossless-join decomposition
Dependency preserving

CS425 - Fall 2013 - Boris Glavic 8.31

©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Normal Forms

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

\ So Far

n Theory of dependencies
n Decompositions and ways to check whether they are “good”
Lossless
Dependency preserving
n What is missing?
Define what constitutes a good relation
Normal forms
How to check for a good relation
Test normal forms
How to achieve a good relation
Translate into normal form
Involves decomposition

CS425 - Fall 2013 — Boris Glavic 8.33 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Goals of Normalization

n Let R be a relation scheme with a set F of functional dependencies.
n Decide whether a relation scheme R is in “good” form.

n In the case that a relation scheme R is not in “good” form,
decompose it into a set of relation scheme {R,, R,, ..., R} such that

each relation scheme is in good form
the decomposition is a lossless-join decomposition
Preferably, the decomposition should be dependency preserving.

CS425 - Fall 2013 — Boris Glavic 8.34 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

First Normal Form

n A domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:
Set of names, composite attributes

|[dentification numbers like CS101 that can be broken up into
parts

n A relational schema R is in first normal form if the domains of all
attributes of R are atomic

n Non-atomic values complicate storage and encourage redundant
(repeated) storage of data

Example: Set of accounts stored with each customer, and set of
owners stored with each account

We assume all relations are in first normal form
(revisited in Chapter 22 of the textbook: Object Based Databases)

CS425 - Fall 2013 — Boris Glavic 8.35 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

First Normal Form (Cont’ d)

n Atomicity is actually a property of how the elements of the domain are
used.

Example: Strings would normally be considered indivisible

Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.

Doing so is a bad idea: leads to encoding of information in
application program rather than in the database.

CS425 - Fall 2013 — Boris Glavic 8.36 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Second Normal Form

n Arelation schema R in 1NF is in second normal form (2NF) iff

No non-prime attribute depends on parts of a candidate key

An attribute is non-prime if it does not belong to any candidate key for
R

CS425 - Fall 2013 — Boris Glavic 8.37 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Second Normal Form Example

n R(A,B,C,D)
AB—>CD
A—-C
B—>D
n {A,B}is the only candidate key

n Ris notin 2NF, because A->C where A is part of a candidate key and C
is not part of a candidate key

n Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID,
InstrName, StudentName)

Indication that we are putting stuff together that does not belong
together

CS425 - Fall 2013 — Boris Glavic 8.38 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Second Normal Form Interpretation

n Why is a dependency on parts of a candidate key bad?
That is why is a relation that is not in 2NF bad?

n 1) A dependency on part of a candidate key indicates potential for
redudancy

Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
StudentCWID — StudentName

If a student is advised by multiple instructors we record his name
several times

n 2) A dependency on parts of a candidate key shows that some
attributes are unrelated to other parts of a candidate key

That means the table should be split

CS425 - Fall 2013 — Boris Glavic 8.39 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

2NF is What We Want?

n Instructor(Name, Salary, DepName, DepBudget) = I1(A,B,C,D)

A—B,CD

C->D
n {Name} is the only candidate key
n lisin 2NF

n However, as we have seen before | still has update redundancy that can
cause update anomalies

We repeat the budget of a department if there is more than one
instructor working for that department

CS425 - Fall 2013 — Boris Glavic 8.40 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Third Normal Form

n Arelation schema R is in third normal form (3NF) if for all:

oa— fgin F*
at least one of the following holds:

o — gis trivial (i.e., f € a)

o is a superkey for R

Each attribute A in f— a is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)

Alternatively,

Every attribute depends directly on a candidate key, i.e., for every
attribute A there is a dependency X — A, but no dependency Y — A
where Y is not a candidate key

CS425 - Fall 2013 — Boris Glavic 8.41 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

‘% 3NF Example

n Instructor(Name, Salary, DepName, DepBudget) = I1(A,B,C,D)

A—B,CD

C->D
n {Name} is the only candidate key
n lisin 2NF

n lis notin 3NF

CS425 - Fall 2013 — Boris Glavic 8.42 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

N Testing for 3NF

n Optimization: Need to check only FDs in F, need not check all FDs in
F+.

n Use attribute closure to check for each dependency a — B, if ais a
superkey.

n If o is not a superkey, we have to verify if each attribute in B is
contained in a candidate key of R

this test is rather more expensive, since it involve finding
candidate keys

testing for 3NF has been shown to be NP-hard

Interestingly, decomposition into third normal form (described
shortly) can be done in polynomial time

CS425 - Fall 2013 — Boris Glavic 8.43 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

2NF/3NF Decomposition: An Example

n Relation schema:
cust_banker _branch = (customer_id, employee_id, branch_name, type)

n The functional dependencies for this relation schema are:
customer _id, employee id — branch_name, type
employee id — branch_name
customer _id, branch_name — employee id

n We first compute a canonical cover
branch_name is extraneous in the r.h.s. of the 15t dependency
No other attribute is extraneous, so we get F =

customer _id, employee _id — type
employee id — branch _name
customer _id, branch_name — employee id

CS425 - Fall 2013 — Boris Glavic 8.44 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Another 3NF Example

n Relation dept advisor:

dept_advisor (s _ID, | ID, dept name)
F ={s ID, dept nhame — i _ID,

i ID — dept_name}
Two candidate keys: s _ID, dept name, and i ID, s ID
R is in 3NF

CS425 - Fall 2013 — Boris Glavic 8.45 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

N Redundancy in 3NF

n There is some redundancy in this schema dept_advisor (s _ID, i ID,

dept _name)

n Example of problems due to redundancy in 3NF
R=(J,K L) J | L | K
F={JK—> L, L->K} P Ik

Jo | 1| K
J3 h| ks
null Iz kz

n repetition of information (e.g., the relationship /,, k,)
(i _ID, dept_name)

n need to use null values (e.g., to represent the relationship
l,, k, where there is no corresponding value for J).

(i _ID, dept_namel) if there is no separate relation mapping
instructors to departments

CS425 - Fall 2013 — Boris Glavic 8.46 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Boyce-Codd Normal Form (BCNF)

n A relation schema R is in BCNF if for all:

oa— fgin F*
at least one of the following holds:

o — gis trivial (i.e., f € a)

o is a superkey for R

Each-attributeA-in-f—oi ined hdate kev-for R
NOTE: b ettt e i e | datekey

CS425 - Fall 2013 — Boris Glavic 8.47 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

BCNF and Dependency Preservation

n |f arelationis in BCNF itis in 3NF

n Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation

n Because it is not always possible to achieve both BCNF and
dependency preservation, we usually consider normally third normal

form.

CS425 - Fall 2013 — Boris Glavic 8.48 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Comparison of BCNF and 3NF

n Itis always possible to decompose a relation into a set of relations
that are in 3NF such that:

the decomposition is lossless
the dependencies are preserved

n Itis always possible to decompose a relation into a set of relations
that are in BCNF such that:

the decomposition is lossless
it may not be possible to preserve dependencies.

CS425 - Fall 2013 — Boris Glavic 8.49 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Summary Normal Forms

n BCNF -> 3NF -> 2NF -> 1NF

n 1ANF
atomic attributes

n 2NF
no non-trivial dependencies of non-prime attributes on parts of the
key

n 3NF

no transitive non-trivial dependencies on the key
n 4NF and 5NF

CS425 - Fall 2013 — Boris Glavic 8.50 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Final Thoughts on Design Process

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Overall Database Design Process

n We have assumed schema R is given

R could have been generated when converting an ER diagram to a
set of tables.

R could have been a single relation containing all attributes that are
of interest (called universal relation).

Normalization breaks R into smaller relations.

R could have been the result of some ad hoc design of relations,
which we then test/convert to normal form.

CS425 - Fall 2013 — Boris Glavic 8.52 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

\

n

ER Model and Normalization

When an ER diagram is carefully designed, identifying all entities
correctly, the tables generated from the ER diagram should not need
further normalization.

However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of
the entity

Example: an employee entity with attributes
department_name and building,

and a functional dependency
department_name— building

Good design would have made department an entity

Functional dependencies from non-key attributes of a relationship set
possible, but rare --- most relationships are binary

CS425 - Fall 2013 — Boris Glavic 8.53 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Denormalization for Performance

n May want to use non-normalized schema for performance

n For example, displaying prereqgs along with course id, and title requires
join of course with prereq

n Alternative 1. Use denormalized relation containing attributes of course
as well as prereq with all above attributes

faster lookup
extra space and extra execution time for updates
extra coding work for programmer and possibility of error in extra code

n Alternative 2: use a materialized view defined as
course prereq

Benefits and drawbacks same as above, except no extra coding work
for programmrer and avoids possible errors

CS425 - Fall 2013 — Boris Glavic 8.54 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Other Design Issues

n Some aspects of database design are not caught by normalization
n Examples of bad database design, to be avoided:
Instead of earnings (company id, year, amount), use

earnings 2004, earnings 2005, earnings 2006, etc., all on the
schema (company _id, earnings).

Above are in BCNF, but make querying across years difficult and
needs new table each year

company_year (company _id, earnings 2004, earnings_ 2005,
earnings_2006)

Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

Is an example of a crosstab, where values for one attribute
become column names

Used in spreadsheets, and in data analysis tools

CS425 - Fall 2013 — Boris Glavic 8.55 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

Recap

n Functional and Multi-valued Dependencies
Axioms

Closure

Minimal Cover

Attribute Closure
n Redundancy and lossless decomposition
n Normal-Forms

1NF, 2NF, 3NF

BCNF

4NF, 5NF

CS425 - Fall 2013 — Boris Glavic 8.56 ©Silberschatz, Korth and Sudarshan

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

End of Chapter

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

