CS425 - Summer 2016 Jason Arnold Chapter 3: Formal Relational Query Languages

Modified from:
Database System Concepts, $6^{\text {th }}$ Ed.

Chapter 3: Formal Relational Query Languages

n Relational Algebra

Textbook: Chapter 6

TA: Xin Su

n Xin Su

n Email: xsu11@hawk.iit.edu
n Phone: 312-479-2925

Relational Algebra

n Procedural language
n Six basic operators
। select: σ
। project: Π
। union: \cup
। set difference: -
| Cartesian product: x
| rename: ρ
n The operators take one or two relations as inputs and produce a new relation as a result.
composable

Select Operation - Example

n Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge} D^{\prime}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

n Notation: $\sigma_{p}(r)$
$n \quad p$ is called the selection predicate
n Defined as:

$$
\sigma_{p}(r)=\{t \mid t \in r \wedge p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : ^(and), \vee (or), \neg (not)
Each term is one of:
<attribute> op <attribute> or <constant>
where op is one of: $=, \neq,>, \geq .<. \leq$
n Example of selection:

$$
\sigma_{\text {dept_name= "Physics }} \text { (instructor) }
$$

Project Operation - Example

n Relation r :

A	B	C
α	10	1
α	20	1
β	30	1
β	40	2

n $\prod_{\mathrm{A}, \mathrm{C}}(r) \quad$\begin{tabular}{|l|l|}
\hlineA \& C

\hline \hlineα \& 1

α \& 1

β \& 1

β \& 2

\hline

$=$

\hlineA \& C

\hline \hlineα \& 1

β \& 1

β \& 2

\hline
\end{tabular}

Project Operation

n Notation:

$$
\Pi_{A_{1}, A_{2}, \ldots, A_{k}}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.
$n \quad$ The result is defined as the relation of k columns obtained by erasing the columns that are not listed
n Duplicate rows removed from result, since relations are sets
$n \quad$ Let A be a subset of the attributes of relation r then:

$$
\pi_{A}(r)=\{t . A \mid t \in r\}
$$

n Example: To eliminate the dept_name attribute of instructor

$$
\Pi_{I D, \text { name, salary }} \text { (instructor) }
$$

Union Operation - Example

n Relations r, s :

A	B
α	1
α	2
β	1
r	

A	B
α	2
β	3
s	

n $\mathrm{r} \cup \mathrm{s}:$

A	B
α	1
α	2
β	1
β	3

Union Operation

n Notation: $r \cup s$
n Defined as:

$$
r \cup s=\{t \mid t \in r \vee t \in s\}
$$

$n \quad$ For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of r deals with the same type of values as does the $2^{\text {nd }}$ column of s)
n Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester }=" F a l l " ~}^{\text {^ year=2009 }}(\text { section })\right) \cup \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester }} \text { "Spring" } \wedge \text { year=2010 }(\text { section })\right)
\end{aligned}
$$

Set difference of two relations

n Relations r, s :

A	B			
α	1			
α	2			
β	1			
		\quad	A	B
:---:	:---:			
α	2			
β	3			

n $r-s$:

A	B
α	1
β	1

Set Difference Operation

n Notation $r-s$
n Defined as:

$$
r-s=\{t \mid t \in r \wedge t \notin s\}
$$

n Set differences must be taken between compatible relations.
। r and s must have the same arity
। attribute domains of r and s must be compatible
n Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester= "Fall" } " \wedge \text { year=2009 }}(\text { section })\right)- \\
& \prod_{\text {course_id }}\left(\sigma_{\text {semester }}=\text { "Spring" } \wedge \text { year=2010 }(\text { section })\right)
\end{aligned}
$$

Cartesian-Product Operation - Example

n Relations r, s :

A	B
α	1
β	2

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

s
n rxs:

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

n Notation $r \times s$
n Defined as:

$$
r \times s=\left\{t, t^{\prime} \mid t \in r \wedge t^{\prime} \in s\right\}
$$

n Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$).
n If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

n Can build expressions using multiple operations
n Example: $\sigma_{A=C}(r x s)$
n $r x s$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

n $\quad \sigma_{A=C}(r x s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

n Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
n Allows us to refer to a relation by more than one name.
n Example:

$$
\rho_{x}(r)
$$

returns the expression E under the name X
n If a relational-algebra expression E has arity n, then

$$
\boldsymbol{P}_{x\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(r)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A_{1}, A_{2}, \ldots, A_{n}$.

$$
\begin{aligned}
\rho_{X}(r) & =\{t(X) \mid t \in r\} \\
\rho_{X(A)}(r) & =\{t(X) \cdot A \mid t \in r\}
\end{aligned}
$$

Example Query

n Find the largest salary in the university
। Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)

- using a copy of instructor under a new name d
$\pi_{\text {instructor.salary }}\left(\sigma_{\text {instructor.salary }}<\right.$ d.salary

$$
\left.\left(\text { instructor } \times \rho_{d}(\text { instructor })\right)\right)
$$

Step 2: Find the largest salary

$$
\begin{aligned}
& \pi_{\text {salary }}(\text { instructor })- \\
& \pi_{\text {instructor.salary }}\left(\sigma_{\text {instructor.salary }<\text { d.salary }}\right. \\
& \left.\quad\left(\text { instructor } \times \rho_{d}(\text { instructor })\right)\right)
\end{aligned}
$$

Example Queries

n Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught

Query 1

$\pi_{\text {instructor.I }} D$, course_id $\left(\sigma_{\text {dept_name }}=^{\prime}\right.$ Physics $^{\prime}($ $\sigma_{\text {instructor. } I D=\text { teaches. } I D}($ instructor \times teaches $\left.\left.)\right)\right)$

Query 2

$\pi_{\text {instructor. } I D, \text { course_id }}\left(\sigma_{\text {instructor.I }} D=\right.$ teaches.I $D($ $\sigma_{\text {dept_name }={ }^{\prime} \text { Physics }}($ instructor \times teaches $\left.\left.)\right)\right)$

Formal Definition (Syntax)

n A basic expression in the relational algebra consists of either one of the following:

। A relation in the database
। A constant relation: e.g., $\{(1),(2)\}$
n Let E_{1} and E_{2} be relational-algebra expressions; the following are all relational-algebra expressions:

। $E_{1} \cup E_{2}$
| $E_{1}-E_{2}$
| $E_{1} \times E_{2}$
। $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in E_{1}
। $\Pi_{S}\left(E_{1}\right), S$ is a list consisting of some of the attributes in E_{1}
। $\rho_{x}\left(E_{1}\right), \mathrm{x}$ is the new name for the result of E_{1}

Null Values

n It is possible for tuples to have a null value, denoted by null, for some of their attributes
n null signifies an unknown value or that a value does not exist.
$n \quad$ The result of any arithmetic expression involving null is null.
n Aggregate functions simply ignore null values (as in SQL)
n For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Null Values

n Comparisons with null values return the special truth value: unknown
। If false was used instead of unknown, then not $(A<5)$ would not be equivalent to $\quad A>=5$
n Three-valued logic using the truth value unknown:
। OR: (unknown or true) = true, (unknown or false) = unknown
(unknown or unknown) = unknown
। AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
। NOT: (not unknown) = unknown
I In SQL " P is unknown" evaluates to true if predicate P evaluates to unknown
n Result of select predicate is treated as false if it evaluates to unknown

Additional Operations

We define additional operations that do not add any expressive power to the relational algebra, but that simplify common queries.
n Set intersection
n Natural join
n Assignment
n Outer join

Set-Intersection Operation

n Notation: $r \cap s$
n Defined as:

$$
r \cap s=\{t \mid t \in r \wedge t \in s\}
$$

n Assume:
I r, s have the same arity
। attributes of r and s are compatible
n Note: $r \cap s=r-(r-s)$
। That is adding intersection to the language does not make it more expressive

Set-Intersection Operation - Example

n Relation r, s :

A	B			
α	1			
α	2			
β	1			
r		\quad	A	B
:---	:---	:---		
α	2			
β	3			

n $\quad r \cap S$

A	B
α	2

Natural-Join Operation

n Notation: $\mathrm{r} \bowtie$ s
$n \quad$ Let r and s be relations on schemas R and S respectively.
Then, $\mathrm{r} \bowtie \mathrm{s}$ is a relation on schema $R \cup S$ obtained as follows:
। Consider each pair of tuples t_{r} from r and t_{s} from s.
I If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
, t has the same value as t_{r} on r

- t has the same value as t_{s} on s
n Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

। Result schema $=(A, B, C, D, E)$
। $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B}=s . B \wedge r . D=s . D(r \times s)\right)
$$

Natural-Join Operation (cont.)

$n \quad$ Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is defined as:

$$
\begin{aligned}
X & =R \cap S \\
S^{\prime} & =S-R \\
r \bowtie s & =\pi_{R, S^{\prime}}\left(\sigma_{r . X=s . X}(r \times s)\right)
\end{aligned}
$$

Natural Join Example

n Relations r, s :

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
γ			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	ε
s		

$n \quad r \bowtie s$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Assignment Operation

$\mathrm{n} \quad$ The assignment operation (\leftarrow) provides a convenient way to express complex queries.
। Write query as a sequential program consisting of

- a series of assignments
- followed by an expression whose value is displayed as a result of the query.
Assignment must always be made to a temporary relation variable.

$$
\begin{aligned}
& E_{1} \leftarrow \sigma_{\text {salary }>40000}(\text { instructor }) \\
& E_{2} \leftarrow \sigma_{\text {salary }<10000}(\text { instructor }) \\
& E_{3} \leftarrow E_{1} \cup E_{2}
\end{aligned}
$$

Outer Join

n An extension of the join operation that avoids loss of information.
n Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
n Uses null values:
| null signifies that the value is unknown or does not exist
। All comparisons involving null are (roughly speaking) false by definition.

- We shall study precise meaning of comparisons with nulls later

Outer Join - Example

n Relation instructor1

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wu	Finance
15151	Mozart	Music

n Relation teaches1

ID	course_id
10101	CS-101
12121	FIN-201
76766	BIO-101

Outer Join - Example

n Join
instructor \bowtie teaches

$I D$	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201

n Left Outer Join instructor \square teaches

$I D$	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null

Outer Join - Example

n Right Outer Join
instructor \bowtie^{-}teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
76766	null	null	BIO-101

n Full Outer Join
instructor_\×_ teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null
76766	null	null	BIO-101

Outer Join using Joins

n Outer join can be expressed using basic operations

$$
\begin{aligned}
r _\bowtie s & =(r \bowtie s) \cup\left(\left(r-\Pi_{R}(r \bowtie s)\right) \times\{(n u l l, \ldots, n u l l)\}\right) \\
r \bowtie s & =(r \bowtie s) \cup\left(\{(n u l l, \ldots, n u l l)\} \times\left(s-\Pi_{S}(r \bowtie s)\right)\right) \\
r \unrhd_{-} s & =(r \bowtie s) \cup\left(\left(r-\Pi_{R}(r \bowtie s)\right) \times\{(n u l l, \ldots, n u l l)\}\right) \\
& \cup\left(\{(n u l l, \ldots, n u l l)\} \times\left(s-\Pi_{S}(r \bowtie s)\right)\right)
\end{aligned}
$$

Extended Relational-Algebra-Operations

n Generalized Projection
n Aggregate Functions

Generalized Projection

n Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\pi_{F_{1}, \ldots, F_{n}}(E)
$$

$n \quad E$ is any relational-algebra expression
n Each of $F_{1}, F_{2}, \ldots, F_{n}$ are arithmetic expressions and function calls involving constants and attributes in the schema of E.
n Given relation instructor(ID, name, dept_name, salary) where salary is annual salary, get the same information but with monthly salary

$$
\Pi_{I D, \text { name, dept_name, salary/12 }} \text { (instructor) }
$$

n Adding functions increases expressive power!
। In standard relational algebra there is no way to change attribute values

Aggregate Functions and Operations

n Aggregation function takes a set of values and returns a single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

n Aggregate operation in relational algebra

$$
G_{1}, G_{2}, \ldots, G_{n} G_{F_{1}}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{n}\left(A_{n}\right)(E)
$$

E is any relational-algebra expression
। $G_{1}, G_{2} \ldots, G_{n}$ is a list of attributes on which to group (can be empty)
। Each F_{i} is an aggregate function
। Each A_{i} is an attribute name
n Note: Some books/articles use γ instead of \mathcal{G} (Calligraphic G)

Aggregate Operation - Example

n Relation r.

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

$\mathrm{n} \mathcal{G}_{\operatorname{sum}(\mathrm{c})}(\mathrm{r})$
sum(c)

Aggregate Operation - Example

n Find the average salary in each department
dept_name \mathcal{G} avg(salary) (instructor)

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregate Functions (Cont.)

n What are the names for attributes in aggregation results?
। Need some convention!

- E.g., use the expression as a name avg(salary)

। For convenience, we permit renaming as part of aggregate operation
dept_name Gavg(salary) as avg_sal (instructor)

Modification of the Database

n The content of the database may be modified using the following operations:

I Deletion
| Insertion
। Updating
$n \quad$ All these operations can be expressed using the assignment operator
n Example: Delete instructors with salary over \$1,000,000

$$
R \leftarrow R-\left(\sigma_{\text {salary }>1000000}(R)\right)
$$

Restrictions for Modification

n Consider a modification where $R=(A, B)$ and $S=(C)$

$$
R \leftarrow \sigma_{C>5}(S)
$$

n This would change the schema of R!
। Should not be allowed
n Requirements for modifications
| The name \mathbf{R} on the left-hand side of the assignment operator refers to an existing relation in the database schema

। The expression on the right-hand side of the assignment operator should be union-compatible with \mathbf{R}

End of Chapter 3

Modified from:

Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan

