
1

Modified from:
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

CS425 – Fall 2016
Boris Glavic

Chapter 4: Introduction to SQL

©Silberschatz, Korth and Sudarshan4.2CS425 – Fall 2016 – Boris Glavic

Chapter 4: Introduction to SQL

■ Overview of the SQL Query Language

■ Data Definition
■ Basic Query Structure
■ Additional Basic Operations

■ Set Operations
■ Null Values
■ Aggregate Functions

■ Nested Subqueries
■ Modification of the Database

Textbook: Chapter 3

©Silberschatz, Korth and Sudarshan4.3CS425 – Fall 2016 – Boris Glavic

History

■ IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

■ Renamed Structured Query Language (SQL)

■ ANSI and ISO standard SQL:
● SQL-86, SQL-89, SQL-92
● SQL:1999, SQL:2003, SQL:2008

■ Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.
● Not all examples here may work one-to-one on your

particular system.

©Silberschatz, Korth and Sudarshan4.4CS425 – Fall 2016 – Boris Glavic

Data Definition Language

■ The schema for each relation.

■ The domain of values associated with each attribute.
■ Integrity constraints
■ And as we will see later, also other information such as

● The set of indices to be maintained for each relations.
● Security and authorization information for each relation.
● The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

©Silberschatz, Korth and Sudarshan4.5CS425 – Fall 2016 – Boris Glavic

Domain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.
■ varchar(n). Variable length character strings, with user-specified

maximum length n.
■ int. Integer (a finite subset of the integers that is machine-

dependent).
■ smallint. Small integer (a machine-dependent subset of the integer

domain type).
■ numeric(p,d). Fixed point number, with user-specified precision of

p digits, with n digits to the right of decimal point.
■ real, double precision. Floating point and double-precision floating

point numbers, with machine-dependent precision.
■ float(n). Floating point number, with user-specified precision of at

least n digits.
■ More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan4.6CS425 – Fall 2016 – Boris Glavic

Create Table Construct

■ An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation
● each Ai is an attribute name in the schema of relation r
● Di is the data type of values in the domain of attribute Ai

■ Example:
create table instructor (

ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

■ insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
■ insert into instructor values (‘10211’, null, ’Biology’, 66000);

2

©Silberschatz, Korth and Sudarshan4.7CS425 – Fall 2016 – Boris Glavic

Integrity Constraints in Create Table

■ not null
■ primary key (A1, ..., An)

■ foreign key (Am, ..., An) references r

Example: Declare ID as the primary key for instructor
.

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan4.8CS425 – Fall 2016 – Boris Glavic

And a Few More Relation Definitions
■ create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department));

■ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

● Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

©Silberschatz, Korth and Sudarshan4.9CS425 – Fall 2016 – Boris Glavic

Even more
■ create table course (

course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department));

● Primary key declaration can be combined with attribute
declaration as shown above

©Silberschatz, Korth and Sudarshan4.10CS425 – Fall 2016 – Boris Glavic

Drop and Alter Table Constructs

■ drop table student
● Deletes the table and its contents

■ alter table
● alter table r add A D

4 where A is the name of the attribute to be added to
relation r and D is the domain of A.

4All tuples in the relation are assigned null as the value
for the new attribute.

● alter table r drop A

4where A is the name of an attribute of relation r
4Dropping of attributes not supported by many

databases
● And more …

©Silberschatz, Korth and Sudarshan4.11CS425 – Fall 2016 – Boris Glavic

Basic Query Structure

■ The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

■ A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

● Ai represents an attribute
● Ri represents a relation
● P is a predicate.

■ The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan4.12CS425 – Fall 2016 – Boris Glavic

The select Clause

■ The select clause list the attributes desired in the result of a query
● corresponds to the projection operation of the relational algebra

■ Example: find the names of all instructors:
select name
from instructor

■ NOTE: SQL keywords are case insensitive (i.e., you may use upper- or
lower-case letters.)
● E.g. Name ≡ NAME ≡ name
● Some people use upper case wherever we use bold font.

3

©Silberschatz, Korth and Sudarshan4.13CS425 – Fall 2016 – Boris Glavic

The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.

■ To force the elimination of duplicates, insert the keyword distinct
after select.

■ Find the names of all departments with instructor, and remove
duplicates

select distinct dept_name
from instructor

■ The (redundant) keyword all specifies that duplicates not be
removed.

select all dept_name
from instructor

©Silberschatz, Korth and Sudarshan4.14CS425 – Fall 2016 – Boris Glavic

The select Clause (Cont.)

■ An asterisk in the select clause denotes “all attributes”

select *
from instructor

■ The select clause can contain arithmetic expressions involving
the operation, +, –, *, and /, and operating on constants or
attributes of tuples.
● Most systems also support additional functions

4 E.g., substring
● Most systems allow user defined functions (UDFs)

■ The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

©Silberschatz, Korth and Sudarshan4.15CS425 – Fall 2016 – Boris Glavic

The from Clause

■ The from clause lists the relations involved in the query

● Corresponds to the Cartesian product operation of the
relational algebra.

■ Find the Cartesian product instructor X teaches

select *
from instructor, teaches

● generates every possible instructor – teaches pair, with all
attributes from both relations

■ Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra)

©Silberschatz, Korth and Sudarshan4.16CS425 – Fall 2016 – Boris Glavic

The where Clause

■ The where clause specifies conditions that the result must
satisfy
● Corresponds to the selection predicate of the relational

algebra.
■ To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

■ Comparison results can be combined using the logical
connectives and, or, and not.

■ Comparisons can be applied to results of arithmetic expressions.
■ SQL standard: any valid expression that returns a boolean result

● Vendor specific restrictions may apply!

©Silberschatz, Korth and Sudarshan4.17CS425 – Fall 2016 – Boris Glavic

Cartesian Product: instructor X teaches
instructor teaches

©Silberschatz, Korth and Sudarshan4.18CS425 – Fall 2016 – Boris Glavic

grade
section

course_id
title
dept_name
credits

course

time_slot
time_slot_id
day
start_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

year
grade

section
course_id
title
dept_name
credits

course

time_slot
time_slot_id
day
start_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

Joins
■ For all instructors who have taught some course, find their names

and the course ID of the courses they taught.
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

■ Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

4

©Silberschatz, Korth and Sudarshan4.19CS425 – Fall 2016 – Boris Glavic

Try Writing Some Queries in SQL

■ Suggest queries to be written…..

©Silberschatz, Korth and Sudarshan4.20CS425 – Fall 2016 – Boris Glavic

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

■ The join operations are typically used as subquery
expressions in the from clause

©Silberschatz, Korth and Sudarshan4.21CS425 – Fall 2016 – Boris Glavic

Join operations – Example

■ Relation course

■ Relation prereq

■ Observe that

prereq information is missing for CS-315 and
course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.22CS425 – Fall 2016 – Boris Glavic

Natural Join

■ Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each common
column
● This is the natural join from relational algebra

■ select *
from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan4.23CS425 – Fall 2016 – Boris Glavic

Natural Join Example

■ List the names of instructors along with the course ID of the courses that
they taught.

● select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

● select name, course_id
from instructor natural join teaches;

©Silberschatz, Korth and Sudarshan4.24CS425 – Fall 2016 – Boris Glavic

Natural Join (Cont.)

■ Danger in natural join: beware of unrelated attributes with same name which
get equated incorrectly

■ List the names of instructors along with the the titles of courses that they
teach
● Incorrect version (makes course.dept_name = instructor.dept_name)

4 select name, title
from instructor natural join teaches natural join course;

● Correct version
4 select name, title

from instructor natural join teaches, course
where teaches.course_id = course.course_id;

● Another correct version
4 select name, title

from (instructor natural join teaches)
join course using(course_id);

5

©Silberschatz, Korth and Sudarshan4.25CS425 – Fall 2016 – Boris Glavic

Outer Join

■ An extension of the join operation that avoids loss of
information.

■ Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

■ Uses null values.

©Silberschatz, Korth and Sudarshan4.26CS425 – Fall 2016 – Boris Glavic

Left Outer Join

■ course natural left outer join prereq

©Silberschatz, Korth and Sudarshan4.27CS425 – Fall 2016 – Boris Glavic

Right Outer Join

■ course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.28CS425 – Fall 2016 – Boris Glavic

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ These additional operations are typically used as subquery
expressions in the from clause

■ Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

■ Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

©Silberschatz, Korth and Sudarshan4.29CS425 – Fall 2016 – Boris Glavic

Full Outer Join

■ course natural full outer join prereq

©Silberschatz, Korth and Sudarshan4.30CS425 – Fall 2016 – Boris Glavic

Joined Relations – Examples

■ course inner join prereq on
course.course_id = prereq.course_id

■ What is the difference between the above, and a natural join?
■ course left outer join prereq on

course.course_id = prereq.course_id

6

©Silberschatz, Korth and Sudarshan4.31CS425 – Fall 2016 – Boris Glavic

Joined Relations – Examples

■ course natural right outer join prereq

■ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.32CS425 – Fall 2016 – Boris Glavic

The Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

■ E.g.
● select ID, name, salary/12 as monthly_salary

from instructor

■ Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

● select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

■ Keyword as is optional and may be omitted
instructor as T ≡ instructor T

● Keyword as must be omitted in Oracle

©Silberschatz, Korth and Sudarshan4.33CS425 – Fall 2016 – Boris Glavic

String Operations
■ SQL includes a string-matching operator for comparisons on

character strings. The operator “like” uses patterns that are
described using two special characters:
● percent (%). The % character matches any substring.
● underscore (_). The _ character matches any character.

■ Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

■ Match the string “100 %”
like ‘100 \%' escape '\'

©Silberschatz, Korth and Sudarshan4.34CS425 – Fall 2016 – Boris Glavic

String Operations (Cont.)

■ Patters are case sensitive.
■ Pattern matching examples:

● ‘Intro%’matches any string beginning with “Intro”.
● ‘%Comp%’matches any string containing “Comp” as a substring.
● ‘_ _ _’matches any string of exactly three characters.
● ‘_ _ _ %’matches any string of at least three characters.

■ SQL supports a variety of string operations such as
● concatenation (using “||”)
● converting from upper to lower case (and vice versa)
● finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.35CS425 – Fall 2016 – Boris Glavic

Case Construct

■ Like case, if, and ? Operators in programming languages

case
when c1 then e1

when c2 then e2

…
[else en]

end

■ Each ci is a condition
■ Each e1 is an expression
■ Returns the first ei for which ci evaluates to true

● If none of the ci is true, then return en (else)
4 If there is no else return null

©Silberschatz, Korth and Sudarshan4.36CS425 – Fall 2016 – Boris Glavic

Case Construct Example

■ Like case, if, and ? Operators in programming languages

select
name,
case

when salary > 1000000 then ‘premium’
else ‘standard’

end as customer_group
from customer

7

©Silberschatz, Korth and Sudarshan4.37CS425 – Fall 2016 – Boris Glavic

Ordering the Display of Tuples

■ List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

■ We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.
● Example: order by name desc

■ Can sort on multiple attributes
● Example: order by dept_name, name

■ Order is not expressible in the relational model!

©Silberschatz, Korth and Sudarshan4.38CS425 – Fall 2016 – Boris Glavic

Where Clause Predicates

■ SQL includes a between comparison operator

■ Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)
● select name

from instructor
where salary between 90000 and 100000

■ Tuple comparison
● select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

©Silberschatz, Korth and Sudarshan4.39CS425 – Fall 2016 – Boris Glavic

Set Operations

■ Find courses that ran in Fall 2009 or in Spring 2010

■ Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union

(select course_id from section where sem = ‘Spring’ and year = 2010)

■ Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except

(select course_id from section where sem = ‘Spring’ and year = 2010)

©Silberschatz, Korth and Sudarshan4.40CS425 – Fall 2016 – Boris Glavic

Set Operations

■ Set operations union, intersect, and except

● Each of the above operations automatically eliminates
duplicates

■ To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
occurs:
● m + n times in r union all s

● min(m,n) times in r intersect all s
● max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan4.41CS425 – Fall 2016 – Boris Glavic

Null Values

■ It is possible for tuples to have a null value, denoted by null, for
some of their attributes

■ null signifies an unknown value or that a value does not exist.

■ The result of any arithmetic expression and comparisons
involving null evaluate to null
● Example: 5 + null returns null

null > 5 returns null
null = null returns null

■ The predicate is null can be used to check for null values.
● Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

©Silberschatz, Korth and Sudarshan4.42CS425 – Fall 2016 – Boris Glavic

Null Values and Three Valued Logic

■ Any comparison with null returns null
● Example: 5 < null or null <> null or null = null

■ Three-valued logic using the truth value null:
● OR: (null or true) = true,

(null or false) = null
(null or null) = null

● AND: (true and null) = null,
(false and null) = false,
(null and null) = null

● NOT: (not null) = null

● “P is null” evaluates to true if predicate P evaluates to null
■ Result of where clause predicate is treated as false if it

evaluates to null

8

©Silberschatz, Korth and Sudarshan4.43CS425 – Fall 2016 – Boris Glavic

Aggregate Functions

■ These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

■ Most DBMS support user defined aggregation functions

©Silberschatz, Korth and Sudarshan4.44CS425 – Fall 2016 – Boris Glavic

Aggregate Functions (Cont.)

■ Find the average salary of instructors in the Computer Science
department
● select avg (salary)

from instructor
where dept_name= ’Comp. Sci.’;

■ Find the total number of instructors who teach a course in the
Spring 2010 semester
● select count (distinct ID)

from teaches
where semester = ’Spring’ and year = 2010

■ Find the number of tuples in the course relation

● select count (*)
from course;

©Silberschatz, Korth and Sudarshan4.45CS425 – Fall 2016 – Boris Glavic

Aggregate Functions – Group By

■ Find the average salary of instructors in each department
● select dept_name, avg (salary)

from instructor
group by dept_name;

● Note: departments with no instructor will not appear in result

©Silberschatz, Korth and Sudarshan4.46CS425 – Fall 2016 – Boris Glavic

Aggregation (Cont.)

■ Attributes in select clause outside of aggregate functions must
appear in group by list
● /* erroneous query */

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan4.47CS425 – Fall 2016 – Boris Glavic

Aggregate Functions – Having Clause

■ Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan4.48CS425 – Fall 2016 – Boris Glavic

Null Values and Aggregates

■ Total all salaries
select sum (salary)
from instructor

● Above statement ignores null amounts
● Result is null if there is no non-null amount

■ All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

■ What if collection has only null values?

● count returns 0
● all other aggregates return null

9

©Silberschatz, Korth and Sudarshan4.49CS425 – Fall 2016 – Boris Glavic

Empty Relations and Aggregates

■ What if the input relation is empty
■ Conventions:

● sum: returns null
● avg: returns null
● min: returns null
● max: returns null
● count: returns 0

©Silberschatz, Korth and Sudarshan4.50CS425 – Fall 2016 – Boris Glavic

Duplicates

■ In relations with duplicates, SQL can define how many copies
of tuples appear in the result.

■ Multiset (bag semantics) versions of some of the relational
algebra operators – given multiset relations r1 and r2:

1. sq (r1): If there are c1 copies of tuple t1 in r1, and t1
satisfies selections sq,, then there are c1 copies of t1 in sq
(r1).

2. PA (r): For each copy of tuple t1 in r1, there is a copy of
tuple PA (t1) in PA (r1) where PA (t1) denotes the
projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies
of tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1
x r2

©Silberschatz, Korth and Sudarshan4.51CS425 – Fall 2016 – Boris Glavic

Multiset Relational Algebra

■ Pure relational algebra operates on set-semantics (no duplicates
allowed)
● e.g. after projection

■ Multiset (bag-semantics) relational algebra retains duplicates, to
match SQL semantics
● SQL duplicate retention was initially for efficiency, but is now a

feature
■ Multiset relational algebra defined as follows

● selection: has as many duplicates of a tuple as in the input, if the
tuple satisfies the selection

● projection: one tuple per input tuple, even if it is a duplicate
● cross product: If there are m copies of t1 in r, and n copies of

t2 in s, there are m x n copies of t1.t2 in r x s
● Other operators similarly defined

4 E.g. union: m + n copies, intersection: min(m, n) copies
difference: max(0, m – n) copies

©Silberschatz, Korth and Sudarshan4.52CS425 – Fall 2016 – Boris Glavic

Duplicates (Cont.)

■ Example: Suppose multiset relations r1 (A, B) and r2 (C)
are as follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}
■ Then PB(r1) would be {(a), (a)}, while PB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
■ SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:
))((21,,, 21 mPAAA rrr

n
×××∏ …… σ

©Silberschatz, Korth and Sudarshan4.53CS425 – Fall 2016 – Boris Glavic

SQL and Relational Algebra

■ select A1, A2, .. An
from r1, r2, …, rm
where P

is equivalent to the following expression in multiset relational algebra

Õ A1, .., An (s P (r1 x r2 x .. x rm))
■ select A1, A2, sum(A3)

from r1, r2, …, rm
where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

A1, A2 sum(A3) (s P (r1 x r2 x .. x rm)))

©Silberschatz, Korth and Sudarshan4.54CS425 – Fall 2016 – Boris Glavic

SQL and Relational Algebra

■ More generally, the non-aggregated attributes in the select clause
may be a subset of the group by attributes, in which case the
equivalence is as follows:

select A1, sum(A3) AS sumA3
from r1, r2, …, rm
where P
group by A1, A2

is equivalent to the following expression in multiset relational algebra

Õ A1,sumA3(A1,A2 sum(A3) as sumA3(s P (r1 x r2 x .. x rm)))

10

©Silberschatz, Korth and Sudarshan4.55CS425 – Fall 2016 – Boris Glavic

Subqueries in the From Clause
■ SQL allows a subquery expression to be used in the from clause

■ Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

■ Note that we do not need to use the having clause
■ Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;
©Silberschatz, Korth and Sudarshan4.56CS425 – Fall 2016 – Boris Glavic

Nested Subqueries

■ SQL provides a mechanism for the nesting of subqueries.

■ A subquery is a select-from-where expression that is nested
within another query.

■ A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan4.57CS425 – Fall 2016 – Boris Glavic

Example Query

■ Find courses offered in Fall 2009 and in Spring 2010

■ Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and

course_id in (select course_id
from section
where semester = ’Spring’ and year= 2010);

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id
from section
where semester = ’Spring’ and year=

2010);
©Silberschatz, Korth and Sudarshan4.58CS425 – Fall 2016 – Boris Glavic

Example Query

■ Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with ID 10101

■ Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan4.59CS425 – Fall 2016 – Boris Glavic

Quantification

■ Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

■ Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept_name = ’Biology’);

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ’Biology’;

©Silberschatz, Korth and Sudarshan4.60CS425 – Fall 2016 – Boris Glavic

Definition of Some Clause

■ F <comp> some r Û $ t Î r such that (F <comp> t)
Where <comp> can be: <, £, >, =, ¹

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ¹ some) = true (since 0 ¹ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) º in
However, (¹ some) º not in

11

©Silberschatz, Korth and Sudarshan4.61CS425 – Fall 2016 – Boris Glavic

Example Query

■ Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept_name = ’Biology’);

©Silberschatz, Korth and Sudarshan4.62CS425 – Fall 2016 – Boris Glavic

Definition of all Clause

■ F <comp> all r Û " t Î r (F <comp> t)

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ¹ all) = true (since 5 ¹ 4 and 5 ¹ 6)

(5 < all

) = false(5 = all

(¹ all) º not in
However, (= all) º in

©Silberschatz, Korth and Sudarshan4.63CS425 – Fall 2016 – Boris Glavic

Test for Empty Relations

■ The exists construct returns the value true if the argument
subquery returns a nonempty result.

■ exists r Û r ¹ Ø
■ not exists r Û r = Ø

©Silberschatz, Korth and Sudarshan4.64CS425 – Fall 2016 – Boris Glavic

Correlation Variables

■ Yet another way of specifying the query “Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester”

select course_id
from section as S
where semester = ’Fall’ and year= 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010

and S.course_id= T.course_id);
■ Correlated subquery

■ Correlation name or correlation variable

©Silberschatz, Korth and Sudarshan4.65CS425 – Fall 2016 – Boris Glavic

Not Exists

■ Find all students who have taken all courses offered in the
Biology department.

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = ’Biology’)

except
(select T.course_id
from takes as T
where S.ID = T.ID));

■ Note that X – Y = Ø Û X Í Y
■ Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan4.66CS425 – Fall 2016 – Boris Glavic

Test for Absence of Duplicate Tuples

■ The unique construct tests whether a subquery has any duplicate tuples
in its result.
● (Evaluates to “true” on an empty set)

■ Find all courses that were offered at most once in 2009
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2009);

12

©Silberschatz, Korth and Sudarshan4.67CS425 – Fall 2016 – Boris Glavic

Correlated Subqueries in the From
Clause

■ And yet another way to write it: lateral clause
select name, salary, avg_salary
from instructor I1,

lateral (select avg(salary) as avg_salary
from instructor I2
where I2.dept_name= I1.dept_name);

■ Lateral clause permits later part of the from clause (after the lateral
keyword) to access correlation variables from the earlier part.

■ Note: lateral is part of the SQL standard, but is not supported on many
database systems; some databases such as SQL Server offer
alternative syntax

©Silberschatz, Korth and Sudarshan4.68CS425 – Fall 2016 – Boris Glavic

With Clause

■ The with clause provides a way of defining a temporary view
whose definition is available only to the query in which the with
clause occurs.

■ Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)

from department)
select budget
from department, max_budget
where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan4.69CS425 – Fall 2016 – Boris Glavic

Complex Queries using With Clause

■ With clause is very useful for writing complex queries

■ Supported by most database systems, with minor syntax
variations

■ Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

©Silberschatz, Korth and Sudarshan4.70CS425 – Fall 2016 – Boris Glavic

Scalar Subquery

■ Scalar subquery is one which is used where a single value is expected
■ E.g. select dept_name,

(select count(*)
from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

■ E.g. select name
from instructor
where salary * 10 >

(select budget from department
where department.dept_name = instructor.dept_name)

■ Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan4.71CS425 – Fall 2016 – Boris Glavic

Query Features Recap - Syntax

■ An SQL query is either a Select-from-where block or a set operation
■ An SQL query block is structured like this:
SELECT [DISTINCT] select_list
[FROM from_list]
[WHERE where_condition]
[GROUP BY group_by_list]
[HAVING having_condition]
[ORDER BY order_by_list]

■ Set operations
[Query Block] set_op [Query Block]
set_op: [ALL] UNION | INTERSECT | EXCEPT

©Silberschatz, Korth and Sudarshan4.72CS425 – Fall 2016 – Boris Glavic

Query Features Recap - Syntax

■ Almost all clauses are optional
■ Examples:

● SELECT * FROM r;
● SELECT 1;

4 Convention: returns single tuple
● SELECT ‘ok’ FROM accounts HAVING sum(balance) = 0;
● SELECT 1 GROUP BY 1;
● SELECT 1 HAVING true;
● Let r be a relation with two attributes a and b

4 SELECT a,b FROM r
WHERE a IN (SELECT a FROM r) AND b IN (SELECT b FROM r)
GROUP BY a,b HAVING count(*) > 0;

■ Note:
● Not all systems support all of this “non-sense”

13

©Silberschatz, Korth and Sudarshan4.73CS425 – Fall 2016 – Boris Glavic

Syntax - SELECT

■ SELECT [DISTINCT [ON (distinct_list)]] select_list
■ select_list

● List of projection expressions
4 [expr] [AS name]

● expr
4 Expression over attributes, constants, arithmetic operators,

functions, CASE-construct, aggregation functions
■ distinct_list

● List of expressions

■ Examples:
● SELECT DISTINCT ON (a % 2) a FROM r;
● SELECT substring(a, 1,2) AS x FROM r;
● SELECT CASE WHEN a = 2 THEN a ELSE null END AS b FROM r;
● SELECT a = b AS is_a_equal_to_b FROM r;

©Silberschatz, Korth and Sudarshan4.74CS425 – Fall 2016 – Boris Glavic

Syntax - FROM

■ FROM from_list
■ from_list

● List of from clause expressions
4 subquery | relation | constant_relation | join_expr [alias]

● subquery
4 Any valid SQL query – alias is not optional

● relation
4 A relation in the database

● constant_relation
4 (VALUES tuples) – alias is not optional

● join_expr
4 joins between from_clause entries

● alias
4 [AS] b [(attribute_name_list)]

©Silberschatz, Korth and Sudarshan4.75CS425 – Fall 2016 – Boris Glavic

Syntax – FROM (cont.)

■ Examples (relation r with attributes a and b):
● SELECT * FROM r;
● SELECT * FROM r AS g(v,w);
● SELECT * FROM r x;
● SELECT * FROM (VALUES (1,2), (3,1)) AS s(u,v);
● SELECT * FROM r NATURAL JOIN s, t;
● SELECT * FROM ((r JOIN s ON (r.a = s.c)) NATURAL JOIN

(SELECT * FROM t) AS new);
● SELECT * FROM (SELECT * FROM r) AS r;
● SELECT * FROM (SELECT * FROM (SELECT * FROM r) AS r) AS r;

©Silberschatz, Korth and Sudarshan4.76CS425 – Fall 2016 – Boris Glavic

Syntax - WHERE

■ WHERE where_condition
■ where_condition: A boolean expression over

● Attributes
● Constants: e.g., true, 1, 0.5, ‘hello’
● Comparison operators: =, <, >, IS DISTINCT FROM, IS NULL, …
● Arithmetic operators: +,-,/,%
● Function calls
● Nested subquery expressions

■ Examples
● SELECT * FROM r WHERE a = 2;
● SELECT * FROM r WHERE true OR false;
● SELECT * FROM r WHERE NOT(a = 2 OR a = 3);
● SELECT * FROM r WHERE a IS DISTINCT FROM b;
● SELECT * FROM r WHERE a < ANY (SELECT c FROM s);
● SELECT * FROM r WHERE a = (SELECT count(*) FROM s);

©Silberschatz, Korth and Sudarshan4.77CS425 – Fall 2016 – Boris Glavic

Syntax – GROUP BY

■ GROUP BY group_by_list
■ group_by_list

● List of expressions
4 Expression over attributes, constants, arithmetic operators,

functions, CASE-construct, aggregation functions
■ Examples:

● SELECT sum(a), b FROM r GROUP BY b;
● SELECT sum(a), b, c FROM r GROUP BY b, c;
● SELECT sum(a), b/2 FROM r GROUP BY b/2;
● SELECT sum(a), b FROM r GROUP BY b > 5;

4 Incorrect, cannot select b, because it is not an expression in the
group by clause

● SELECT sum(a), b FROM r GROUP BY b IN (SELECT c FROM s);

©Silberschatz, Korth and Sudarshan4.78CS425 – Fall 2016 – Boris Glavic

Syntax – HAVING

■ HAVING having_condition
■ having_condition

● Like where_condition except that expressions over attributes have
either to be in the GROUP BY clause or are aggregated

■ Examples:
● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) > 10;
● SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) + 5 > 10;
● SELECT sum(a), b FROM r GROUP BY b HAVING true;
● SELECT sum(a), b FROM r GROUP BY b HAVING count(*) = 50;
● SELECT b FROM r GROUP BY b HAVING sum(a) > 10;

14

©Silberschatz, Korth and Sudarshan4.79CS425 – Fall 2016 – Boris Glavic

Syntax – ORDER BY

■ ORDER BY order_by_list
■ order_by_list

● Like select_list minus renaming
● Optional [ASC | DESC] for each item

■ Examples:
● SELECT * FROM r ORDER BY a;
● SELECT * FROM r ORDER BY b, a;
● SELECT * FROM r ORDER BY a * 2;
● SELECT * FROM r ORDER BY a * 2, a;
● SELECT * FROM r ORDER BY a + (SELECT count(*) FROM s);

©Silberschatz, Korth and Sudarshan4.80CS425 – Fall 2016 – Boris Glavic

Query Semantics

■ Evaluation Algorithm (you can do it manually – sort of)
1. Compute FROM clause

1. Compute cross product of all items in the FROM clause
4 Relations: nothing to do
4 Subqueries: use this algorithm to recursively compute the result of

subqueries first
4 Join expressions: compute the join

2. Compute WHERE clause
1. For each tuple in the result of 1. evaluate the WHERE clause

condition
3. Compute GROUP BY clause

1. Group the results of step 2. on the GROUP BY expressions
4. Compute HAVING clause

1. For each group (if any) evaluate the HAVING condition

©Silberschatz, Korth and Sudarshan4.81CS425 – Fall 2016 – Boris Glavic

Query Semantics (Cont.)

5. Compute ORDER BY clause
5. Order the result of step 4 on the ORDER BY expressions

6. Compute SELECT clause
5. Project each result tuple from step 5 on the SELECT expressions

■ If the WHERE, SELECT, GROUP BY, HAVING, ORDER BY clauses
have any nested subqueries
● For each tuple t in the result of the FROM clause

4 Substitute the correlated attributes with values from t
4 Evaluate the resulting query
4 Use the result to evaluate the expression in the clause the

subquery occurs in

©Silberschatz, Korth and Sudarshan4.82CS425 – Fall 2016 – Boris Glavic

Query Semantics (Cont.)

■ Equivalent relational algebra expression
● ORDER BY has no equivalent, because relations are unordered
● Nested subqueries: need to extend algebra (not covered here)

■ Each query block is equivalent to

■ Where Fi is the translation of the ith FROM clause item
■ Note: we leave out the arguments

⇡(�(G(⇡(�(F1 ⇥ . . . Fn))))

©Silberschatz, Korth and Sudarshan4.83CS425 – Fall 2016 – Boris Glavic

Modification of the Database

■ Deletion of tuples from a given relation
■ Insertion of new tuples into a given relation
■ Updating values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan4.84CS425 – Fall 2016 – Boris Glavic

Modification of the Database – Deletion

■ Delete all instructors
delete from instructor

■ Delete all instructors from the Finance department
delete from instructor
where dept_name= ’Finance’;

■ Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name

from department
where building = ’Watson’);

15

©Silberschatz, Korth and Sudarshan4.85CS425 – Fall 2016 – Boris Glavic

Deletion (Cont.)

■ Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary < (select avg (salary) from instructor);

● Problem: as we delete tuples from instructor, the average salary
changes

● Solution used in SQL:

1. First, compute avg salary and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan4.86CS425 – Fall 2016 – Boris Glavic

Modification of the Database – Insertion

■ Add a new tuple to course
insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

■ or equivalently
insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

■ Add a new tuple to student with tot_creds set to null
insert into student

values (’3003’, ’Green’, ’Finance’, null);

©Silberschatz, Korth and Sudarshan4.87CS425 – Fall 2016 – Boris Glavic

Insertion (Cont.)

■ Add all instructors to the student relation with tot_creds set to 0
insert into student

select ID, name, dept_name, 0
from instructor

■ The select from where statement is evaluated fully before any of
its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems, if table1 did not have any primary key
defined.

©Silberschatz, Korth and Sudarshan4.88CS425 – Fall 2016 – Boris Glavic

Modification of the Database – Updates

■ Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise
● Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

● The order is important

● Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan4.89CS425 – Fall 2016 – Boris Glavic

Case Statement for Conditional Updates

■ Same query as before but with case statement
update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©Silberschatz, Korth and Sudarshan4.90CS425 – Fall 2016 – Boris Glavic

Updates with Scalar Subqueries

■ Recompute and update tot_creds value for all students
update student S

set tot_cred = (select sum(credits)
from takes natural join course

where S.ID= takes.ID and
takes.grade <> ’F’ and
takes.grade is not null);

■ Sets tot_creds to null for students who have not taken any course
■ Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end
■ Or COALESCE(sum(credits),0)

● COALESCE returns first non-null arguments

16

©Silberschatz, Korth and Sudarshan4.91CS425 – Fall 2016 – Boris Glavic

Recap

■ SQL queries
● Clauses: SELECT, FROM , WHERE, GROUP BY, HAVING,

ORDER BY
● Nested subqueries
● Equivalence with relational algebra

■ SQL update, inserts, deletes
● Semantics of referencing updated relation in WHERE

■ SQL DDL
● Table definition: CREATE TABLE

Modified from:
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

End of Chapter 4

©Silberschatz, Korth and Sudarshan4.93CS425 – Fall 2016 – Boris Glavic

Outline

■ Introduction
■ Relational Data Model
■ Formal Relational Languages (relational algebra)
■ SQL - Intermediate
■ Database Design
■ Transaction Processing, Recovery, and Concurrency Control
■ Storage and File Structures
■ Indexing and Hashing
■ Query Processing and Optimization

©Silberschatz, Korth and Sudarshan4.94CS425 – Fall 2016 – Boris Glavic

Advanced SQL Features**

■ Create a table with the same schema as an existing table:
create table temp_account like account

©Silberschatz, Korth and Sudarshan4.95CS425 – Fall 2016 – Boris Glavic

Figure 3.02

©Silberschatz, Korth and Sudarshan4.96CS425 – Fall 2016 – Boris Glavic

Figure 3.03

17

©Silberschatz, Korth and Sudarshan4.97CS425 – Fall 2016 – Boris Glavic

Figure 3.04

©Silberschatz, Korth and Sudarshan4.98CS425 – Fall 2016 – Boris Glavic

Figure 3.05

©Silberschatz, Korth and Sudarshan4.99CS425 – Fall 2016 – Boris Glavic

Figure 3.07

©Silberschatz, Korth and Sudarshan4.100CS425 – Fall 2016 – Boris Glavic

Figure 3.08

©Silberschatz, Korth and Sudarshan4.101CS425 – Fall 2016 – Boris Glavic

Figure 3.09

©Silberschatz, Korth and Sudarshan4.102CS425 – Fall 2016 – Boris Glavic

Figure 3.10

18

©Silberschatz, Korth and Sudarshan4.103CS425 – Fall 2016 – Boris Glavic

Figure 3.11

©Silberschatz, Korth and Sudarshan4.104CS425 – Fall 2016 – Boris Glavic

Figure 3.12

©Silberschatz, Korth and Sudarshan4.105CS425 – Fall 2016 – Boris Glavic

Figure 3.13

©Silberschatz, Korth and Sudarshan4.106CS425 – Fall 2016 – Boris Glavic

Figure 3.16

©Silberschatz, Korth and Sudarshan4.107CS425 – Fall 2016 – Boris Glavic

Figure 3.17

