
modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

CS425 – Fall 2013  
Boris Glavic  

Chapter 8: Relational Database Design!

©Silberschatz, Korth and Sudarshan!8.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 8: Relational Database Design!

■  Features of Good Relational Design!
■  Atomic Domains and First Normal Form!
■  Decomposition Using Functional Dependencies!
■  Functional Dependency Theory!
■  Algorithms for Functional Dependencies!
■  Decomposition Using Multivalued Dependencies !
■  More Normal Form!
■  Database-Design Process!
■  Modeling Temporal Data!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

What is Good Design? 
1) Easier: What is Bad Design?!

©Silberschatz, Korth and Sudarshan!8.4!CS425 – Fall 2013 – Boris Glavic!

Combine Schemas?!

■  Suppose we combine instructor and department into inst_dept!
●  (No connection to relationship set inst_dept)!

■  Result is possible repetition of information!

©Silberschatz, Korth and Sudarshan!8.5!CS425 – Fall 2013 – Boris Glavic!

Redundancy is Bad!!

■  Update Physics Department!
●  multiple tuples to update!
●  Efficiency + potential for errors!

■  Delete Physics Department !
●  update multiple tuples!
●  Efficiency + potential for errors!

■  Departments without instructor or instructors without departments!
●  Need dummy department and dummy instructor!
●  Makes aggregation harder and error prone. !

©Silberschatz, Korth and Sudarshan!8.6!CS425 – Fall 2013 – Boris Glavic!

A Combined Schema Without Repetition!

■  Combining is not always bad!!
■  Consider combining relations !

●  sec_class(sec_id, building, room_number) and !
●  section(course_id, sec_id, semester, year) !
into one relation!
●  section(course_id, sec_id, semester, year,  

 building, room_number)!
■  No repetition in this case!

©Silberschatz, Korth and Sudarshan!8.7!CS425 – Fall 2013 – Boris Glavic!

What About Smaller Schemas?!

■  Suppose we had started with inst_dept. How would we know to split up
(decompose) it into instructor and department?!

■  Write a rule “if there were a schema (dept_name, building, budget), then
dept_name would be a candidate key”!

■  Denote as a functional dependency: !
! !dept_name → building, budget!

■  In inst_dept, because dept_name is not a candidate key, the building
and budget of a department may have to be repeated. !
●  This indicates the need to decompose inst_dept!

■  Not all decompositions are good. Suppose we decompose  
 employee(ID, name, street, city, salary) into!
!employee1 (ID, name)!
!employee2 (name, street, city, salary)!

■  The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.!
!
!

©Silberschatz, Korth and Sudarshan!8.8!CS425 – Fall 2013 – Boris Glavic!

A Lossy Decomposition!

©Silberschatz, Korth and Sudarshan!8.9!CS425 – Fall 2013 – Boris Glavic!

Example of Lossless-Join Decomposition !

■  Lossless join decomposition!
■  Decomposition of R = (A, B, C) 

!R1 = (A, B) !R2 = (B, C)!

A! B!

α!
β!

1!
2!

A!

α!
β!

B!

1!
2!

r! ∏B,C(r)!

∏A,B (r) ∏B,C (r) A! B!

α!
β!

1!
2!

C!

A!
B!

B!

1!
2!

C!

A!
B!

C!

A!
B!

∏A,B(r)!

©Silberschatz, Korth and Sudarshan!8.10!CS425 – Fall 2013 – Boris Glavic!

Goals of Lossless-Join Decomposition !

■  Lossless-Join decomposition means splitting a table in a way so
that we do not loose information!
●  That means we should be able to reconstruct the original

table from the decomposed table using joins!

A! B!

α!
β!

1!
2!

A!

α!
β!

B!

1!
2!

r! ∏B,C(r)!

∏A (r) ∏B (r) A! B!

α!
β!

1!
2!

C!

A!
B!

B!

1!
2!

C!

A!
B!

C!

A!
B!

∏A,B(r)!

©Silberschatz, Korth and Sudarshan!8.11!CS425 – Fall 2013 – Boris Glavic!

Goal — Devise a Theory for the Following!

■  Decide whether a particular relation R is in “good” form.!
■  In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that !
●  each relation is in good form !
●  the decomposition is a lossless-join decomposition!

■  Our theory is based on:!
●  1) Models of dependency between attribute values!

!  functional dependencies!
! multivalued dependencies!

●  2) Concept of lossless decomposition!
●  3) Normal Forms Based On!

! Atomicity of values!
! Avoidance of redundancy!
! Lossless decomposition!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Modeling Dependencies between
Attribute Values: 

Functional Depedencies 
Multivalued Depedencies!

©Silberschatz, Korth and Sudarshan!8.13!CS425 – Fall 2013 – Boris Glavic!

Functional Dependencies!

■  Constraints on the set of legal instances for a relation schema.!
■  Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.!
■  A functional dependency is a generalization of the notion of a key.!

●  Thus, every key is a functional dependency!

©Silberschatz, Korth and Sudarshan!8.14!CS425 – Fall 2013 – Boris Glavic!

Functional Dependencies (Cont.)!

■  Let R be a relation schema!
! !α ⊆ R and β ⊆ R!

■  The functional dependency!
! ! α → β 
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is, !
! ! t1[α] = t2 [α] ⇒ t1[β] = t2 [β] !

■  Example: Consider r(A,B) with the following instance of r.!

■  On this instance, A → B does NOT hold, but B → A does hold. !

1  4!
1 5!
3 7!

©Silberschatz, Korth and Sudarshan!8.15!CS425 – Fall 2013 – Boris Glavic!

Functional Dependencies (Cont.)!

■  Let R be a relation schema!
! !α ⊆ R and β ⊆ R!

■  The functional dependency!
! ! α → β 
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is, !
! ! t1[α] = t2 [α] ⇒ t1[β] = t2 [β] !

■  Example: Consider r(A,B) with the following instance of r.!

■  On this instance, A → B does NOT hold, but B → A does hold. !

1  4!
1 5!
3 7!

A = 1 and B = 4!
A = 1 and B = 5!

©Silberschatz, Korth and Sudarshan!8.16!CS425 – Fall 2013 – Boris Glavic!

Functional Dependencies (Cont.)!

■  K is a superkey for relation schema R if and only if K → R!
■  K is a candidate key for R if and only if !

●  K → R, and!
●  for no α ⊂ K, α → R!

■  Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:!
! inst_dept (ID, name, salary, dept_name, building, budget).!
!We expect these functional dependencies to hold:!
! ! !dept_name→ building!

 and ID à building!
!but would not expect the following to hold: !
! ! !dept_name → salary!

!

©Silberschatz, Korth and Sudarshan!8.17!CS425 – Fall 2013 – Boris Glavic!

Use of Functional Dependencies!

■  We use functional dependencies to:!
●  test relations to see if they are legal under a given set of functional

dependencies. !
!  If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.!
●  specify constraints on the set of legal relations!

! We say that F holds on R if all legal relations on R satisfy the set
of functional dependencies F.!

■  Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances. !
●  For example, a specific instance of instructor may, by chance, satisfy  

 name → ID.!

©Silberschatz, Korth and Sudarshan!8.18!CS425 – Fall 2013 – Boris Glavic!

Functional Dependencies (Cont.)!

■  A functional dependency is trivial if it is satisfied by all instances of a
relation!
●  Example:!

!  ID, name → ID!
!  name → name!

●  In general, α → β is trivial if β ⊆ α  
 !

©Silberschatz, Korth and Sudarshan!8.19!CS425 – Fall 2013 – Boris Glavic!

Closure of a Set of Functional
Dependencies!

■  Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.!
●  For example: If A → B and B → C, then we can infer that A →

C!
■  The set of all functional dependencies logically implied by F is the

closure of F.!
■  We denote the closure of F by F+.!
■  F+ is a superset of F.!

©Silberschatz, Korth and Sudarshan!8.20!CS425 – Fall 2013 – Boris Glavic!

Functional-Dependency Theory!

■  We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.!

■  How do we get the initial set of FDs?!
●  Semantics of the domain we are modelling!
●  Has to be provided by a human (the designer)!

■  Example:!
●  Relation Citizen(SSN, FirstName, LastName, Address)!
●  We know that SSN is unique and a person has a a unique SSN!
●  Thus, SSN → FirstName, LastName!

©Silberschatz, Korth and Sudarshan!8.21!CS425 – Fall 2013 – Boris Glavic!

Closure of a Set of Functional
Dependencies!

■  We can find F+, the closure of F, by repeatedly applying  
Armstrong’s Axioms:!
●  if β ⊆ α, then α → β (reflexivity)!
●  if α → β, then γ α → γ β (augmentation)!
●  if α → β, and β → γ, then α → γ (transitivity)!

■  These rules are !
●  sound (generate only functional dependencies that actually hold),

and !
●  complete (generate all functional dependencies that hold).!

©Silberschatz, Korth and Sudarshan!8.22!CS425 – Fall 2013 – Boris Glavic!

Example!
■  R = (A, B, C, G, H, I) 

F = { A → B 
! A → C  
!CG → H  
!CG → I 
! B → H}!

■  some members of F+!
●  A → H !

! by transitivity from A → B and B → H!
●  AG → I !

! by augmenting A → C with G, to get AG → CG  
 and then transitivity with CG → I !

●  CG → HI !
! by augmenting CG → I to infer CG → CGI, !
 and augmenting of CG → H to infer CGI → HI, !
 and then transitivity!

©Silberschatz, Korth and Sudarshan!8.23!CS425 – Fall 2013 – Boris Glavic!

Prove Additional Implications!

■  Prove or disprove the following rules from Amstrong’s axioms!
●  1) A → B, C implies A → B and A → C !
●  2) A → B and A → C implies A → B, C!
●  3) A, B → B, C implies A → C !!
●  4) A → B and C → D implies A, C → B, D!

©Silberschatz, Korth and Sudarshan!8.24!CS425 – Fall 2013 – Boris Glavic!

Procedure for Computing F+!

■  To compute the closure of a set of functional dependencies F: 
!

 F + = F 
repeat 

!for each functional dependency f in F+ 

! apply reflexivity and augmentation rules on f 
! add the resulting functional dependencies to F + 
!for each pair of functional dependencies f1and f2 in F + 
! if f1 and f2 can be combined using transitivity 
! ! then add the resulting functional dependency to F + 

until F + does not change any further!
!
 NOTE: We shall see an alternative more efficient procedure for this task

later!
!

©Silberschatz, Korth and Sudarshan!8.25!CS425 – Fall 2013 – Boris Glavic!

Closure of Functional Dependencies
(Cont.)!

■  Additional rules:!
●  If α → β holds and α → γ holds, then α → β γ holds (union)!
●  If α → β γ holds, then α → β holds and α → γ holds

(decomposition)!
●  If α → β holds and γ β → δ holds, then α γ → δ holds

(pseudotransitivity)!
The above rules can be inferred from Armstrong’s axioms.!

©Silberschatz, Korth and Sudarshan!8.26!CS425 – Fall 2013 – Boris Glavic!

Closure of Attribute Sets!

■  Given a set of attributes α, define the closure of α under F (denoted
by α+) as the set of attributes that are functionally determined by α
under F!

■  Algorithm to compute α+, the closure of α under F 
!

 !result := α; 
!while (changes to result) do 
! !for each β → γ in F do 
! ! !begin 
! ! ! !if β ⊆ result then result := result ∪ γ  
! ! !end!

!

!

©Silberschatz, Korth and Sudarshan!8.27!CS425 – Fall 2013 – Boris Glavic!

Example of Attribute Set Closure!
■  R = (A, B, C, G, H, I)!
■  F = {A → B 

!A → C  
!CG → H  
!CG → I 
!B → H}!

■  (AG)+!
1. !result = AG!
2. !result = ABCG !(A → C and A → B)!
3. !result = ABCGH !(CG → H and CG ⊆ AGBC)!
4. !result = ABCGHI !(CG → I and CG ⊆ AGBCH)!

■  Is AG a candidate key? !
1.  Is AG a super key?!

1.  Does AG → R? == Is (AG)+ ⊆ R!
2.  Is any subset of AG a superkey?!

1.  Does A → R? == Is (A)+ ⊆ R!
2.  Does G → R? == Is (G)+ ⊆ R!

©Silberschatz, Korth and Sudarshan!8.28!CS425 – Fall 2013 – Boris Glavic!

Uses of Attribute Closure!
There are several uses of the attribute closure algorithm:!
■  Testing for superkey:!

●  To test if α is a superkey, we compute α+, and check if α+ contains
all attributes of R.!

■  Testing functional dependencies!
●  To check if a functional dependency α → β holds (or, in other

words, is in F+), just check if β ⊆ α+. !
●  That is, we compute α+ by using attribute closure, and then check

if it contains β. !
●  Is a simple and cheap test, and very useful!

■  Computing closure of F!
●  For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ+, we

output a functional dependency γ → S.!

©Silberschatz, Korth and Sudarshan!8.29!CS425 – Fall 2013 – Boris Glavic!

O(n) Algorithm for Attribute Closure!
■  Data Structures!

●  Enumerate the FDs and attributes!
●  int[] c: an integer array with one element per FD that is initialized

to the size of the LHS of the FD!
●  list<int>[] rhs: an array of lists with one element per FD. The

element stores the numeric ID of the attributes of the FDs RHS!
●  list<int>[] lhs: an array of lists of integers, one element per

attribute. The element for each attribute stores the numeric IDs of
the FDs that have the attribute in its LHS!

●  set<int> aplus: a set storing the attributes currently established to
be implied by A!

●  stack<int> todo: a stack of attributes to be processed next!
!

©Silberschatz, Korth and Sudarshan!8.30!CS425 – Fall 2013 – Boris Glavic!

O(n) Algorithm for Attribute Closure!
■  Algorithm!

●  Initialize c, rhs, lhs, aplus to the emptyset, todo to A!
while(!todo.isEmpty) { !

"curA = todo.pop(); !
"aplus.add(curA); "// add curA to result !
"for fd in lhs[curA] { // update how many attribute found for LHS!
" c[fd]--; " "// found a LHS attr for fd!
" if (c[fd] == 0) { !
" "remove(lhs[curA], fd); // avoid firing twice !
" "for newA in rhs[fd] { // add implied attributes!
" " if (!aplus[newA]) // if attribute is new add to todo!
" " "todo.push(newA); !
" " aplus.add(newA); !
" "} !

 } !
"} !

} !

©Silberschatz, Korth and Sudarshan!8.31!CS425 – Fall 2013 – Boris Glavic!

Canonical Cover!

■  Sets of functional dependencies may have redundant dependencies
that can be inferred from the others!
●  For example: A → C is redundant in: {A → B, B → C, A → C}!
●  Parts of a functional dependency may be redundant!

! E.g.: on RHS: {A → B, B → C, A → CD} can be simplified
to  
 {A → B, B → C, A → D} !

! E.g.: on LHS: {A → B, B → C, AC → D} can be simplified
to  
 {A → B, B → C, A → D} !

■  Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies or
redundant parts of dependencies !

©Silberschatz, Korth and Sudarshan!8.32!CS425 – Fall 2013 – Boris Glavic!

Extraneous Attributes!

■  Consider a set F of functional dependencies and the functional
dependency α → β in F.!
●  Attribute A is extraneous in α if A ∈ α  

 and F logically implies (F – {α → β}) ∪ {(α – A) → β}.!
●  Attribute A is extraneous in β if A ∈ β  

 and the set of functional dependencies  
 (F – {α → β}) ∪ {α →(β – A)} logically implies F.!

■  Note: implication in the opposite direction is trivial in each of the
cases above, since a “stronger” functional dependency always
implies a weaker one!

■  Example: Given F = {A → C, AB → C }!
●  B is extraneous in AB → C because {A → C, AB → C} logically

implies A → C (I.e. the result of dropping B from AB → C).!
■  Example: Given F = {A → C, AB → CD}!

●  C is extraneous in AB → CD since AB → C can be inferred even
after deleting C!

©Silberschatz, Korth and Sudarshan!8.33!CS425 – Fall 2013 – Boris Glavic!

Testing if an Attribute is Extraneous!

■  Consider a set F of functional dependencies and the functional
dependency α → β in F.!

■  To test if attribute A ∈ α is extraneous in α !
1.  compute ({α} – A)+ using the dependencies in F !
2.  check that ({α} – A)+ contains β; if it does, A is extraneous in α !

■  To test if attribute A ∈ β is extraneous in β !
1.  compute α+ using only the dependencies in  

 F’ = (F – {α → β}) ∪ {α →(β – A)}, !
2.  check that α+ contains A; if it does, A is extraneous in β !

©Silberschatz, Korth and Sudarshan!8.34!CS425 – Fall 2013 – Boris Glavic!

Canonical Cover!

■  A canonical cover for F is a set of dependencies Fc such that !
●  F logically implies all dependencies in Fc, and !
●  Fc logically implies all dependencies in F, and!
●  No functional dependency in Fc contains an extraneous attribute, and!
●  Each left side of functional dependency in Fc is unique.!

■  To compute a canonical cover for F: 
repeat 

!Use the union rule to replace any dependencies in F 
! ! α1 → β1 and α1 → β2 with α1 → β1 β2  
!Find a functional dependency α → β with an  
! !extraneous attribute either in α or in β  

 /* Note: test for extraneous attributes done using Fc, not F*/ 
 !If an extraneous attribute is found, delete it from α → β  
until F does not change!

■  Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied!

©Silberschatz, Korth and Sudarshan!8.35!CS425 – Fall 2013 – Boris Glavic!

Computing a Canonical Cover!
■  R = (A, B, C) 

F = {A → BC  
! B → C  
! A → B 
!AB → C}!

■  Combine A → BC and A → B into A → BC!
●  Set is now {A → BC, B → C, AB → C}!

■  A is extraneous in AB → C!
●  Check if the result of deleting A from AB → C is implied by the other

dependencies!
!  Yes: in fact, B → C is already present!!

●  Set is now {A → BC, B → C}!
■  C is extraneous in A → BC !

●  Check if A → C is logically implied by A → B and the other dependencies!
!  Yes: using transitivity on A → B and B → C. !

–  Can use attribute closure of A in more complex cases!
■  The canonical cover is: !A → B 

! !B → C!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Lossless Join-Decomposition 
Dependency Preservation!

©Silberschatz, Korth and Sudarshan!8.37!CS425 – Fall 2013 – Boris Glavic!

So Far!

■  Theory of dependencies!
■  What is missing?!

●  When is a decomposition loss-less!
! Lossless-join decomposition!
! Dependencies on the input are preserved!

■  What else is missing?!
●  Define what constitutes a good relation!

! Normal forms!
●  How to check for a good relation!

! Test normal forms!
●  How to achieve a good relation!

! Translate into normal form!
!  Involves decomposition!

©Silberschatz, Korth and Sudarshan!8.38!CS425 – Fall 2013 – Boris Glavic!

Lossless-join Decomposition!

■  For the case of R = (R1, R2), we require that for all possible relation
instances r on schema R!
! !r = ∏R1 (r) ∏R2 (r) !

■  A decomposition of R into R1 and R2 is lossless join if at least one of
the following dependencies is in F+:!
●  R1 ∩ R2 → R1!

●  R1 ∩ R2 → R2!
■  The above functional dependencies are a sufficient condition for

lossless join decomposition; the dependencies are a necessary
condition only if all constraints are functional dependencies!

©Silberschatz, Korth and Sudarshan!8.39!CS425 – Fall 2013 – Boris Glavic!

Example!

■  R = (A, B, C) 
F = {A → B, B → C)!
●  Can be decomposed in two different ways!

■  R1 = (A, B), R2 = (B, C)!
●  Lossless-join decomposition:!
! ! R1 ∩ R2 = {B} and B → BC!

●  Dependency preserving!
■  R1 = (A, B), R2 = (A, C)!

●  Lossless-join decomposition:!
! ! R1 ∩ R2 = {A} and A → AB!

●  Not dependency preserving  
(cannot check B → C without computing R1 R2)!

©Silberschatz, Korth and Sudarshan!8.40!CS425 – Fall 2013 – Boris Glavic!

Dependency Preservation!

■  Let Fi be the set of dependencies F + that include only attributes in
Ri. !

!  A decomposition is dependency preserving, if!
 (F1 ∪ F2 ∪ … ∪ Fn)+ = F +!

!  If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is
expensive.!

©Silberschatz, Korth and Sudarshan!8.41!CS425 – Fall 2013 – Boris Glavic!

Testing for Dependency Preservation!

■  To check if a dependency α → β is preserved in a decomposition
of R into R1, R2, …, Rn we apply the following test (with attribute
closure done with respect to F)!
●  result = α 

while (changes to result) do  
!for each Ri in the decomposition  
! !t = (result ∩ Ri)+ ∩ Ri  
! !result = result ∪ t!

●  If result contains all attributes in β, then the functional
dependency  
α → β is preserved.!

■  We apply the test on all dependencies in F to check if a
decomposition is dependency preserving!

■  This procedure (attribute closure) takes polynomial time, instead of
the exponential time required to compute F+ and (F1 ∪ F2 ∪ … ∪
Fn)+ !

©Silberschatz, Korth and Sudarshan!8.42!CS425 – Fall 2013 – Boris Glavic!

Example!

■  R = (A, B, C)  
F = {A → B 

! B → C} 
Key = {A}!

■  Decomposition R1 = (A, B), R2 = (B, C)!
●  Lossless-join decomposition!
●  Dependency preserving!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Normal Forms!

©Silberschatz, Korth and Sudarshan!8.44!CS425 – Fall 2013 – Boris Glavic!

So Far!

■  Theory of dependencies!
■  Decompositions and ways to check whether they are “good”!

●  Lossless!
●  Dependency preserving!

■  What is missing?!
●  Define what constitutes a good relation!

! Normal forms!
●  How to check for a good relation!

! Test normal forms!
●  How to achieve a good relation!

! Translate into normal form!
!  Involves decomposition!

©Silberschatz, Korth and Sudarshan!8.45!CS425 – Fall 2013 – Boris Glavic!

Goals of Normalization!

■  Let R be a relation scheme with a set F of functional dependencies.!
■  Decide whether a relation scheme R is in “good” form.!
■  In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn} such that !
●  each relation scheme is in good form !
●  the decomposition is a lossless-join decomposition!
●  Preferably, the decomposition should be dependency preserving.!

©Silberschatz, Korth and Sudarshan!8.46!CS425 – Fall 2013 – Boris Glavic!

First Normal Form!

■  A domain is atomic if its elements are considered to be indivisible units!
●  Examples of non-atomic domains:!

! Set of names, composite attributes!
!  Identification numbers like CS101 that can be broken up into

parts!
■  A relational schema R is in first normal form if the domains of all

attributes of R are atomic!
■  Non-atomic values complicate storage and encourage redundant

(repeated) storage of data!
●  Example: Set of accounts stored with each customer, and set of

owners stored with each account!
●  We assume all relations are in first normal form!
●  (revisited in Chapter 22 of the textbook: Object Based Databases)!

©Silberschatz, Korth and Sudarshan!8.47!CS425 – Fall 2013 – Boris Glavic!

First Normal Form (Cont’d)!

■  Atomicity is actually a property of how the elements of the domain are
used.!
●  Example: Strings would normally be considered indivisible !
●  Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127!
●  If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.!
●  Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.!

©Silberschatz, Korth and Sudarshan!8.48!CS425 – Fall 2013 – Boris Glavic!

Second Normal Form!

■  A relation schema R in 1NF is in second normal form (2NF) iff 
!
●  No non-prime attribute depends on parts of a candidate key!
●  An attribute is non-prime if it does not belong to any candidate key for

R!

©Silberschatz, Korth and Sudarshan!8.49!CS425 – Fall 2013 – Boris Glavic!

Second Normal Form Example!

■  R(A,B,C,D)!
●  A,B → C,D!
●  A → C!
●  B → D!

■  {A,B} is the only candidate key!
■  R is not in 2NF, because A->C where A is part of a candidate key and C

is not part of a candidate key!

■  Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID, InstrName,
StudentName)!
●  Indication that we are putting stuff together that does not belong

together!

©Silberschatz, Korth and Sudarshan!8.50!CS425 – Fall 2013 – Boris Glavic!

Second Normal Form Interpretation!

■  Why is a dependency on parts of a candidate key bad?!
●  That is why is a relation that is not in 2NF bad?!

■  1) A dependency on part of a candidate key indicates potential for
redudancy!
●  Advisor(InstrSSN, StudentCWID, InstrName, StudentName)!
●  StudentCWID → StudentName!
●  If a student is advised by multiple instructors we record his name

several times!
■  2) A dependency on parts of a candidate key shows that some

attributes are unrelated to other parts of a candidate key!
●  That means the table should be split!

©Silberschatz, Korth and Sudarshan!8.51!CS425 – Fall 2013 – Boris Glavic!

2NF is What We Want?!

■  Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)!
●  A → B,C,D!
●  C → D!

■  {Name} is the only candidate key!
■  I is in 2NF!
■  However, as we have seen before I still has update redundancy that can

cause update anomalies !
●  We repeat the budget of a department if there is more than one

instructor working for that department!

©Silberschatz, Korth and Sudarshan!8.52!CS425 – Fall 2013 – Boris Glavic!

Third Normal Form!

■  A relation schema R is in third normal form (3NF) if for all:!
! !α → β in F+ 
at least one of the following holds:!
●  α → β is trivial (i.e., β ∈ α)!
●  α is a superkey for R!
●  Each attribute A in β – α is contained in a candidate key for R.!
 (NOTE: each attribute may be in a different candidate key)!
!
Alternatively,!
●  Every attribute depends directly on a candidate key, i.e., for every

attribute A there is a dependency X → A, but no dependency Y → A
where Y is not a candidate key!

©Silberschatz, Korth and Sudarshan!8.53!CS425 – Fall 2013 – Boris Glavic!

3NF Example!

■  Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)!
●  A → B,C,D!
●  C → D!

■  {Name} is the only candidate key!
■  I is in 2NF!
■  I is not in 3NF!
!

©Silberschatz, Korth and Sudarshan!8.54!CS425 – Fall 2013 – Boris Glavic!

Testing for 3NF!

■  Optimization: Need to check only FDs in F, need not check all FDs in
F+.!

■  Use attribute closure to check for each dependency α → β, if α is a
superkey.!

■  If α is not a superkey, we have to verify if each attribute in β is
contained in a candidate key of R!
●  this test is rather more expensive, since it involve finding

candidate keys!
●  testing for 3NF has been shown to be NP-hard!
●  Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time !

©Silberschatz, Korth and Sudarshan!8.55!CS425 – Fall 2013 – Boris Glavic!

3NF Decomposition Algorithm!

!Let Fc be a canonical cover for F; 
i := 0; 
for each functional dependency α → β in Fc do 
!if none of the schemas Rj, 1 ≤ j ≤ i contains α β  
! !then begin 
! ! ! !i := i + 1;  
! ! ! !Ri := α β  
! ! !end  
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R  
!then begin 
! ! !i := i + 1; 
! ! !Ri := any candidate key for R;  
! !end  
/* Optionally, remove redundant relations */!

 repeat 
if any schema Rj is contained in another schema Rk 
 then /* delete Rj */  
 Rj = R;; 
 i=i-1;  
return (R1, R2, ..., Ri) ! ! !

©Silberschatz, Korth and Sudarshan!8.56!CS425 – Fall 2013 – Boris Glavic!

3NF Decomposition Algorithm (Cont.)!

■  Above algorithm ensures:!
●  each relation schema Ri is in 3NF!
●  decomposition is dependency preserving and lossless-join!
●  Proof of correctness is at end of this presentation (click here)!

©Silberschatz, Korth and Sudarshan!8.57!CS425 – Fall 2013 – Boris Glavic!

3NF Decomposition: An Example!

■  Relation schema:!
cust_banker_branch = (customer_id, employee_id, branch_name, type)!

■  The functional dependencies for this relation schema are:!
1.  customer_id, employee_id → branch_name, type!
2.  employee_id → branch_name!
3.  customer_id, branch_name → employee_id!

■  We first compute a canonical cover!
●  branch_name is extraneous in the r.h.s. of the 1st dependency!
●  No other attribute is extraneous, so we get FC =!
 customer_id, employee_id → type  

! employee_id → branch_name  
 customer_id, branch_name → employee_id!

!

©Silberschatz, Korth and Sudarshan!8.58!CS425 – Fall 2013 – Boris Glavic!

3NF Decompsition Example (Cont.)!
■  The for loop generates following 3NF schema:!
! (customer_id, employee_id, type)!

 (employee_id, branch_name)!
 (customer_id, branch_name, employee_id)!

●  Observe that (customer_id, employee_id, type) contains a
candidate key of the original schema, so no further relation schema
needs be added!

■  At end of for loop, detect and delete schemas, such as (employee_id,
branch_name), which are subsets of other schemas!
●  result will not depend on the order in which FDs are considered!

■  The resultant simplified 3NF schema is:!
 ! ! (customer_id, employee_id, type)!
 (customer_id, branch_name, employee_id)!

©Silberschatz, Korth and Sudarshan!8.59!CS425 – Fall 2013 – Boris Glavic!

Another 3NF Example!

■  Relation dept_advisor:!
●  dept_advisor (s_ID, i_ID, dept_name) 

F = {s_ID, dept_name → i_ID, !
 i_ID → dept_name}!

●  Two candidate keys: s_ID, dept_name, and i_ID, s_ID!
●  R is in 3NF!

! s_ID, dept_name → i_ID s_ID!
–  dept_name is a superkey!

!  i_ID → dept_name !!
–  dept_name is contained in a candidate key!

!

©Silberschatz, Korth and Sudarshan!8.60!CS425 – Fall 2013 – Boris Glavic!

Redundancy in 3NF!

J!
j1!!
j2!
!j3!!

null!

L!
l1!
!l1!
!l1!!
l2!

K!
k1!
!k1!
!k1!!
k2!

■  repetition of information (e.g., the relationship l1, k1) !
l  (i_ID, dept_name)!

■  need to use null values (e.g., to represent the relationship  
 l2, k2 where there is no corresponding value for J).!
l  (i_ID, dept_nameI) if there is no separate relation mapping

instructors to departments!

■  There is some redundancy in this schema dept_advisor (s_ID, i_ID,
dept_name)!

■  Example of problems due to redundancy in 3NF!
●  R = (J, K, L) 

F = {JK → L, L → K }!

©Silberschatz, Korth and Sudarshan!8.61!CS425 – Fall 2013 – Boris Glavic!

Boyce-Codd Normal Form!

■  α → β is trivial (i.e., β ⊆ α)!
■  α is a superkey for R!

A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F+ of
the form !
!
 α→ β!
!
where α ⊆ R and β ⊆ R, at least one of the following holds:!

Example schema not in BCNF:!
!
 instr_dept (ID, name, salary, dept_name, building, budget)!
!
because dept_name→ building, budget!
holds on instr_dept, but dept_name is not a superkey!

©Silberschatz, Korth and Sudarshan!8.62!CS425 – Fall 2013 – Boris Glavic!

BCNF and Dependency Preservation!

■  If a relation is in BCNF it is in 3NF!
■  Constraints, including functional dependencies, are costly to check in

practice unless they pertain to only one relation!
■  Because it is not always possible to achieve both BCNF and

dependency preservation, we usually consider normally third normal
form.!

©Silberschatz, Korth and Sudarshan!8.63!CS425 – Fall 2013 – Boris Glavic!

Testing for BCNF!

■  To check if a non-trivial dependency α→β causes a violation of BCNF!
1. compute α+ (the attribute closure of α), and !
2. verify that it includes all attributes of R, that is, it is a superkey of R.!

■  Simplified test: To check if a relation schema R is in BCNF, it suffices
to check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.!
●  If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF
either.!

■  However, simplified test using only F is incorrect when testing a
relation in a decomposition of R!
●  Consider R = (A, B, C, D, E), with F = { A → B, BC → D}!

! Decompose R into R1 = (A,B) and R2 = (A,C,D, E) !
! Neither of the dependencies in F contain only attributes from 

 (A,C,D,E) so we might be mislead into thinking R2 satisfies
BCNF. !

!  In fact, dependency AC → D in F+ shows R2 is not in BCNF. !

©Silberschatz, Korth and Sudarshan!8.64!CS425 – Fall 2013 – Boris Glavic!

Testing Decomposition for BCNF!

■  To check if a relation Ri in a decomposition of R is in BCNF, !
●  Either test Ri for BCNF with respect to the restriction of F to Ri

(that is, all FDs in F+ that contain only attributes from Ri)!
●  or use the original set of dependencies F that hold on R, but with

the following test:!
–  for every set of attributes α ⊆ Ri, check that α+ (the

attribute closure of α) either includes no attribute of Ri- α,
or includes all attributes of Ri.!

!  If the condition is violated by some α→ β in F, the
dependency 
 α→ (α+ - α) ∩ Ri

 

can be shown to hold on Ri, and Ri violates BCNF.!
! We use above dependency to decompose Ri!

©Silberschatz, Korth and Sudarshan!8.65!CS425 – Fall 2013 – Boris Glavic!

Decomposing a Schema into BCNF!

■  Suppose we have a schema R and a non-trivial dependency α→β
causes a violation of BCNF.!
!We decompose R into:!
•  (α U β)!
•  (R - (β - α))!

■  In our example, !
●  α = dept_name!
●  β = building, budget!
and inst_dept is replaced by!
●  (α U β) = (dept_name, building, budget)!
●  (R - (β - α)) = (ID, name, salary, dept_name)!

©Silberschatz, Korth and Sudarshan!8.66!CS425 – Fall 2013 – Boris Glavic!

BCNF Decomposition Algorithm!

!result := {R }; 
done := false; 
compute F +; 
while (not done) do 
!if (there is a schema Ri in result that is not in BCNF) 
! !then begin 
! ! !let α → β be a nontrivial functional dependency that  

 holds on Ri such that α → Ri is not in F +,  
! ! ! ! and α ∩ β = ∅; 
! ! ! result := (result – Ri) ∪ (Ri – β) ∪ (α, β); 
! !end  
! !else done := true; !

!
 Note: each Ri is in BCNF, and decomposition is lossless-join.!

©Silberschatz, Korth and Sudarshan!8.67!CS425 – Fall 2013 – Boris Glavic!

Example of BCNF Decomposition!

■  R = (A, B, C)  
F = {A → B 

! B → C} 
Key = {A}!

■  R is not in BCNF (B → C but B is not superkey)!
■  Decomposition!

●  R1 = (B, C)!
●  R2 = (A,B)!
!

©Silberschatz, Korth and Sudarshan!8.68!CS425 – Fall 2013 – Boris Glavic!

Example of BCNF Decomposition!

■  class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)!

■  Functional dependencies:!
●  course_id→ title, dept_name, credits!
●  building, room_number→capacity!
●  course_id, sec_id, semester, year→building, room_number,

time_slot_id!
■  A candidate key {course_id, sec_id, semester, year}.!
■  BCNF Decomposition:!

●  course_id→ title, dept_name, credits holds!
! but course_id is not a superkey.!

●  We replace class by:!
! course(course_id, title, dept_name, credits)!
! class-1 (course_id, sec_id, semester, year, building,  

 room_number, capacity, time_slot_id)!

©Silberschatz, Korth and Sudarshan!8.69!CS425 – Fall 2013 – Boris Glavic!

BCNF Decomposition (Cont.)!

■  course is in BCNF!
●  How do we know this?!

■  building, room_number→capacity holds on class-1!
●  but {building, room_number} is not a superkey for class-1.!
●  We replace class-1 by:!

! classroom (building, room_number, capacity)!
! section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)!
■  classroom and section are in BCNF.!

©Silberschatz, Korth and Sudarshan!8.70!CS425 – Fall 2013 – Boris Glavic!

BCNF and Dependency Preservation!

■  R = (J, K, L)  
F = {JK → L  

! L → K } 
Two candidate keys = JK and JL!

■  R is not in BCNF!
■  Any decomposition of R will fail to preserve!
! ! !JK → L!

 This implies that testing for JK → L requires a join!

It is not always possible to get a BCNF decomposition that is !
dependency preserving!

©Silberschatz, Korth and Sudarshan!8.71!CS425 – Fall 2013 – Boris Glavic!

How good is BCNF?!
■  There are database schemas in BCNF that do not seem to be

sufficiently normalized !
■  Consider a relation !
! !inst_info (ID, child_name, phone)!
●  where an instructor may have more than one phone and can have

multiple children!
!
! ID! child_name! phone!

99999!
99999!
99999!
99999!

David!
David!
William!
Willian!

512-555-1234!
512-555-4321!
512-555-1234!
512-555-4321!

!

inst_info!

©Silberschatz, Korth and Sudarshan!8.72!CS425 – Fall 2013 – Boris Glavic!

■  There are no non-trivial functional dependencies and therefore the
relation is in BCNF !

■  Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999,
we need to add two tuples!
! !(99999, David, 981-992-3443) 

!(99999, William, 981-992-3443) 
!

How good is BCNF? (Cont.)!

©Silberschatz, Korth and Sudarshan!8.73!CS425 – Fall 2013 – Boris Glavic!

■  Therefore, it is better to decompose inst_info into:!

This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.!

How good is BCNF? (Cont.)!

ID! child_name!

99999!
99999!
99999!
99999!

David!
David!
William!
Willian!

inst_child!

ID! phone!

99999!
99999!
99999!
99999!

512-555-1234!
512-555-4321!
512-555-1234!
512-555-4321!

!

inst_phone!

©Silberschatz, Korth and Sudarshan!8.74!CS425 – Fall 2013 – Boris Glavic!

Comparison of BCNF and 3NF!

■  It is always possible to decompose a relation into a set of relations
that are in 3NF such that:!
●  the decomposition is lossless!
●  the dependencies are preserved!

■  It is always possible to decompose a relation into a set of relations
that are in BCNF such that:!
●  the decomposition is lossless!
●  it may not be possible to preserve dependencies.!

©Silberschatz, Korth and Sudarshan!8.75!CS425 – Fall 2013 – Boris Glavic!

Summary Normal Forms!

■  BCNF -> 3NF -> 2NF -> 1NF!

■  1NF!
●  atomic attributes!

■  2NF!
●  no non-trivial dependencies of non-prime attributes on parts of the

key!
■  3NF!

●  no transitive non-trivial dependencies on the key!
■  BCNF!

●  only non-trivial dependencies on a superkey!

©Silberschatz, Korth and Sudarshan!8.76!CS425 – Fall 2013 – Boris Glavic!

Design Goals Revisited!

■  Goal for a relational database design is:!
●  BCNF.!
●  Lossless join.!
●  Dependency preservation.!

■  If we cannot achieve this, we accept one of!
●  Lack of dependency preservation !
●  Redundancy due to use of 3NF!

■  Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.!
!Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)!

■  Even if we had a dependency preserving decomposition, using SQL we
would not be able to efficiently test a functional dependency whose left
hand side is not a key.!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Multivalued Dependencies and 4NF,
5NF!

©Silberschatz, Korth and Sudarshan!8.78!CS425 – Fall 2013 – Boris Glavic!

Multivalued Dependencies!

■  Suppose we record names of children, and phone numbers for
instructors:!
●  inst_child(ID, child_name)!
●  inst_phone(ID, phone_number)!

■  If we were to combine these schemas to get!
●  inst_info(ID, child_name, phone_number)!
●  Example data: 

(99999, David, 512-555-1234) 
(99999, David, 512-555-4321) 
(99999, William, 512-555-1234) 
(99999, William, 512-555-4321)!

■  This relation is in BCNF!
●  Why?!

©Silberschatz, Korth and Sudarshan!8.79!CS425 – Fall 2013 – Boris Glavic!

Multivalued Dependencies (MVDs)!

■  Let R be a relation schema and let α ⊆ R and β ⊆ R. The
multivalued dependency !
! ! !α →→ β!
!holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2
in r such that t1[α] = t2 [α], there exist tuples t3 and t4 in r such that: !
! ! t1[α] = t2 [α] = t3 [α] = t4 [α]  

! t3[β] = t1 [β]  
! t3[R – β] = t2[R – β]  
! t4 [β] = t2[β]  
! t4[R – β] = t1[R – β]  

!

©Silberschatz, Korth and Sudarshan!8.80!CS425 – Fall 2013 – Boris Glavic!

MVD (Cont.)!

■  Tabular representation of α →→ β!

©Silberschatz, Korth and Sudarshan!8.81!CS425 – Fall 2013 – Boris Glavic!

Example!

■  Let R be a relation schema with a set of attributes that are partitioned
into 3 nonempty subsets.!
! ! !Y, Z, W!

■  We say that Y →→ Z (Y multidetermines Z)  
if and only if for all possible relations r (R)!
! !< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r!
!then!
! !< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r!

■  Note that since the behavior of Z and W are identical it follows that !
!Y →→ Z if Y →→ W !

!

©Silberschatz, Korth and Sudarshan!8.82!CS425 – Fall 2013 – Boris Glavic!

Example (Cont.)!

■  In our example:!
! !ID →→ child_name ! 

!ID →→ phone_number!
■  The above formal definition is supposed to formalize the notion that given

a particular value of Y (ID) it has associated with it a set of values of Z
(child_name) and a set of values of W (phone_number), and these two
sets are in some sense independent of each other.!

■  Note: !
●  If Y → Z then Y →→ Z!
●  Indeed we have (in above notation) Z1 = Z2  

The claim follows.!

©Silberschatz, Korth and Sudarshan!8.83!CS425 – Fall 2013 – Boris Glavic!

Use of Multivalued Dependencies!

■  We use multivalued dependencies in two ways: !
1. !To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies!
2. !To specify constraints on the set of legal relations. We shall

thus concern ourselves only with relations that satisfy a given
set of functional and multivalued dependencies.!

■  If a relation r fails to satisfy a given multivalued dependency, we can
construct a relations rʹ′ that does satisfy the multivalued dependency
by adding tuples to r. !
! !!

©Silberschatz, Korth and Sudarshan!8.84!CS425 – Fall 2013 – Boris Glavic!

Theory of MVDs!

■  From the definition of multivalued dependency, we can derive the
following rule:!
●  If α → β, then α →→ β!

!That is, every functional dependency is also a multivalued dependency!
■  The closure D+ of D is the set of all functional and multivalued

dependencies logically implied by D. !
●  We can compute D+ from D, using the formal definitions of

functional dependencies and multivalued dependencies.!
●  We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice!
●  For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules (see Appendix C).!

©Silberschatz, Korth and Sudarshan!8.85!CS425 – Fall 2013 – Boris Glavic!

Fourth Normal Form!

■  A relation schema R is in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D+ of
the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following
hold:!
●  α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)!
●  α is a superkey for schema R!

■  If a relation is in 4NF it is in BCNF!

©Silberschatz, Korth and Sudarshan!8.86!CS425 – Fall 2013 – Boris Glavic!

Restriction of Multivalued Dependencies!

■  The restriction of D to Ri is the set Di consisting of!
●  All functional dependencies in D+ that include only attributes of Ri!

●  All multivalued dependencies of the form!
 α →→ (β ∩ Ri)!

 where α ⊆ Ri and α →→ β is in D+ !

©Silberschatz, Korth and Sudarshan!8.87!CS425 – Fall 2013 – Boris Glavic!

4NF Decomposition Algorithm!

 result: = {R}; 
done := false; 
compute D+; 
Let Di denote the restriction of D+ to Ri!

 while (not done)  
 if (there is a schema Ri in result that is not in 4NF) then 
 begin!
! ! let α →→ β be a nontrivial multivalued dependency that holds 
 on Ri such that α → Ri is not in Di, and α∩β=φ;  
 result := (result - Ri) ∪ (Ri - β) ∪ (α, β);  
 end  
 else done:= true;!

 Note: each Ri is in 4NF, and decomposition is lossless-join!

©Silberschatz, Korth and Sudarshan!8.88!CS425 – Fall 2013 – Boris Glavic!

Example!

■  R =(A, B, C, G, H, I)!
!F ={ A →→ B!
! !B →→ HI!
! !CG →→ H }!

■  R is not in 4NF since A →→ B and A is not a superkey for R!
■  Decomposition!
!a) R1 = (A, B) ! ! !(R1 is in 4NF)!
!b) R2 = (A, C, G, H, I) ! !(R2 is not in 4NF, decompose into R3 and R4)!
!c) R3 = (C, G, H) ! !(R3 is in 4NF)!
!d) R4 = (A, C, G, I) ! !(R4 is not in 4NF, decompose into R5 and R6)!
●  A →→ B and B →→ HI è A →→ HI, (MVD transitivity), and!
●  and hence A →→ I (MVD restriction to R4)!

!e) R5 = (A, I) ! ! !(R5 is in 4NF)!
!f)R6 = (A, C, G) ! !(R6 is in 4NF)!

©Silberschatz, Korth and Sudarshan!8.89!CS425 – Fall 2013 – Boris Glavic!

Further Normal Forms!

■  Join dependencies generalize multivalued dependencies!
●  lead to project-join normal form (PJNF) (also called fifth normal

form)!
■  A class of even more general constraints, leads to a normal form

called domain-key normal form.!
■  Problem with these generalized constraints: are hard to reason with,

and no set of sound and complete set of inference rules exists.!
■  Hence rarely used!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Final Thoughts on Design Process!

©Silberschatz, Korth and Sudarshan!8.91!CS425 – Fall 2013 – Boris Glavic!

Overall Database Design Process!

■  We have assumed schema R is given!
●  R could have been generated when converting an ER diagram to a

set of tables.!
●  R could have been a single relation containing all attributes that are

of interest (called universal relation).!
●  Normalization breaks R into smaller relations.!
●  R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.!

©Silberschatz, Korth and Sudarshan!8.92!CS425 – Fall 2013 – Boris Glavic!

ER Model and Normalization!

■  When an ER diagram is carefully designed, identifying all entities
correctly, the tables generated from the ER diagram should not need
further normalization.!

■  However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of
the entity!
●  Example: an employee entity with attributes  

 department_name and building,  
and a functional dependency  
 department_name→ building!

●  Good design would have made department an entity!
■  Functional dependencies from non-key attributes of a relationship set

possible, but rare --- most relationships are binary !

©Silberschatz, Korth and Sudarshan!8.93!CS425 – Fall 2013 – Boris Glavic!

Denormalization for Performance!

■  May want to use non-normalized schema for performance!
■  For example, displaying prereqs along with course_id, and title requires

join of course with prereq!
■  Alternative 1: Use denormalized relation containing attributes of course

as well as prereq with all above attributes!
●  faster lookup!
●  extra space and extra execution time for updates!
●  extra coding work for programmer and possibility of error in extra code!

■  Alternative 2: use a materialized view defined as 
 course prereq!
●  Benefits and drawbacks same as above, except no extra coding work

for programmer and avoids possible errors!

©Silberschatz, Korth and Sudarshan!8.94!CS425 – Fall 2013 – Boris Glavic!

Other Design Issues!

■  Some aspects of database design are not caught by normalization!
■  Examples of bad database design, to be avoided: !
!Instead of earnings (company_id, year, amount), use !
●  earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).!
! Above are in BCNF, but make querying across years difficult and

needs new table each year!
●  company_year (company_id, earnings_2004, earnings_2005,  

 earnings_2006)!
! Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.!
!  Is an example of a crosstab, where values for one attribute

become column names!
! Used in spreadsheets, and in data analysis tools!

©Silberschatz, Korth and Sudarshan!8.95!CS425 – Fall 2013 – Boris Glavic!

Recap!

■  Functional and Multi-valued Dependencies!
●  Axioms!
●  Closure!
●  Minimal Cover!
●  Attribute Closure!

■  Redundancy and lossless decomposition!
■  Normal-Forms!

●  1NF, 2NF, 3NF!
●  BCNF!
●  4NF, 5NF!

!!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Proof of Correctness of 3NF
Decomposition Algorithm!

©Silberschatz, Korth and Sudarshan!8.98!CS425 – Fall 2013 – Boris Glavic!

Correctness of 3NF Decomposition
Algorithm!

■  3NF decomposition algorithm is dependency preserving (since there
is a relation for every FD in Fc)!

■  Decomposition is lossless!
●  A candidate key (C) is in one of the relations Ri in decomposition!
●  Closure of candidate key under Fc must contain all attributes in

R. !
●  Follow the steps of attribute closure algorithm to show there is

only one tuple in the join result for each tuple in Ri!

©Silberschatz, Korth and Sudarshan!8.99!CS425 – Fall 2013 – Boris Glavic!

Correctness of 3NF Decomposition
Algorithm (Cont’d.)!

Claim: if a relation Ri is in the decomposition generated by the !
above algorithm, then Ri satisfies 3NF.!
■  Let Ri be generated from the dependency α → β!
■  Let γ → B be any non-trivial functional dependency on Ri. (We need only

consider FDs whose right-hand side is a single attribute.)!
■  Now, B can be in either β or α but not in both. Consider each case

separately.!

©Silberschatz, Korth and Sudarshan!8.100!CS425 – Fall 2013 – Boris Glavic!

Correctness of 3NF Decomposition
(Cont’d.)!

■  Case 1: If B in β:!
●  If γ is a superkey, the 2nd condition of 3NF is satisfied!
●  Otherwise α must contain some attribute not in γ!
●  Since γ → B is in F+ it must be derivable from Fc, by using attribute

closure on γ.!
●  Attribute closure not have used α →β. If it had been used, α must

be contained in the attribute closure of γ, which is not possible, since
we assumed γ is not a superkey.!

●  Now, using α→ (β- {B}) and γ → B, we can derive α →B!
!(since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)!

●  Then, B is extraneous in the right-hand side of α →β; which is not
possible since α →β is in Fc.!

●  Thus, if B is in β then γ must be a superkey, and the second
condition of 3NF must be satisfied.!

©Silberschatz, Korth and Sudarshan!8.101!CS425 – Fall 2013 – Boris Glavic!

Correctness of 3NF Decomposition
(Cont’d.)!

■  Case 2: B is in α.!
●  Since α is a candidate key, the third alternative in the definition of

3NF is trivially satisfied.!
●  In fact, we cannot show that γ is a superkey.!
●  This shows exactly why the third alternative is present in the

definition of 3NF.!
Q.E.D.!

©Silberschatz, Korth and Sudarshan!8.102!CS425 – Fall 2013 – Boris Glavic!

Figure 8.02!

©Silberschatz, Korth and Sudarshan!8.103!CS425 – Fall 2013 – Boris Glavic!

Figure 8.03!

©Silberschatz, Korth and Sudarshan!8.104!CS425 – Fall 2013 – Boris Glavic!

Figure 8.04!

©Silberschatz, Korth and Sudarshan!8.105!CS425 – Fall 2013 – Boris Glavic!

Figure 8.05!

©Silberschatz, Korth and Sudarshan!8.106!CS425 – Fall 2013 – Boris Glavic!

Figure 8.06!

©Silberschatz, Korth and Sudarshan!8.107!CS425 – Fall 2013 – Boris Glavic!

Figure 8.14!

©Silberschatz, Korth and Sudarshan!8.108!CS425 – Fall 2013 – Boris Glavic!

Figure 8.15!

©Silberschatz, Korth and Sudarshan!8.109!CS425 – Fall 2013 – Boris Glavic!

Figure 8.17!

