
modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

CS425 – Fall 2013  
Boris Glavic  

Chapter 5: Intermediate SQL!

©Silberschatz, Korth and Sudarshan!5.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 5: Intermediate SQL!

  Views!
  Transactions!
  Integrity Constraints!
  SQL Data Types and Schemas!
  Access Control!

Textbook: Chapter 4!

©Silberschatz, Korth and Sudarshan!5.3!CS425 – Fall 2013 – Boris Glavic!

Views!

  In some cases, it is not desirable for all users to see the
entire logical model (that is, all the actual relations stored in
the database.)!

  Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by  

! ! 
 select ID, name, dept_name  
 from instructor!

!
  A view provides a mechanism to hide certain data from the

view of certain users. !
  Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.!

©Silberschatz, Korth and Sudarshan!5.4!CS425 – Fall 2013 – Boris Glavic!

View Definition!

  A view is defined using the create view statement which has
the form!

! !create view v as < query expression >!!
!where <query expression> is any legal SQL expression. The
view name is represented by v.!

  Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.!

  View definition is not the same as creating a new relation by
evaluating the query expression !

  Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view.!

©Silberschatz, Korth and Sudarshan!5.5!CS425 – Fall 2013 – Boris Glavic!

Example Views!

  A view of instructors without their salary 
 create view faculty as  
 select ID, name, dept_name  
 from instructor!

  Find all instructors in the Biology department 
 select name  
 from faculty 
 where dept_name = ‘Biology’!

  Create a view of department salary totals 
 create view departments_total_salary(dept_name, total_salary) as  
 select dept_name, sum (salary) 
 from instructor 
 group by dept_name;!

!!

©Silberschatz, Korth and Sudarshan!5.6!CS425 – Fall 2013 – Boris Glavic!

Views Defined Using Other Views!

  create view physics_fall_2009 as  
 select course.course_id, sec_id, building, room_number 
 from course, section  
 where course.course_id = section.course_id  
 and course.dept_name = ’Physics’ 
 and section.semester = ’Fall’ 
 and section.year = ’2009’;!

  create view physics_fall_2009_watson as  
 select course_id, room_number 
 from physics_fall_2009 
 where building= ’Watson’;!

©Silberschatz, Korth and Sudarshan!5.7!CS425 – Fall 2013 – Boris Glavic!

View Expansion!

  Expand use of a view in a query/another view!

create view physics_fall_2009_watson as!
(select course_id, room_number"
from (select course.course_id, building, room_number"
 from course, section"
 where course.course_id = section.course_id"
 and course.dept_name = ’Physics’!
 and section.semester = ’Fall’!
 and section.year = ’2009’)!
where building= ’Watson’;!
!

©Silberschatz, Korth and Sudarshan!5.8!CS425 – Fall 2013 – Boris Glavic!

Views Defined Using Other Views!

  One view may be used in the expression defining another view !
  A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1!
  A view relation v1 is said to depend on view relation v2 if either

v1 depends directly to v2 or there is a path of dependencies
from v1 to v2 !

  A view relation v is said to be recursive if it depends on itself.!

©Silberschatz, Korth and Sudarshan!5.9!CS425 – Fall 2013 – Boris Glavic!

View Expansion!

  A way to define the meaning of views defined in terms of other
views.!

  Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.!

  View expansion of an expression repeats the following
replacement step:!
! !repeat 
! !Find any view relation vi in e1  
! !Replace the view relation vi by the expression defining vi  
!until no more view relations are present in e1!

  As long as the view definitions are not recursive, this loop will
terminate!

©Silberschatz, Korth and Sudarshan!5.10!CS425 – Fall 2013 – Boris Glavic!

Update of a View!

  Add a new tuple to faculty view which we defined earlier!
! !insert into faculty values (’30765’, ’Green’, ’Music’);!
!This insertion must be represented by the insertion of the tuple!
! ! !(’30765’, ’Green’, ’Music’, null)!
!into the instructor relation!

©Silberschatz, Korth and Sudarshan!5.11!CS425 – Fall 2013 – Boris Glavic!

Some Updates cannot be Translated Uniquely!

  create view instructor_info as  
 select ID, name, building  
 from instructor, department 
 where instructor.dept_name= department.dept_name;!

  insert into instructor_info values (’69987’, ’White’, ’Taylor’);!
 which department, if multiple departments in Taylor?!
 what if no department is in Taylor?!

  Most SQL implementations allow updates only on simple views !
  The from clause has only one database relation.!
  The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or
distinct specification.!

  Any attribute not listed in the select clause can be set to null!
  The query does not have a group by or having clause.!

©Silberschatz, Korth and Sudarshan!5.12!CS425 – Fall 2013 – Boris Glavic!

And Some Not at All!

  create view history_instructors as  
 select *  
 from instructor 
 where dept_name= ’History’;!

  What happens if we insert (’25566’, ’Brown’, ’Biology’,
100000) into history_instructors?!

©Silberschatz, Korth and Sudarshan!5.13!CS425 – Fall 2013 – Boris Glavic!

Materialized Views!

  Materializing a view: create a physical table containing all the tuples
in the result of the query defining the view!

  If relations used in the query are updated, the materialized view result
becomes out of date!
  Need to maintain the view, by updating the view whenever the

underlying relations are updated.!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Transactions!

©Silberschatz, Korth and Sudarshan!5.15!CS425 – Fall 2013 – Boris Glavic!

Transactions!

  Unit of work!
  Atomic transaction!

  either fully executed or rolled back as if it never occurred!
  Isolation from concurrent transactions!
  Transactions begin implicitly!

  Ended by commit work or rollback work!
  But default on most databases: each SQL statement commits

automatically!
  Can turn off auto commit for a session (e.g. using API)!
  In SQL:1999, can use: begin atomic …. end!

 Not supported on most databases!

©Silberschatz, Korth and Sudarshan!5.16!CS425 – Fall 2013 – Boris Glavic!

Transactions Example!

  Example Atomicity (all-or-nothing)!
  Recall example from the introduction!
  Relation accounts(accID, cust, type, balance) !
  A user want to transfer $100 from his savings (accID = 100) to his

checking account (accID= 101)!
UPDATE accounts SET balance = balance – 100 WHERE accID = 100;!
UPDATE accounts SET balance = balance + 100 WHERE accID = 101;!
!
  This can cause inconsistencies if the system crashes after the first

update (user would loose money)!
  Using a transaction either both or none of the statements are executed!

BEGIN!
 UPDATE accounts SET balance = balance – 100 WHERE accID = 100;!
 UPDATE accounts SET balance = balance + 100 WHERE accID = 101;!
COMMIT!
 !

©Silberschatz, Korth and Sudarshan!5.17!CS425 – Fall 2013 – Boris Glavic!

Transactions and Concurrency!

  Transactions are also used to isolate concurrent actions of different
users!

  Recall from the introduction that if several users are modifying the
database at the same time that can lead to inconsistencies!

  More on that later once we talk about concurrency control!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Integrity Constraints!

©Silberschatz, Korth and Sudarshan!5.19!CS425 – Fall 2013 – Boris Glavic!

Integrity Constraints!

  Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency. !
  A checking account must have a balance greater than

$10,000.00!
  A salary of a bank employee must be at least $4.00 an

hour!
  A customer must have a (non-null) phone number!

©Silberschatz, Korth and Sudarshan!5.20!CS425 – Fall 2013 – Boris Glavic!

 Integrity Constraints on a Single Relation !

  not null!
  primary key!
  unique!
  check (P), where P is a predicate!

©Silberschatz, Korth and Sudarshan!5.21!CS425 – Fall 2013 – Boris Glavic!

Not Null and Unique Constraints !

  not null!
  Declare name and budget to be not null!

" name varchar(20) not null 
 budget numeric(12,2) not null!

  unique (A1, A2, …, Am)!
  The unique specification states that the attributes A1, A2, …

Am 
form a candidate key.!

  Candidate keys are permitted to be null (in contrast to primary
keys).!

!

©Silberschatz, Korth and Sudarshan!5.22!CS425 – Fall 2013 – Boris Glavic!

The check clause!

  check (P)!
 where P is a predicate!

Example: ensure that semester is one of fall, winter, spring
or summer:!
!
create table section ("
 course_id varchar (8),!
 sec_id varchar (8),!
 semester varchar (6),!
 year numeric (4,0),!
 building varchar (15),!
 room_number varchar (7),!
 time slot id varchar (4), !
 primary key (course_id, sec_id, semester, year),!
 check (semester in (’Fall’, ’Winter’, ’Spring’,
’Summer’)) 
);!

©Silberschatz, Korth and Sudarshan!5.23!CS425 – Fall 2013 – Boris Glavic!

Referential Integrity!

  Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.!
  Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.!

  Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appear in S.!

©Silberschatz, Korth and Sudarshan!5.24!CS425 – Fall 2013 – Boris Glavic!

Cascading Actions in Referential Integrity!

  create table course ( 
 course_id char(5) primary key, 
 title varchar(20), 
 dept_name varchar(20) references department 
)!

  create table course ( 
 … 
 dept_name varchar(20), 
 foreign key (dept_name) references department 
 on delete cascade  
 on update cascade, 
 . . .  
)!

  alternative actions to cascade: set null, set default!
"
"

©Silberschatz, Korth and Sudarshan!5.25!CS425 – Fall 2013 – Boris Glavic!

Integrity Constraint Violation During
Transactions!

  E.g.!
create table person ( 

ID char(10), 
name char(40), 
mother char(10), 
father char(10), 
primary key ID, 
foreign key father references person, 
foreign key mother references person)!

  How to insert a tuple without causing constraint violation ?!
  insert father and mother of a person before inserting person!
  OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother
attributes declared to be not null) !

  OR defer constraint checking (next slide)!

©Silberschatz, Korth and Sudarshan!5.26!CS425 – Fall 2013 – Boris Glavic!

Complex Check Clauses!

  check (time_slot_id in (select time_slot_id from time_slot))!
  why not use a foreign key here?!

  Every section has at least one instructor teaching the section.!
  how to write this?!

  Unfortunately: subquery in check clause not supported by
pretty much any database!
  Alternative: triggers (later)!

  create assertion <assertion-name> check <predicate>;!
  Also not supported by anyone!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Indexes and User-Defined Types
(UDTs)!

©Silberschatz, Korth and Sudarshan!5.28!CS425 – Fall 2013 – Boris Glavic!

Built-in Data Types in SQL !
  date: Dates, containing a (4 digit) year, month and date!

  Example: date ‘2005-7-27’!
  time: Time of day, in hours, minutes and seconds.!

  Example: time ‘09:00:30’ time ‘09:00:30.75’!

  timestamp: date plus time of day!
  Example: timestamp ‘2005-7-27 09:00:30.75’!

  interval: period of time!
  Example: interval ‘1’ day!
  Subtracting a date/time/timestamp value from another gives

an interval value!
  Interval values can be added to date/time/timestamp values!

©Silberschatz, Korth and Sudarshan!5.29!CS425 – Fall 2013 – Boris Glavic!

Index Creation!

  create table student" 
(ID varchar (5), 
name varchar (20) not null, 
dept_name varchar (20), 
tot_cred numeric (3,0) default 0,  
primary key (ID))!

  create index studentID_index on student(ID)!
  Indices are data structures used to speed up access to records

with specified values for index attributes!
  e.g. select *  

 from student 
 where ID = ‘12345’!

can be executed by using the index to find the required
record, without looking at all records of student"

More on indices later!

©Silberschatz, Korth and Sudarshan!5.30!CS425 – Fall 2013 – Boris Glavic!

User-Defined Types!

  create type construct in SQL creates user-defined type!
!

! !create type Dollars as numeric (12,2) final  
!

  create table department 
(dept_name varchar (20), 
building varchar (15), 
budget Dollars);!

©Silberschatz, Korth and Sudarshan!5.31!CS425 – Fall 2013 – Boris Glavic!

Domains!

  create domain construct in SQL-92 creates user-defined
domain types!

!
! !create domain person_name char(20) not null!

!
  Types and domains are similar. Domains can have

constraints, such as not null, specified on them.!
  create domain degree_level varchar(10) 

constraint degree_level_test 
check (value in (’Bachelors’, ’Masters’, ’Doctorate’));!

©Silberschatz, Korth and Sudarshan!5.32!CS425 – Fall 2013 – Boris Glavic!

Large-Object Types!

  Large objects (photos, videos, CAD files, etc.) are stored as a
large object:!
  blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)!

  clob: character large object -- object is a large collection of
character data!

  When a query returns a large object, a pointer is returned
rather than the large object itself.!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Access Control!

©Silberschatz, Korth and Sudarshan!5.34!CS425 – Fall 2013 – Boris Glavic!

Access Control!

Forms of authorization on parts of the database:!

  Read - allows reading, but not modification of data.!
  Insert - allows insertion of new data, but not modification of

existing data.!
  Update - allows modification, but not deletion of data.!
  Delete - allows deletion of data.!
!
Forms of authorization to modify the database schema!
  Index - allows creation and deletion of indices.!
  Resources - allows creation of new relations.!
  Alteration - allows addition or deletion of attributes in a relation.!
  Drop - allows deletion of relations.!

©Silberschatz, Korth and Sudarshan!5.35!CS425 – Fall 2013 – Boris Glavic!

Authorization Specification in SQL!

  The grant statement is used to confer authorization!
! !grant <privilege list>!
! !on <relation name or view name> to <user list>!

  <user list> is:!
  a user-id!
  public, which allows all valid users the privilege granted!
  A role (more on this later)!

  Granting a privilege on a view does not imply granting any
privileges on the underlying relations.!

  The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).!

©Silberschatz, Korth and Sudarshan!5.36!CS425 – Fall 2013 – Boris Glavic!

Privileges in SQL!

  select: allows read access to relation,or the ability to query
using the view!
  Example: grant users U1, U2, and U3 select

authorization on the instructor relation:!
! ! !grant select on instructor to U1, U2, U3!

  insert: the ability to insert tuples!
  update: the ability to update using the SQL update

statement!
  delete: the ability to delete tuples.!
  all privileges: used as a short form for all the allowable

privileges!

©Silberschatz, Korth and Sudarshan!5.37!CS425 – Fall 2013 – Boris Glavic!

Revoking Authorization in SQL!

  The revoke statement is used to revoke authorization.!
revoke <privilege list>!
on <relation name or view name> from <user list>!

  Example:!
revoke select on branch from U1, U2, U3"

  <privilege-list> may be all to revoke all privileges the revokee
may hold.!

  If <revokee-list> includes public, all users lose the privilege
except those granted it explicitly.!

  If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.!

  All privileges that depend on the privilege being revoked are
also revoked.!

!

©Silberschatz, Korth and Sudarshan!5.38!CS425 – Fall 2013 – Boris Glavic!

Roles!

  create role instructor;!
  grant instructor to Amit;!
  Privileges can be granted to roles:!

  grant select on takes to instructor;!
  Roles can be granted to users, as well as to other roles!

  create role teaching_assistant"
  grant teaching_assistant to instructor;!

  Instructor inherits all privileges of teaching_assistant"
  Chain of roles!

  create role dean;!
  grant instructor to dean;!
  grant dean to Satoshi;!

©Silberschatz, Korth and Sudarshan!5.39!CS425 – Fall 2013 – Boris Glavic!

Authorization on Views!

  create view geo_instructor as  
(select *  
from instructor 
where dept_name = ’Geology’);!

  grant select on geo_instructor to geo_staff"
  Suppose that a geo_staff member issues!

  select *  
from geo_instructor;!

  What if !
  geo_staff does not have permissions on instructor?"
  creator of view did not have some permissions on

instructor?!

©Silberschatz, Korth and Sudarshan!5.40!CS425 – Fall 2013 – Boris Glavic!

Other Authorization Features!

  references privilege to create foreign key!
  grant reference (dept_name) on department to Mariano;!
  why is this required?!

  transfer of privileges!
  grant select on department to Amit with grant option;!
  revoke select on department from Amit, Satoshi cascade;!
  revoke select on department from Amit, Satoshi restrict;!

  Etc. read text book Section 4.6 for more details we have
omitted here.!

©Silberschatz, Korth and Sudarshan!5.41!CS425 – Fall 2013 – Boris Glavic!

Understanding RESTRICT/CASCADE!

  Bob grants right X on Y to Alice with grant option!
  Alice grants right X on Y to Peter!
!
  Abandoned right!

  A right for which there is no justification anymore!

  revoke X on Y from Peter restrict!
  With restrict fails if it would result in abandoned

rights!

  revoke X on Y from Peter cascade!
  Also revokes rights that would otherwise be

abandoned!

Bob!

Alice!

Peter!

©Silberschatz, Korth and Sudarshan!5.42!CS425 – Fall 2013 – Boris Glavic!

Understanding RESTRICT/CASCADE!

  Bob grants right X on Y to Alice with grant option!
  Alice grants right X on Y to Peter!
  Bob grants right X on Y to Peter!

  Abandoned privilege!
  A privilege for which there is no justification anymore!
  Indirect justifications count!

  revoke X on Y from Peter restrict!
  Fails: even though there exists additional justification

for the privilege.!
  revoke X on Y from Peter cascade!

  Revokes that right from Peter.!
  Peter still has the right to do X on Y!

Bob!

Alice!

Peter!

©Silberschatz, Korth and Sudarshan!5.43!CS425 – Fall 2013 – Boris Glavic!

Recap!

  Views!
  Virtual!
  Materialized!
  Updates!

  Integrity Constraints!
  Not null, unique, check!
  Foreign keys: referential integrity!

  Access control!
  Users, roles!
  Privileges!
  GRANT / REVOKE!

  Data types!
  Build-in types, Domains, Large Objects!
  UDTs!
  Indices!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter 5!

©Silberschatz, Korth and Sudarshan!5.45!CS425 – Fall 2013 – Boris Glavic!

Outline!

  Introduction!
  Relational Data Model!
  Formal Relational Languages (relational algebra)!
  SQL - Advanced!
  Database Design!
  Transaction Processing, Recovery, and Concurrency Control!
  Storage and File Structures!
  Indexing and Hashing!
  Query Processing and Optimization!

©Silberschatz, Korth and Sudarshan!5.46!CS425 – Fall 2013 – Boris Glavic!

Figure 4.01!

©Silberschatz, Korth and Sudarshan!5.47!CS425 – Fall 2013 – Boris Glavic!

Figure 4.02!

©Silberschatz, Korth and Sudarshan!5.48!CS425 – Fall 2013 – Boris Glavic!

Figure 4.03!

©Silberschatz, Korth and Sudarshan!5.49!CS425 – Fall 2013 – Boris Glavic!

Figure 4.04!

©Silberschatz, Korth and Sudarshan!5.50!CS425 – Fall 2013 – Boris Glavic!

Figure 4.05!

©Silberschatz, Korth and Sudarshan!5.51!CS425 – Fall 2013 – Boris Glavic!

Figure 4.07!

Taylor

©Silberschatz, Korth and Sudarshan!5.52!CS425 – Fall 2013 – Boris Glavic!

Figure 4.06!

Join types
inner join
le! outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A2, . . ., An)

©Silberschatz, Korth and Sudarshan!5.53!CS425 – Fall 2013 – Boris Glavic!

Figure 4.03!

U3

DBA

U1

U5U2

U4

