CS425 - Fall 2013
Boris Glavic
Chapter 4: Introduction to SQL

Modified from:
Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

& Chapter 4: Introduction to SQL

Overview of the SQL Query Language
Data Definition

Basic Query Structure

Additional Basic Operations

Set Operations

Null Values

Aggregate Functions

Nested Subqueries

Modification of the Database

Textbook: Chapter 3

CS425 - Fall 2013 - Boris Glavic 42 @Silberschatz, Korth and Sudarshan

History

B IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

B Renamed Structured Query Language (SQL)
B ANSI and ISO standard SQL:

SQL-86, SQL-89, SQL-92

SQL:1999, SQL:2003, SQL:2008

B Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

Not all examples here may work one-to-one on your
particular system.

©8425 - Fall 2013 - Boris Glavic a3

@Silberschatz, Korth and Sudarshan

N Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:
B The schema for each relation.
B The domain of values associated with each attribute.
W Integrity constraints
B And as we will see later, also other information such as
The set of indices to be maintained for each relations.
Security and authorization information for each relation.
The physical storage structure of each relation on disk.

©8425 - Fall 2013 - Boris Glavic 44

@Silberschatz, Korth and Sudarshan

N Domain Types in SQL

B char(n). Fixed length character string, with user-specified length n.

W varchar(n). Variable length character strings, with user-specified
maximum length n.

| int. Integer (a finite subset of the integers that is machine-
dependent).

® smallint. Small integer (a machine-dependent subset of the integer
domain type).

B numeric(p,d). Fixed point number, with user-specified precision of
p digits, with n digits to the right of decimal point.

W real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

| float(n). Floating point number, with user-specified precision of at
least n digits.

B More are covered in Chapter 4.

©8425 - Fall 2013 - Boris Glavic as @Silberschatz, Korth and Sudarshan

@ Create Table Construct

B An SQL relation is defined using the create table command:
create table r (A, D,, A, D,, ..., A, D,
(integrity-constraint,),
iiHlegrity-constraintk))
ris the name of the relation
each A;is an attribute name in the schema of relation r
D; is the data type of values in the domain of attribute A;
B Example:

create table instructor (
// char(5),
name varchar(20) not nuill,
dept_name varchar(20),
salary numeric(8,2))
B insert into instructor values (‘10211",’ Smith’, ’ Biology’, 66000);

B insert into instructor values (‘10211’, null, ' Biology’, 66000);

©8425 - Fall 2013 - Boris Glavic 46 @Silberschatz, Korth and Sudarshan

N Integrity Constraints in Create Table

® not null
B primary key (A, ..., A,)
m foreign key (A, ..., A,) references r

Example: Declare /D as the primary key for instructor

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©8425 - Fall 2013 - Boris Glavic a7 @Silberschatz, Korth and Sudarshan

N- Even more
[S—

W create table course (
course_id varchar(8) primary key,

title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

foreign key (dept_name) references department));

Primary key declaration can be combined with attribute
declaration as shown above

©8425 - Fall 2013 - Boris Glavic a9 @Silberschatz, Korth and Sudarshan

y Basic Query Structure

B The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

B Atypical SQL query has the form:

select A, A,, ..., A,
fromr, ..., 1y
where P

A;represents an attribute
R;represents a relation
Pis a predicate.

B The result of an SQL query is a relation.

% And a Few More Relation Definitions

B create table student
D

varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (/D),

foreign key (dept_name) references department));
W create table fakes (

varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),

foreign key (/D) references student,

foreign key (course_id, sec_id, semester, year) references section);
Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

48 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic an @Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Drop and Alter Table Constructs

W drop table student

Deletes the table and its contents
N alter table

alter table radd A D

» where Ais the name of the attribute to be added to
relation r and D is the domain of A.

» All tuples in the relation are assigned null as the value
for the new attribute.

alter table rdrop A
» where A is the name of an attribute of relation r

» Dropping of attributes not supported by many
databases

And more ...

410 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

N The select Clause

W The select clause list the attributes desired in the result of a query
corresponds to the projection operation of the relational algebra
B Example: find the names of all instructors:

select name
from instructor
®m NOTE: SQL keywords are case insensitive (i.e., you may use upper- or
lower-case letters.)
E.g. Name = NAME = name
Some people use upper case wherever we use bold font.

a12 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

The select Clause (Cont.)

B SQL allows duplicates in relations as well as in query results.

W To force the elimination of duplicates, insert the keyword distinct
after select.
B Find the names of all departments with instructor, and remove
duplicates
select distinct dept_name
from instructor

B The (redundant) keyword all specifies that duplicates not be
removed.

select all dept_name
from instructor

©8425 - Fall 2013 - Boris Glavic 413 @Silberschatz, Korth and Sudarshan

N- The select Clause (Cont.)
I N~—
W An asterisk in the select clause denotes “all attributes”

select *
from instructor

B The select clause can contain arithmetic expressions involving
the operation, +, —, *, and /, and operating on constants or
attributes of tuples.

Most systems also support additional functions
» E.g., substring
Most systems allow user defined functions (UDFs)
B The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

©8425 - Fall 2013 - Boris Glavic 414 @Silberschatz, Korth and Sudarshan

The from Clause

B The from clause lists the relations involved in the query
Corresponds to the Cartesian product operation of the
relational algebra.

B Find the Cartesian product instructor X teaches

select *

from instructor, teaches
generates every possible instructor — teaches pair, with all
attributes from both relations

B Cartesian product not very useful directly, but useful combined

with where-clause condition (selection operation in relational
algebra)

©8425 - Fall 2013 - Boris Glavic 415 @Silberschatz, Korth and Sudarshan

The where Clause

B The where clause specifies conditions that the result must
satisfy

Corresponds to the selection predicate of the relational
algebra.

W To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

B Comparison results can be combined using the logical
connectives and, or, and not.

W Comparisons can be applied to results of arithmetic expressions.
B SQL standard: any valid expression that returns a boolean result
Vendor specific restrictions may apply!

©8425 - Fall 2013 - Boris Glavic 416 @Silberschatz, Korth and Sudarshan

y Cartesian Product: instructor X teaches

instructor teaches
D name dept_name | _salary 1D | course_id | sec_id | semester | year
10101 | Srinivasan | Comp. Sci. [65000 10101 Fall 2009
12121 | Wu Finance 90000 10101 1 Spring | 2010
15151 | Mozart sic 40000 10101 1 Fall 2009
22222 | Einstein 95000 12121 1 Spring | 2010
32343 | El Said History 60000 15151 1 Spring | 2010
""" o oo o 22222 | PHY-101 1 Fall 2009
inst.ID | name deptname | salary | teaches.ID | courseid | secid | semester | year

10101 [Srinivasan | Comp. Sci.| 65000 10101 |Cs-101 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. |65000| 10101 |Cs-315 1 |Spring |2010
10101 [Srinivasan | Comp. Sci.|65000| 10101 |CS-347 1 |Fall 2009
10101 [Srinivasan | Comp. Sci.|65000| 12121 |FIN-201 1 |Spring |2010
10101 [Srinivasan | Comp. Sci. [65000| 15151 [MU-199 1 |Spring |2010

1

10101 | Srinivasan | Comp. Sci. | 65000| 22222 | PHY-101 Fall 2009

12121 |Wu Finance 90000| 10101 |Cs-101 1 |Fall 2009

12121 [Wu Finance 90000| 10101 [Cs-315 1 |Spring |2010

12121 |Wu Finance 90000| 10101 |[Cs-347 1 |Fall 2009

12121 |Wu Finance 90000| 12121 |FIN-201 1 |Spring |2010

12121 [Wu Finance 90000| 15151 [MU-199 1 |Spring |2010
1

12121 [Wu Finance 90000| 22222 |PHY-101 Fall 2009

©8425 - Fall 2013 - Boris Glavic 417 @Silberschatz, Korth and Sudarshan

N Joins

S —

W For all instructors who have taught some course, find their names
and the course ID of the courses they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

B Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and
_ dept_name = ‘Comp. Sci.'
section course

course_id
title
dept_name
credits

room_no
time_slot_id

©8425 - Fall 2013 - Boris Glavic 418 @Silberschatz, Korth and Sudarshan

N Try Writing Some Queries in SQL

B Suggest queries to be written.....

©8425 - Fall 2013 - Boris Glavic 419 @Silberschatz, Korth and Sudarshan

82

Join operations — Example

W Relation course

course_id, title dept_name | credits
BIO-301 | Genetics Biology 4
CS-190 |Game Design| Comp. Sci. | 4
CS-315 | Robotics Comp. Sci. 3

W Relation prereq

coyrse_id | prereq_id
BIO-301 | BIO-101
CS-190 | CS-101
Cs-347 | CS-101

B Observe that
prereq information is missing for CS-315 and
course information is missing for CS-437

©8425 - Fall 2013 - Boris Glavic 421

@Silberschatz, Korth and Sudarshan

Joined Relations

A2

W Join operations take two relations and return as a result
another relation.

W A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

W The join operations are typically used as subquery
expressions in the from clause

©8425 - Fall 2013 - Boris Glavic 420 @Silberschatz, Korth and Sudarshan

N Natural Join

| ~—

B Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each common
column

This is the natural join from relational algebra

m select *

from instructor natural join teaches;

D name | dept_name | salary| course_id| sec_id | semester| year
10101 |Srinivasan| Comp. Sci.| 65000 CS-101 1 Fall 2009
10101 |Srinivasan| Comp. Sci.| 65000| CS-315 1 |[Spring | 2010
10101 |Srinivasan| Comp. Sci.| 65000 CS-347 1 Fall 2009
12121 (Wu Finance [90000| FIN-201 1 Spring | 2010
15151 [Mozart | Music 40000| MU-199 | 1 [Spring | 2010
22222 (Einstein | Physics 95000| PHY-101| 1 Fall 2009
32343 |El Said History 60000| HIS-351 1 Spring | 2010
45565 |Katz Comp. Sci.| 75000| CS-101 1 Spring | 2010
45565 [Katz Comp. Sci.| 75000 CS-319 | 1 |Spring | 2010
76766 |Crick Biology ~|72000| BIO-101 | 1 |Summer| 2009
76766 1Crick Rialaov 720001 RIO-201 1 Summerl 2010

©S425 - Fall 2013 - Boris Glavic a2 ©Silberschatz, Korth and Sudarshan

N Natural Join Example

W List the names of instructors along with the course ID of the courses that
they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

select name, course_id
from instructor natural join teaches;

©8425 - Fall 2013 - Boris Glavic 4.23 @Silberschatz, Korth and Sudarshan

A2

B Danger in natural join: beware of unrelated attributes with same name which
get equated incorrectly

Natural Join (Cont.)

W List the names of instructors along with the the titles of courses that they
teach

Incorrect version (makes course.dept_name = instructor.dept_name)
» select name, title
from instructor natural join teaches natural join course;
Correct version
» select name, title
from instructor natural join teaches, course
where teaches.course_id = course.course_id;
Another correct version
» select name, title
from (instructor natural join teaches)
join course using(course_id);

©8425 - Fall 2013 - Boris Glavic 424 @Silberschatz, Korth and Sudarshan

¥

Outer Join

B An extension of the join operation that avoids loss of
information.

W Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result

of the join.

©S425 - Fall 2013 - Boris Glavic

W Uses null values.

@Silberschatz, Korth and Sudarshan

N- Left Outer Join
N—
W course natural left outer join prereq
course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. | 4 C5-101
CS5-315_|Robotics Comp. Sci. 3 null
©5425 - Fall 2013 - Boris Glavic 426 GSilberschatz, Korth and Sudarshan

N Right Outer Join

W course natural right outer join prereq

course_id| title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 [Game Design| Comp. Sci. 4 C5-101
CS-347 | null null null | CS-101
CS425 - Fall 2013 - Boris Giavie a2 cSilberschatz, Korth and Sudarshan

Full Outer Join

B course natural full outer join prereq

Joined Relations

B Join operations take two relations and return as a result
another relation.

B These additional operations are typically used as subquery
expressions in the from clause

B Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the join.
B Join type — defines how tuples in each relation that do not

match any tuple in the other relation (based on the join
condition) are treated.

Join types
inner join

left outer join
right outer join
full outer join

Join Conditions
natural

on <predicate>
using (Ay, Ay, ...

Ay

©S425 - Fall 2013 - Boris Glavic 428 @Silberschatz, Korth and Sudarshan

Joined Relations — Examples

course inner join prereq on
course.course_id = prereq.course_id

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. 4 Cs-101
CS-315 [Robotics Comp. Sci. 3 null
C8-347 | nudl null nmull | CS-101

course_id| title dept_name | credits prereq_id| course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 | Game Design | Comp. Sci. | 4 Cs-101_ | CS-190

B What is the difference between the above, and a natural join?

B course left outer join prereq on
course.course_id = prereq.course_id

©$425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

course_id| title dept_name | credits | prereq_id | course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
C5-190 | Game Design | Comp. Sci. 4 CSs-101 | CS-190
(CS-315 | Robotics Comp. Sci. 3 null null

©S425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

82

©S425 - Fall 2013 - Boris Glavic 431

Joined Relations — Examples

B course natural right outer join prereq

course_id| title dept_name | credits | prereq id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 [Game Design| Comp. Sci. 4 C5-101
CS-347 | null null null | CS-101

W course full outer join prereq using (course_id)

course_id| title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 Cs-101
CS5-315 |Robotics Comp. Sci. 3 null
CS-347 |null null mull | CS-101

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 433

String Operations

SQL includes a string-matching operator for comparisons on
character strings. The operator “like” uses patterns that are
described using two special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

Find the names of all instructors whose name includes the substring
“dar”.

select name

from instructor

where name like '%dar%'

Match the string “100 %”
like ‘100\%' escape "\

@Silberschatz, Korth and Sudarshan

N

©$425 - Fall 2013 - Boris Glavic 435

Case Construct

M Like case, if, and ? Operators in programming languages

case
when c, then e,
when c, then e,

[else e]
end

B Each ¢; is a condition
B Each e, is an expression
B Returns the first e; for which c; evaluates to true
If none of the ¢; is true, then return e (else)
» If there is no else return null

@Silberschatz, Korth and Sudarshan

N The Rename Operation

N—

B The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

m Eg.

select /D, name, salary/12 as monthly_salary
from instructor

B Find the names of all instructors who have a higher salary than

some instructor in ‘Comp. Sci’ .

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.”
B Keyword as is optional and may be omitted

instructoras T = instructor T
Keyword as must be omitted in Oracle

©8425 - Fall 2013 - Boris Glavic 432 @Silberschatz, Korth and Sudarshan

N String Operations (Cont.)

|S—

W Patters are case sensitive.

B Pattern matching examples:
‘Intro%’ matches any string beginning with “Intro”.
‘%Comp%’ matches any string containing “Comp” as a substring.
‘___’ matches any string of exactly three characters.

‘__ _ 9% matches any string of at least three characters.

B SQL supports a variety of string operations such as
concatenation (using “Il”)
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

©8425 - Fall 2013 - Boris Glavic 434 @Silberschatz, Korth and Sudarshan

N

Case Construct Example
W Like case, if, and ? Operators in programming languages

select
name,
case
when salary > 1000000 then ‘premium’
else ‘standard’
end as customer_group
from customer

©S425 - Fall 2013 - Boris Glavic 436

@Silberschatz, Korth and Sudarshan

N Ordering the Display of Tuples

W List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

B We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.

Example: order by name desc
W Can sort on multiple attributes

Example: order by dept_name, name
W Order is not expressible in the relational model!

©8425 - Fall 2013 - Boris Glavic 437 @Silberschatz, Korth and Sudarshan

& Where Clause Predicates

B SQL includes a between comparison operator
W Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, = $90,000 and < $100,000)
select name
from instructor
where salary between 90000 and 100000

W Tuple comparison

select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’ Biology’);

©8425 - Fall 2013 - Boris Glavic 438 @Silberschatz, Korth and Sudarshan

Set Operations

~——

B Find courses that ran in Fall 2009 or in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

B Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

B Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’ and year = 2010)

©8425 - Fall 2013 - Boris Glavic 439 @Silberschatz, Korth and Sudarshan

Set Operations

B Set operations union, intersect, and except

Each of the above operations automatically eliminates
duplicates

W To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

Suppose a tuple occurs m times in rand ntimes in s, then, it
occurs:

m + ntimes in runion all s
min(m,n) times in rintersect all s
max(0, m —n)times in rexcept all s

©8425 - Fall 2013 - Boris Glavic 440 @Silberschatz, Korth and Sudarshan

y Null Values

M |tis possible for tuples to have a null value, denoted by null, for
some of their attributes

null signifies an unkown value or that a value does not exist.

The result of any arithmetic expression and comparisons
involving null evaluate to null

Example: 5 + null returns null
null>5 returns null
null = null returns null
B The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

©8425 - Fall 2013 - Boris Glavic 441 @Silberschatz, Korth and Sudarshan

N Null Values and Three Valued Logic

W Any comparison with null returns null
Example: 5 <null or null<null or null =null
B Three-valued logic using the truth value null:
OR: (null or true) = true,
(null or false) = null
(null or null) = null
AND: (true and null) = null,
(false and null) = false,
(null and null) = null
NOT: (not null) = null
“Pis null” evaluates to true if predicate P evaluates to null

B Result of where clause predicate is treated as false if it
evaluates to null

©8425 - Fall 2013 - Boris Glavic 442 @Silberschatz, Korth and Sudarshan

N Aggregate Functions

B These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

B Most DBMS support user defined aggregation functions

©8425 - Fall 2013 - Boris Glavic 4.43 @Silberschatz, Korth and Sudarshan

NE Aggregate Functions (Cont.)

B Find the average salary of instructors in the Computer Science
department
select avg (salary)
from instructor
where dept_name="Comp. Sci.’ ;
B Find the total number of instructors who teach a course in the
Spring 2010 semester
select count (distinct /D)
from teaches
where semester="Spring’ and year =2010
B Find the number of tuples in the course relation

select count (*)
from course;

©8425 - Fall 2013 - Boris Glavic a4 @Silberschatz, Korth and Sudarshan

A2 Aggregate Functions — Group By

B Find the average salary of instructors in each department

select dept_name, avg (salary)
from instructor
group by dept_name;

Note: departments with no instructor will not appear in result

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Kalz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. [65000 deptname | avg-salary
83821 | Brandt Comp. Sci. | 92000 Biology 72000
98345 | Kim E_lec. Eng. | 80000 Comp. Sci. | 77333
12121 |Wu Finance 90000 Elec. En 80000
76543 | Singh Finance 80000 Finance 85000
32343 | El Said History 60000 History 61000
58583 | Califieri History 62000 . 7
15151 [Mozart | Music 20000 Music 40000
33456 | Gold Physics | 87000 Physics 91000
22222 |Einstein Physics 95000

5425 - Fall 2013 - Boris Glavie 445 Silberschatz, Korth and Sudarshan

N Aggregation (Cont.)

B Attributes in select clause outside of aggregate functions must
appear in group by list
/* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

©8425 - Fall 2013 - Boris Glavic 446 @Silberschatz, Korth and Sudarshan

- Adggregate Functions — Having Clause

B Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary)
from instructor

group by dept_name

having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

©8425 - Fall 2013 - Boris Glavic 447 @Silberschatz, Korth and Sudarshan

N Null Values and Aggregates

W Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amount

W All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

B What if collection has only null values?
count returns 0
all other aggregates return null

©8425 - Fall 2013 - Boris Glavic 448 @Silberschatz, Korth and Sudarshan

N- Empty Relations and Aggregates N- Duplicates
W What if the input relation is empty W In relations with duplicates, SQL can define how many copies
m Conventions: of tuples appear in the result.
sum: returns null B Multiset versions of some of the relational algebra operators —

avg: returns null given multiset relations r; and r,:

min: rettums nu/j/ 1. Og(ry): If there are c, copies of tuple ¢ in r;, and ¢,
max: - .) .
X: returns nuj satisfies selections O/, then there are ¢, copies of t; in O
count: returns 0 (r))
1)

2. TI4(r): For each copy of tuple t, in r,, there is a copy of
tuple TI4(t)in I14(ry) where I, (t;) denotes the
projection of the single tuple t,.

3. ry, x r,: If there are ¢, copies of tuple t, in r,; and c, copies
of tuple £, in r,, there are ¢ x ¢, copies of the tuple t,. t, in ry

Xry
5425 - Fall 2013 - Boris Glavic 449 @Silberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavic 450 GSilberschatz, Korth and Sudarshan
Multiset Relational Algebra N Duplicates (Cont.)
| ~—
B Pure relational algebra operates on set-semantics (no duplicates B Example: Suppose multiset relations r; (A, B) and r, (C)
allowed) are as follows:
&.g. after projection n={,a @a} r={2).0) 6}
B Multiset (bag-semantics) relational algebra retains duplicates, to .
match SQL semantics B Then Ilg(r,) would be {(a), (a)}, while ITg(ry) x r, would be
SQL duplicate retention was initially for efficiency, but is now a {(@2), (a,2), (a3), (a,3), (a3), (a,3)}
feature B SQL duplicate semantics:
B Multiset relational algebra defined as follows select A, A, ..., A,
selection: has as many duplicates of a tuple as in the input, if the fromry, 1y . 1y
tuple satisfies the selection where P
projection: one tuple per input tuple, even if it is a duplicate is equivalent to the multiset version of the expression:
cross product: If there are m copies of t1in r, and n copies of
t2in s, there are m x n copies of t1.12inr x s HAMAZ‘...,A,,(O-P(E XIX...XI,))
Other operators similarly defined
» E.g. union: m + n copies, intersection: min(m, n) copies
difference: max(0, m— n) copies
8425 - Fall 2013 - Boris Glavic ast ©Silberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavie as2 @Silberschatz, Korth and Sudarshan
N- SQL and Relational Algebra N SQL and Relational Algebra
[N— N—
W selectA, A, .. A, W More generally, the non-aggregated attributes in the select clause
from r,r, ..., 1, may be a subset of the group by attributes, in which case the
where P equivalence is as follows:

is equivalent to the following expression in multiset relational algebra
select A;, sum(A;) AS sumA3

[T a1, ., an (O p(ryx rp XX 1)) from 1y, 1y ..., Iy

where P
H select A, A, sum(A;)
from r,r, ..., 1y group by A, A,

where P is equivalent to the following expression in multiset relational algebra
group by A, A,

il (mn2G (O pryX 13 XX 1)
is equivalent to the following expression in multiset relational algebra At sumAd A1,A2 G sum(43) as suma3(© p (17X 7 m

A1, A2 Gsum(a3) (O p(r X Iz X X 1))

©8425 - Fall 2013 - Boris Glavic 453 @Silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavic 454 @Silberschatz, Korth and Sudarshan

N Subqueries in the From Clause

B SQL allows a subquery expression to be used in the from clause

B Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)
where avg_salary > 42000;
B Note that we do not need to use the having clause
B Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

©8425 - Fall 2013 - Boris Glavic 4.55 @Silberschatz, Korth and Sudarshan

NE Nested Subqueries

B SQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested
within another query.

B A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

©8425 - Fall 2013 - Boris Glavic 456 @Silberschatz, Korth and Sudarshan

Example Query

B Find courses offered in Fall 2009 and in Spring 2010

select distinct course_id
from section
where semester="Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester =" Spring’ and year= 2010);

m Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester =" Fall’ and year= 2009 and
course_id not in (select course_id
from section
where semester="Spring’ and year=
2010);

©8425 - Fall 2013 - Boris Glavic 457 @Silberschatz, Korth and Sudarshan

N Quantification

B Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name =’ Biology’ ;

®m Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept_name =" Biology’);

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 459

Example Query

B Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with /D 10101

select count (distinct /D)
from takes
where (course_id, sec_id, semester, year) in
(select course_id, sec_id, semester, year
from teaches
where teaches.ID=10101);

m Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

©S425 - Fall 2013 - Boris Glavic 458 @Silberschatz, Korth and Sudarshan

N Definition of Some Clause

B F <comp>some r < 3 tE r such that (F <comp> t)
Where <comp>canbe: <, =<, >, =, =

(5<some | 5 |)=true
E (read: 5 < some tuple in the relation)

(5 <some
(5 =some

(5 # some) = true (since 0 # 5)

(= some) = in
However, (= some);é not in

) = false

) = true

©8425 - Fall 2013 - Boris Glavic 460 @Silberschatz, Korth and Sudarshan

10

N Example Query

B Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept_name = Biology’);

©8425 - Fall 2013 - Boris Glavic 461 @Silberschatz, Korth and Sudarshan

ﬁ Definition of all Clause

B F<comp>allr< Vter (F<comp>t)

(5b<all | 5|)=false

5 #all) =true (since 5 # 4 and 5 # 6)

(= all) = not in
However, (= all) £ in

©8425 - Fall 2013 - Boris Glavic 462 @Silberschatz, Korth and Sudarshan

N Test for Empty Relations

B The exists construct returns the value true if the argument
subquery returns a nonempty result.

W exists re r=0
H notexistsre r=0

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 463

@ Correlation Variables

B Yet another way of specifying the query “Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester”

select course_id
from section as S
where semester="Fall’ and year= 2009 and
exists (select *
from sectionas T
where semester =" Spring’ and year= 2010
and S.course_id= T.course_id);

B Correlated subquery
B Correlation name or correlation variable

©8425 - Fall 2013 - Boris Glavic 464 @Silberschatz, Korth and Sudarshan

y Not Exists

B Find all students who have taken all courses offered in the
Biology department.

select distinct S./D, S.name
from studentas S
where not exists ((select course_id
from course
where dept_name =’ Biology’)
except
(select T.course_id
from takesas T
where S.ID = T.ID));

m Notethat X-Y=0 < XCVY
m Note: Cannot write this query using = all and its variants

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 4.65

N Test for Absence of Duplicate Tuples

B The unique construct tests whether a subquery has any duplicate tuples
in its result.
(Evaluates to “true” on an empty set)
B Find all courses that were offered at most once in 2009
select T.course_id
from courseas T
where unique (select R.course_id
from sectionas R
where T.course_id= R.course_id
and R.year = 2009);

©8425 - Fall 2013 - Boris Glavic 466 @Silberschatz, Korth and Sudarshan

11

N Correlated Subqueries in the From
- Clause

B And yet another way to write it: lateral clause

select name, salary, avg_salary
from instructor I1,
lateral (select avg(salary) as avg_salary
from instructor 12
where [2.dept_name= I1.dept_name);
W Lateral clause permits later part of the from clause (after the lateral
keyword) to access correlation variables from the earlier part.
® Note: lateral is part of the SQL standard, but is not supported on many

database systems; some databases such as SQL Server offer
alternative syntax

©8425 - Fall 2013 - Boris Glavic 467 @Silberschatz, Korth and Sudarshan

NC Complex Queries using With Clause

B With clause is very useful for writing complex queries

W Supported by most database systems, with minor syntax
variations

B Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total_avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

©8425 - Fall 2013 - Boris Glavic 469 @Silberschatz, Korth and Sudarshan

ﬁ With Clause

B The with clause provides a way of defining a temporary view
whose definition is available only to the query in which the with
clause occurs.

B Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select budget
from department, max_budget
where department.budget = max_budget.value;

CS425 - Fall 2013 - Boris Glavic 468

@Silberschatz, Korth and Sudarshan

Scalar Subquery

B Scalar subquery is one which is used where a single value is expected

m Eg. select dept _name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

B E.g. select name
from instructor
where salary * 10 >
(select budget from department
where department.dept_name = instructor.dept_name)

B Runtime error if subquery returns more than one result tuple

©8425 - Fall 2013 - Boris Glavic a70 @Silberschatz, Korth and Sudarshan

N Query Features Recap - Syntax

B An SQL query is either a Select-from-where block or a set operation
B An SQL query block is structured like this:

SELECT [DISTINCT] select_list

[FROM from_list]

[WHERE where_condition]

[GROUP BY group_by_list]

[HAVING having_condition]

[ORDER BY order_by_list]

W Set operations
[Query Block] set_op [Query Block]
set_op: [ALL] UNION | INTERSECT | EXCEPT

©8425 - Fall 2013 - Boris Glavic an @Silberschatz, Korth and Sudarshan

N Query Features Recap - Syntax

B Almost all clauses are optional
B Examples:
SELECT * FROM r;
SELECT 1;
» Convention: returns single tuple
SELECT ‘ok’ FROM accounts HAVING sum(balance) = 0;
SELECT 1 GROUP BY 1;
SELECT 1 HAVING true;
Let r be a relation with two attributes a and b
» SELECT a,b FROM r
WHERE a IN (SELECT a FROM r) AND b IN (SELECT b FROM r)
GROUP BY a,b HAVING count(*) > 0;
H Note:
Not all systems support all of this “non-sense”

©8425 - Fall 2013 - Boris Glavic ar2 @Silberschatz, Korth and Sudarshan

12

Syntax - SELECT

m SELECT [DISTINCT [ON (distinct_list)]] select_list
B select_list
List of projection expressions
» [expr] [AS name]
expr

» Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

| distinct_list
List of expressions

B Examples:
SELECT DISTINCT ON (a % 2) a FROM r;
SELECT substring(a, 1,2) AS x FROM r;
SELECT CASE WHEN a =2 THEN a ELSE null END AS b FROM r;
SELECT a=b ASis_a_equal_to_b FROMr;

©8425 - Fall 2013 - Boris Glavic 473 @Silberschatz, Korth and Sudarshan

NE Syntax - FROM

B FROM from_list
| from_list
List of from clause expressions
» subquery | relation | constant_relation | join_expr [alias]
subquery
» Any valid SQL query — alias is not optional
relation
» Arelation in the database
constant_relation
» (VALUES tuples) — alias is not optional
join_expr
» joins between from_clause entries
alias
» [AS] b [(attribute_name_list)]

CS425 - Fall 2013 - Boris Glavic 474

@Silberschatz, Korth and Sudarshan

N Syntax — FROM (cont.)

W Examples (relation r with attributes a and b):
SELECT * FROM ;
SELECT * FROM r AS g(v,w);
SELECT * FROM r x;
SELECT * FROM (VALUES (1,2), (3,1)) AS s(u,v);
SELECT * FROM r NATURAL JOIN s, t;

SELECT * FROM ((r JOIN s ON (r.a = s.c)) NATURAL JOIN
(SELECT * FROM) AS new);

SELECT * FROM (SELECT * FROM) AS r;
SELECT * FROM (SELECT * FROM (SELECT * FROM) ASr) ASr;

©8425 - Fall 2013 - Boris Glavic 475

@Silberschatz, Korth and Sudarshan

Syntax - WHERE

B WHERE where_condition
W where_condition: A boolean expression over
Attributes
Constants: e.g., true, 1, 0.5, ‘hello’
Comparison operators: =, <, >, IS DISTINCT FROM, IS NULL, ...
Arithmetic operators: +,-,/,%
Function calls
Nested subquery expressions
B Examples
SELECT * FROM r WHERE a = 2;
SELECT * FROM r WHERE true OR false;
SELECT * FROM r WHERE NOT(a =2 OR a = 3);
SELECT * FROM r WHERE a IS DISTINCT FROM b;
SELECT * FROM r WHERE a < ANY (SELECT c FROM s);
SELECT * FROM r WHERE a = (SELECT count(*) FROM s);

©S425 - Fall 2013 - Boris Glavic 476 @Silberschatz, Korth and Sudarshan

A2 Syntax — GROUP BY

B GROUP BY group_by_list
W group_by_list
List of expressions

» Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

B Examples:
SELECT sum(a), b FROM r GROUP BY b;
SELECT sum(a), b, c FROM r GROUP BY b, c;
SELECT sum(a), b/2 FROM r GROUP BY b/2;
SELECT sum(a), b FROM r GROUP BY b > 5;

» Incorrect, cannot select b, because it is not an expression in the
group by clause

SELECT sum(a), b FROM r GROUP BY b IN (SELECT ¢ FROM s);

©$425 - Fall 2013 - Boris Glavic arr

@Silberschatz, Korth and Sudarshan

A2 Syntax — HAVING

B HAVING having_condition
B having_condition

Like where_condition except that expressions over attributes have
either to be in the GROUP BY clause or are aggregated

B Examples:
SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) > 10;
SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) + 5 > 10;
SELECT sum(a), b FROM r GROUP BY b HAVING true;
SELECT sum(a), b FROM r GROUP BY b HAVING count(*) = 50;
SELECT b FROM r GROUP BY b HAVING sum(a) > 10;

©8425 - Fall 2013 - Boris Glavic 478 @Silberschatz, Korth and Sudarshan

13

N Syntax - ORDER BY
[S—
B ORDER BY order_by_list
W order_by_list
Like select_list minus renaming
Optional [ASC | DESC] for each item
B Examples:
SELECT * FROM r ORDER BY a;
SELECT * FROM r ORDER BY b, a;
SELECT * FROMr ORDER BY a * 2;
SELECT * FROMr ORDERBY a * 2, a;
SELECT * FROM r ORDER BY a + (SELECT count(*) FROM s);

©8425 - Fall 2013 - Boris Glavic 479 @Silberschatz, Korth and Sudarshan

Query Semantics (Cont.)

5. Compute ORDER BY clause
Order the result of step 4 on the ORDER BY expressions
6. Compute SELECT clause
Project each result tuple from step 5 on the SELECT expressions

m If the WHERE, SELECT, GROUP BY, HAVING, ORDER BY clauses
have any nested subqueries

For each tuple t in the result of the FROM clause
» Substitute the correlated attributes with values from t
» Evaluate the resulting query

» Use the result to evaluate the expression in the clause the
subquery occurs in

©8425 - Fall 2013 - Boris Glavic 481 @Silberschatz, Korth and Sudarshan

Query Semantics

B Evaluation Algorithm (you can do it manually — sort of)
1. Compute FROM clause
Compute cross product of all items in the FROM clause
» Relations: nothing to do

» Subqueries: use this algorithm to recursively compute the result of
subqueries first

» Join expressions: compute the join
2. Compute WHERE clause

For each tuple in the result of 1. evaluate the WHERE clause
condition

3. Compute GROUP BY clause

Group the results of step 2. on the GROUP BY expressions
4. Compute HAVING clause

For each group (if any) evaluate the HAVING condition

©8425 - Fall 2013 - Boris Glavic 480 @Silberschatz, Korth and Sudarshan

Query Semantics (Cont.)

W Equivalent relational algebra expression
ORDER BY has no equivalent, because relations are unordered
Nested subqueries: need to extend algebra (not covered here)
W Each query block is equivalent to

(o (G(m(o(F1 X ... Fy))))

B Where F; is the translation of the i"" FROM clause item
® Note: we leave out the arguments

©8425 - Fall 2013 - Boris Glavic 482 @Silberschatz, Korth and Sudarshan

y Modification of the Database

W Deletion of tuples from a given relation
B Insertion of new tuples into a given relation
B Updating values in some tuples in a given relation

©8425 - Fall 2013 - Boris Glavic 4.83 @Silberschatz, Korth and Sudarshan

i; Modification of the Database — Deletion

W Delete all instructors
delete from instructor

B Delete all instructors from the Finance department
delete from instructor
where dept_name="Finance’ ;
W Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.
delete from instructor
where dept_name in (select dept_name
from department
where building =’ Watson’);

©S425 - Fall 2013 - Boris Glavic 484

@Silberschatz, Korth and Sudarshan

14

N Deletion (Cont.)

B Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary < (select avg (salary) from instructor);

® Problem: as we delete tuples from instructor, the average salary
changes

@ Solution used in SQL:
1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

©8425 - Fall 2013 - Boris Glavic 4.85 @Silberschatz, Korth and Sudarshan

j,; Modification of the Database — Insertion

W Add a new tuple to course

insert into course
values (' CS-437’, ’ Database Systems’, ' Comp. Sci.’, 4);

W or equivalently
insert into course (course_id, title, dept_name, credits)
values (' CS-437’, ’ Database Systems’, " Comp. Sci.’, 4);

B Add a new tuple to student with tot_creds set to null

insert into student
values (' 3003’, ' Green’, ' Finance’, null);

©8425 - Fall 2013 - Boris Glavic 486 @Silberschatz, Korth and Sudarshan

NE Insertion (Cont.)

B Add all instructors to the student relation with tot_creds set to 0

insert into student
select /D, name, dept_name, 0
from instructor

B The select from where statement is evaluated fully before any of
its results are inserted into the relation (otherwise queries like
insert into tablel1 select * from table1
would cause problems, if table? did not have any primary key
defined.

©8425 - Fall 2013 - Boris Glavic 487 @Silberschatz, Korth and Sudarshan

N Modification of the Database — Updates

B Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise
Write two update statements:
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;
The order is important

Can be done better using the case statement (next slide)

©8425 - Fall 2013 - Boris Glavic 488

@Silberschatz, Korth and Sudarshan

N Case Statement for Conditional Updates

B Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©8425 - Fall 2013 - Boris Glavic 4.89 @Silberschatz, Korth and Sudarshan

& Updates with Scalar Subqueries

B Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes natural join course
where S./D= takes.ID and
takes.grade <’ F’ and
takes.grade is not null);

W Sets fot_creds to null for students who have not taken any course
B Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0
end
B Or COALESCE(sum(credits),0)
COALESCE returns first non-null arguments

©8425 - Fall 2013 - Boris Glavic 490 @Silberschatz, Korth and Sudarshan

15

N Recap

B SQL queries

Clauses: SELECT, FROM , WHERE, GROUP BY, HAVING,
ORDER BY

Nested subqueries

Equivalence with relational algebra
B SQL update, inserts, deletes

Semantics of referencing updated relation in WHERE
® SQL DDL

Table definition: CREATE TABLE

5425 — Fall 2013 - Boris Glavic 491 @Silberschatz, Korth and Sudarshan

End of Chapter 4

Modified from:
Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Advanced SQL Features**

S 2

B Create a table with the same schema as an existing table:
create table temp_account like account

©8425 - Fall 2013 - Boris Glavic 494 @Silberschatz, Korth and Sudarshan

Outline
B Introduction
B Relational Data Model
B Formal Relational Languages (relational algebra)
B SQL - Intermediate
W Database Design
W Transaction Processing, Recovery, and Concurrency Control
W Storage and File Structures
B Indexing and Hashing
B Query Processing and Optimization
5425 - Fall 2013 - Boris Glavic 493 @Silberschatz, Korth and Sudarshan
Figure 3.02
name
Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim
©5425 - Fall 2013 - Boris Glavie a5 @Silberschatz, Korth and Sudarshan

Figure 3.03

dept_name

Comp. Sci.
Finance
Music
Physics
History
Phy:
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

s

©8425 - Fall 2013 - Boris Glavic 496 @Silberschatz, Korth and Sudarshan

16

Figure 3.04 Figure 3.05
name dept_name | building

Srinivasan [Comp. Sci. | Taylor

Wu Finance Painter

Mozart Music Packard

Einstein | Physics Watson

L. El Said History Painter
Katz Gold Physics Watson
Brandt Katz Comp. Sci. [Taylor
Califieri | History Painter

Singh Finance Painter

Crick Biology Watson

Brandt Comp. Sci. [Taylor

Kim Elec. Eng. | Taylor

Figure 3.07 Figure 3.08

name Course_id D name | dept_name | salary | course_id| sec_id | semester| year
Srinivasan | CS-101 10101 |Srinivasan| Comp. Sci.| 65000 | CS-101 1 |Fall 2009
Srinivasan| CS-315 10101 |Srinivasan| Comp. Sci.| 65000| CS-315 1 |Spring | 2010
Srinivasan| CS-347 10101 |Srinivasan| Comp. Sci.| 65000| CS-347 1 Fall 2009
Wu FIN-201 12121 |Wu Finance | 90000 | FIN-201 1 Spring | 2010
Mozart MU-199 15151 |Mozart Music 40000 MU-199 1 Spring | 2010
Einstein PHY-101 22222 |Einstein | Physics 95000| PHY-101| 1 Fall 2009
El Said HIS-351 32343 |El Said History [60000| HIS-351 1 |[Spring | 2010
Katz Cs-101 45565 |Katz Comp,’Sci. 75000{ Cs-101 1 Spring | 2010
Katz CS-319 45565 |Katz Comp. Sci.| 75000| CS-319 1 |Spring | 2010
Crfck BIO-101 76766 |Crick Biology 72000{ BIO-101 1 |Summer| 2009
Crick BIO-301 76766 |Crick Biology [72000| BIO-301 1 |Summer| 2010
Brandt Cs5-190 83821 |Brandt Comp. Sci.[92000(CS-190 1 |Spring | 2009
Brandt CS-190 83821 |Brandt Comp. Sci.{ 92000| CS-190 2 |Spring | 2009
Brandt CS-319 83821 |Brandt Comp. Sci. 92000| CS-319 2 |Spring | 2010
Kim EE-181 98345 |Kim Elec. Eng. |80000| EE-181 1 |Spring | 2009

Figure 3.09 Figure 3.10

[course_id
e C5-101
Course_ia Cs-315
CS101 Cs-319
C5-347 C5-319
PHY-101 FIN-201
HIS-351
MU-199
(8425 - Fall 2013 - Borls Giavic 101 cSilberschatz, Korth and Sudarshan 5425 - Fall 2013 - Borls Gilavic a02 silberschatz, Korth and Sudarshan

425 - Fall 2013 - Boris Glavic

Figure 3.11

Course_id
Cs-101

MU-199
PHY-101

4103

@Silberschatz, Korth and Sudarshan

5425 - Fall 2013 - Boris Glavic

Figure 3.13

course_id

CS-347
PHY-101

4105

@Silberschatz, Korth and Sudarshan

425 - Fall 2013 - Boris Glavic

Figure 3.17

4107

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 3.12

4104

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 3.16

dept_name_| count

Comp. Sci.| 3
Finance
History
Music

4108

@Silberschatz, Korth and Sudarshan

18

