

CS425 - Fall 2014 Boris Glavic Course Information

Modified from:

Database System Concepts, 6th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

CS425 - Fall 2014 - Boris Glavia

Silberschatz, Korth and Sudarshan

CS425 - Fall 2014 - Boris Glavic 0.3 @Silberschatz, Korth and Sudarshan

Why are Databases Important?

- What do Databases do?
- 1. Provide persistent storage
- 2. Efficient declarative access to data -> Querying
- 3. Protection from hardware/software failures
- 4. Safe concurrent access to data

Who uses Databases?

- Most big software systems involve DBs!
 - Business Intelligence ⇒ e.g., IBM Cognos
 - Web based systems
- You! (desktop software)
 - Your music player ⇒ e.g., Amarok
 - Your Web Content Management System
 - Your email client
- Every big company
 - Banks
 - Insurance
 - Government
- Google, ...

CS425 – Fall 2014 – Boris Glavic

amar@ĸ=

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2014 - Boris Glavic

0.5

©Silberschatz, Korth and Sudarshan

Who Produces Databases?

- Traditional relational database systems is big business
 - IBM ⇒ DB2
 - Oracle ⇒ Oracle ☺
 - Microsoft ⇒ SQLServer
 - Open Source ⇒ MySQL, Postgres, ...
- Emerging distributed systems with DB characteristics and Big Data
 - Cloud storage and Key-value stores ⇒Amazon S3, Google Big Table, . . .
 - Big Data Analytics ⇒Hadoop, Google Map & Reduce, . . .
 - SQL over Distributed Platforms ⇒ Hive, Tenzing,

ORACLE:

amazon.com

@Silberschatz, Korth and Sudarshan

Why are Database Interesting (for Students)?

- Connection to many CS fields
 - Distributed systems
 - Getting more and more important
 - Compilers
 - Modeling
 - Al and machine learning
 - Data mining
 - Operating and file systems
 - Hardware
 - Hardware-software co-design

Webpage and Faculty

Why are Database Interesting (for

Students)?

Background in databases make you competitive in the job

Database research has a strong systems aspect

Hacking complex and large systems

- cache-conscious algorithms

Databases have a strong theoretical foundation

Exploit modern hardware

Complexity of query answeringExpressiveness of query languages

- Course Info
 - Course Webpage: http://cs.iit.edu/~cs425
 - Google Group:

■ The pragmatic perspective

Systems and theoretical research

Low-level optimization

▶ Concurrency theory

market ;-)

https://groups.google.com/d/forum/cs425-2014-fall-group

- Used for announcements
- ▶ Use it to discuss with me, TA, and fellow students
- Syllabus: http://cs.iit.edu/~cs425/files/syllabus.pdf
- Faculty
- Boris Glavic (http://cs.iit.edu/~glavic)
- Email: bglavic@iit.edu
- Phone: 312.567.5205
- Office: Stuart Building, room 226C
- Office Hours: Tuesdays, 12pm-1pm (and by appointment)

CS425 - Fall 2014 - Boris Glavio

0.9

Silberschatz, Korth and Sudarsha

CS425 - Fall 2014 - Boris Glavic

0.10

@Silberschatz, Korth and Sudarshar

TAs

■ Tas • TBA

Workload and Grading

- Exams
 - Midterm (25%)
 - Final (35%)
- Homework Assignments (preparation for exams!)
 - HW1 (Relational algebra)
 - HW2 (SQL)
 - HW3 (Database modeling)
- Course Project
 - In groups of 3 students
 - Given an example application (e.g., ticketing system)
 - Develop a database model
 - > Derive a database schema from the model
 - Implement the application accessing the database

CS425 - Fall 2014 - Boris Glavio

0.11

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2014 - Boris Glavic

0.12

©Silberschatz, Korth and Sudarshan

Course Objectives

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand **SQL** queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to **create a database design** from a requirement analysis for a specific domain
- Know basic index structures and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query processing, and access $% \left(1\right) =\left(1\right) \left(1\right)$

Course Project

- Forming groups
 - Your responsibility!
 - Inform me + TA
 - Deadline: Sep 8th
- Oracle Server Accounts ■ Git repositories
 - Create an account on Bitbucket.org (https://bitbucket.org/)
 - We will create a repository for each student

 - Use it to exchange code with your fellow group members
 - The project has to be submitted via the group repository
- Timeline:
 - Brainstorming on application (by Sep 11th)
 - Design database model (by Nov 12th)
 - Derive relational model (by Nov 25th)
 - Implement application (by end of the semester)

Fraud and Late Assignments

- All work has to be original!
- Cheating = 0 points for assignment/exam
- Possibly E in course and further administrative sanctions
- Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - No exceptions!
- Course projects:
 - Every student has to contribute in every phase of the project!
 - Don't let others freeload on you hard work!
 - Inform me or TA immediatly

Reading and Prerequisites

- Textbook: Silberschatz, Korth and Sudarsham
 - Database System Concepts, 6th edition
 - McGraw Hill
 - publication date: 2006.
 - ISBN 0-13-0-13-142938-8.
- Prerequisites:
 - CS 331 or CS401 or CS403

CS425 - Fall 2014 - Boris Glavio

CS425 - Fall 2014 - Boris Glavic

Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization

CS425 - Fall 2014 - Boris Glavic

0.17

@Silberschatz, Korth and Sudarshan