€425 - Fall 2014 - Boris Glavic 03

€425 - Fall 2014 - Boris Glavic 05

EaC RN S |

Hi, | am Boris Glavic,
Assistant Professor in

CS425 - Fall 2014
Boris Glavic
Course Information

Modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

| am a database guy!

Why are Databases Important?

What do Databases do?

Provide persistent storage

Efficient declarative access to data -> Querying
Protection from hardware/software failures

. Safe concurrent access to data

@silberschatz, Korth and Sudarshan

@silberschatz, Korth and Sudarshan

Hi, | am Boris Glavic,
Assistant Professor in
cs

©S425 - Fall 2014 - Boris Glavic 02 @Silberschatz, Korth and Sudarshan

| am a database guy!

Hi, I am Boris Glavic,
Assistant Professor in

1 will teach you:
database stuff

©8425 - Fall 2014 - Boris Glavic 04 @Silberschatz, Korth and Sudarshan

Who uses Databases?

B Most big software systems involve DBs! amar@x:
@ Business Intelligence = e.g., IBM Cognos .
© Web based systems
o .. Joomlal

B You! (desktop software)
@ Your music player = e.g., Amarok
© Your Web Content Management System
@ Your email client

ax o Coumany

° ..
B Every big company
© Banks
© Insurance
© Government
© Google, ...

o ...
©S425 - Fall 2014 - Boris Glavic 06

@Silberschatz, Korth and Sudarshan

E Who Produces Databases?

B Traditional relational database systems is big I\Q §6T.Server

business
IBM = DB2 [123 [082]

Oracle = Oracle ©
Microsoft = SQLServer
Open Source = MySQL, Postgres, ...
B Emerging distributed sy with DB
characteristics and Big Data
Cloud storage and Key-value stores =Amazon S3,

GOUgle
Google Big Table, . . .

Big Data Analytics =Hadoop, Google Map & facebook

Reduce, . . .
SQL over Distributed Platforms = Hive, Tenzing, ’

amazoncom

A
YaHoO!

€425 - Fall 2014 - Boris Glavic o7 @Silberschatz, Korth and Sudarshan

N Why are Database Interesting (for
- Students)?

m Connection to many CS fields

Distributed systems

» Getting more and more important
Compilers
Modeling
Al and machine learning

» Data mining
Operating and file systems
Hardware

» Hardware-software co-design

€425 - Fall 2014 - Boris Glavic 09 @silberschatz, Korth and Sudarshan

TAs

H Tas
TBA

€425 - Fall 2014 - Boris Glavic on @Silberschatz, Korth and Sudarshan

N Why are Database Interesting (for
- Students)?

B The pragmatic perspective
Background in databases make you competitive in the job
market ;-)

B Systems and theoretical research
Database research has a strong systems aspect
» Hacking complex and large systems
» Low-level optimization
cache-conscious algorithms
Exploit modern hardware
Databases have a strong theoretical foundation
» Complexity of query answering
» Expressiveness of query languages
» Concurrency theory
>

©S425 - Fall 2014 - Boris Glavic 08 @Silberschatz, Korth and Sudarshan

¥ Webpage and Faculty

H Course Info
Course Webpage:
Google Group:

» Used for announcements
» Use it to discuss with me, TA, and fellow students
Syllabus:
H Faculty
Boris Glavic (.)
Email:
Phone: 312.567.5205
Office: Stuart Building, room 226C
Office Hours: Tuesdays, 12pm-1pm (and by appointment)

©8425 - Fall 2014 - Boris Glavic 010 @Silberschatz, Korth and Sudarshan

N Workload and Grading

B Exams
Midterm (25%)
Final (35%)
B Homework Assignments (preparation for exams!)
HW1 (Relational algebra)
HW2 (SQL)
HW3 (Database modeling)
B Course Project
In groups of 3 students
Given an example application (e.g., ticketing system)
» Develop a database model
» Derive a database schema from the model
» Implement the application accessing the database

©8425 - Fall 2014 - Boris Glavic 012 @Silberschatz, Korth and Sudarshan

Course Objectives

B Understand the underlying ideas of database systems
Understand the relational data model

Be able to write and understand SQL queries and data definition
statements

Understand relational algebra and its connection to SQL
Understand how to write programs that access a database server
Understand the ER model used in database design

Understand normalization of database schemata

Be able to create a database design from a requirement analysis for
a specific domain

Know basic index structures and understand their importance

Have a basic understanding of relational database concepts such as
concurrency control, recovery, query processing, and access
control

©8425 - Fall 2014 - Boris Glavic 013 @Silberschatz, Korth and Sudarshan

Fraud and Late Assignments

W All work has to be original!
Cheating = 0 points for assignment/exam
Possibly E in course and further administrative sanctions
Every dishonesty will be reported to office of academic honesty
B Late policy:
-20% per day
No exceptions!
W Course projects:
Every student has to contribute in every phase of the project!
Don’t let others freeload on you hard work!
» Inform me or TA immediatly

©8425 - Fall 2014 - Boris Glavic 015 @silberschatz, Korth and Sudarshan

Outline

Introduction

Relational Data Model

Formal Relational Languages (relational algebra)

saL

Database Design

Transaction Processing, Recovery, and Concurrency Control
Storage and File Structures

Indexing and Hashing

Query Processing and Optimization

©8425 - Fall 2014 - Boris Glavic 017 @Silberschatz, Korth and Sudarshan

Course Project

B Forming groups
Your responsibility!
Inform me + TA
Deadline: Sep 8th
W Oracle Server Accounts
W Git repositories
Create an account on Bitbucket.org ()
We will create a repository for each student
Use it to exchange code with your fellow group members
The project has to be submitted via the group repository
B Timeline:
Brainstorming on application (by Sep 11t)
Design database model (by Nov 12)
Derive relational model (by Nov 25!")
Implement application (by end of the semester)

©8425 - Fall 2014 - Boris Glavic 014 @Silberschatz, Korth and Sudarshan

NE Reading and Prerequisites
—
B Textbook: Silberschatz, Korth and Sudarsham
Database System Concepts, 6 edition
McGraw Hill
publication date:2006,
ISBN 0-13-0-13-142938-8.
W Prerequisites:
CS 331 or CS401 or CS403

©8425 - Fall 2014 - Boris Glavic 016 @Silberschatz, Korth and Sudarshan

CS425 - Fall 2014
Boris Glavic
Chapter 1: Introduction

Modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

NE Database Management System (DBMS)
—
W DBMS contains information about a particular domain
Collection of interrelated data
Set of programs to access the data
An environment that is both convenient and efficient to use
W Database Applications:
Banking: transactions
Airlines: reservations, schedules
Universities: registration, grades
Sales: customers, products, purchases
Online retailers: order tracking, customized recommendations
Manufacturing: production, inventory, orders, supply chain
Human resources: employee records, salaries, tax deductions
W Databases can be very large.
W Databases touch all aspects of our lives

€425 - Fall 2014 - Boris Glavic 13 @silberschatz, Korth and Sudarshan

NE Drawbacks of using file systems to store data

Data redundancy and inconsistency
» Multiple file formats, duplication of information in different files
Difficulty in accessing data
» Need to write a new program to carry out each new task
Data isolation — multiple files and formats
Integrity problems

» Integrity constraints (e.g., account balance > 0) become
“puried” in program code rather than being stated explicitly

» Hard to add new constraints or change existing ones

€425 - Fall 2014 - Boris Glavic 15 @Silberschatz, Korth and Sudarshan

. Textbook: Chapter 1

©S425 - Fall 2014 - Boris Glavic 12 @Silberschatz, Korth and Sudarshan

¥ University Database Example

W Application program examples
Add new students, instructors, and courses
Register students for courses, and generate class rosters
Assign grades to students, compute grade point averages (GPA)
and generate transcripts

W In the early days, database applications were built directly on top of
file systems

©8425 - Fall 2014 - Boris Glavic 14 @Silberschatz, Korth and Sudarshan

Drawbacks of using file systems to store data (Cont.)

Atomicity of updates

» Failures may leave database in an inconsistent state with partial updates
carried out

» Example: Transfer of funds from one account to another should either
complete or not happen at all

Concurrent access by multiple users
» Concurrent access needed for performance
» Uncontrolled concurrent accesses can lead to inconsistencies

Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time

Security problems
» Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems!

©8425 - Fall 2014 - Boris Glavic 16 @Silberschatz, Korth and Sudarshan

@ Levels of Abstraction

W Physical level: describes how a record (e.g., customer) is stored.
W Logical level: describes data stored in database, and the relationships
among the data.
type instructor = record
ID : string;
name : string;
dept_name : string;
salary : integer;
end;
B View level: application programs hide details of data types. Views can
also hide information (such as an employee’ s salary) for security
purposes.

©S425 - Fall 2014 - Boris Glavic 17 @Silberschatz, Korth and Sudarshan

N Instances and Schemas
—

W Similar to types and variables in programming languages
B Schema - the logical structure of the database

Example: The database consists of information about a set of customers and
accounts and the relationship between them

Analogous to type information of a variable in a program
Physical schema: database design at the physical level
Logical schema: database design at the logical level
B Instance — the actual content of the database at a particular point in time
Analogous to the value of a variable

B Physical Data Independence — the ability to modify the physical schema without
changing the logical schema

Applications depend on the logical schema

In general, the interfaces between the various levels and components should be
well defined so that changes in some parts do not seriously influence others.

B Logical Data Independence — the ability to modify the logical schema without
changing the applications
For example, add new information to each employee

€425 - Fall 2014 - Boris Glavic 19 @silberschatz, Korth and Sudarshan

y Relational Model

B Relational model (Chapter 2)
Columns (attributes)

B Example of tabular data in the relational model//

1D name dept_name | salary
22222 Einstein Physics 95000 |«—— Rows (tuples)
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

€425 - Fall 2014 - Boris Glavic 11 @Silberschatz, Korth and Sudarshan

¥

©S425 - Fall 2014 - Boris Glavic 18

©8425 - Fall 2014 - Boris Glavic 110

¥

View of Data

An architecture for a database system

view level

‘ view 1 ‘ ‘ view 2 ‘ ‘ view n ‘

[

logical
level
|
physical
level

@Silberschatz, Korth and Sudarshan

Data Models

B A collection of tools for describing

Data

Data relationships

Data semantics

Data constraints
Relational model
Entity-Relationship data model (mainly for database design)
Object-based data models (Object-oriented and Object-relational)
Semistructured data model (XML)
Other older models:

Network model

Hierarchical model
W Other newer (or revived) models:

Key-value

@Silberschatz, Korth and Sudarshan

A Sample Relational Database

D name dept_name | salary
22222 Einstein Physics 95000
12121 u Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sei. | 75000
98345 Kim Elec. Eng. | 80000
76766 Biology 72000
10101 Srinivasan | Comp.Sci. | 65000
58583 Califieri History 62000
83821 Brandt Comp: Sci. | 92000
15151 Mozart Music 40000
33456 Gold 87000
76543 Singh 80000

(a) The instructor table

dept_name | building | budget
Comp. 5ci. | Taylor | 100000
Biology Watson | 90000
Elec. Eng. | Taylor 85000
M Packard [80000

inance Painter | 120000
History Painter | 50000
Physics Watson | 70000

(b) The department table
©S425 - Fall 2014 - Boris Glavic 112 @silberschatz, Korth and Sudarshan

Data Manipulation Language (DML)

¥

B Language for accessing and manipulating the data organized by the
appropriate data model

DML also known as query language
W Two classes of languages

Procedural — user specifies what data is required and how to get
those data

Declarative (nonprocedural) — user specifies what data is
required without specifying how to get those data

W SQL is the most widely used query language

©8425 - Fall 2014 - Boris Glavic 113 @Silberschatz, Korth and Sudarshan

SQL

~——

W SQL: widely used declarative (non-procedural) language
Example: Find the name of the instructor with ID 22222
select name
from instructor
where instructor.ID = ‘22222’
Example: Find the ID and building of instructors in the Physics dept.
select instructor.ID, department.building
from instructor, department
where instructor.dept_name = departmen‘t.dept,name and

department.dept_name = ‘Physics

W Application programs generally access databases through one of
Language extensions to allow embedded SQL

Application program interface (e.g., ODBC/JDBC) which allow SQL
queries to be sent to a database

W Chapters 3,4 and 5

©8425 - Fall 2014 - Boris Glavic 115 @silberschatz, Korth and Sudarshan

¥ Database Design?

B Is there any problem with this design?

D name salary | dept_name building | budget
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter 120000
32343 | ElSaid 60000 | History Painter 50000
45565 | Katz 75000 | Comp.Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan| 65000 | Comp.Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp.Sci | Taylor 100000
15151 | Mozart 40000 | Music Packard 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter 120000

©8425 - Fall 2014 - Boris Glavic 147 @Silberschatz, Korth and Sudarshan

Data Definition Language (DDL)

B Specification notation for defining the database schema

Example: create table instructor (
l/ char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

m DDL compiler generates a set of table templates stored in a data dictionary
B Data dictionary contains metadata (i.e., data about data)
Database schema
Integrity constraints
» Primary key (ID uniquely identifies instructors)
» Referential integrity (references constraint in SQL)

e.g. dept_name value in any instructor tuple must appear in
department relation

Authorization

©8425 - Fall 2014 - Boris Glavic 114 @Silberschatz, Korth and Sudarshan

Database Design

The process of designing the general structure of a database:

W Logical Design — Deciding on the database schema. Database design
requires that we find a “good” representation of the information from an
application domain (e.g., banking) as a collection of relation schemas.

Business decision — What information should we record in the
database?

Computer Science decision — What relation schemas should we
have and how should the attributes be distributed among the various
relation schemas?

W Physical Design — Deciding on the physical layout of the database

©S425 - Fall 2014 - Boris Glavic 116 @Silberschatz, Korth and Sudarshan

N Database Design?
SN—
B Example: Changing the budget of the ‘Physics’ department
Updates to many rows!
Easy to break integrity

» If we forget to update a row, then we have multiple budget
values for the physics department!

ID name salary | dept_name building | budget
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp.Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan| 65000 | Comp.Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp.Sci | Taylor 100000
15151 | Mozart 40000 | Music Packard | 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter 120000

©8425 - Fall 2014 - Boris Glavic 118 @silberschatz, Korth and Sudarshan

¥ Design Approaches

B Normalization Theory (Chapter 8)
Formalize what designs are bad, and test for them
B Entity Relationship Model (Chapter 7)
Models an enterprise as a collection of entities and relationships

» Entity: a “thing” or “object” in the enterprise that is
distinguishable from other objects

Described by a set of attributes
» Relationship: an association among several entities
Represented diagrammatically by an entity-relationship diagram:

€425 - Fall 2014 - Boris Glavic 1.19 @Silberschatz, Korth and Sudarshan

Object-Relational Data Models

W Relational model: flat, “atomic” values
E.g., integer
B Object Relational Data Models

Extend the relational data model by including object orientation
and constructs to deal with added data types.

Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

Preserve relational foundations, in particular the declarative
access to data, while extending modeling power.

Provide upward compatibility with existing relational languages.

©8425 - Fall 2014 - Boris Glavic 121 @silberschatz, Korth and Sudarshan

Storage Management

B Storage manager is a program module that provides the interface
between the low-level data stored in the database (on disk) and the
application programs and queries submitted to the system.

B The storage manager is responsible to the following tasks:
Interaction with the file manager
Efficient storing, retrieving and updating of data
W [ssues:
Storage access
File organization
Indexing and hashing

€425 - Fall 2014 - Boris Glavic 123 @Silberschatz, Korth and Sudarshan

¥ The Entity-Relationship Model

B Models an enterprise as a collection of entities and relationships

Entity: a “thing” or “object” in the enterprise that is distinguishable
from other objects

» Described by a set of attributes
Relationship: an association among several entities
B Represented diagrammatically by an entity-relationship diagram:

instructor department
ID member dept_name
name building
salary budget

What happened to dept_name of instructor and student?

©S425 - Fall 2014 - Boris Glavic 1.20 @Silberschatz, Korth and Sudarshan

N. XML: Extensible Markup Language

B Defined by the WWW Consortium (W3C)

W Originally intended as a document markup language not a
database language

W The ability to specify new tags, and to create nested tag structures
made XML a great way to exchange data, not just documents

B XML has become the basis for all new generation data interchange
formats.

W A wide variety of tools is available for parsing, browsing and
querying XML documents/data

©8425 - Fall 2014 - Boris Glavic 122 @Silberschatz, Korth and Sudarshan

¥ Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

parser and relational-algebra
translator expression

statistics
about data

©8425 - Fall 2014 - Boris Glavic 120 @Silberschatz, Korth and Sudarshan

Query Processing (Cont.)

W Alternative ways of evaluating a given query
Equivalent expressions
Different algorithms for each operation

W Cost difference between a good and a bad way of evaluating a query can
be enormous

B Need to estimate the cost of operations

Depends critically on statistical information about relations which the
database must maintain

Need to estimate statistics for intermediate results to compute cost of
complex expressions

B Need to search for a good plan (low costs)

Traversing the search space of alternative ways (plans) to compute
the query result

This is called query optimization

€425 - Fall 2014 - Boris Glavic 125 @Silberschatz, Korth and Sudarshan

§. Database Users and Administrators

naive users sophisticated
application database
F"“m' ag"““’] {pmgmmmers e administrators

web users) (analysts)

use

application
interfaces

write use use

‘administration
tools

Database

€425 - Fall 2014 - Boris Glavic 127 @silberschatz, Korth and Sudarshan

iﬁ Database Architecture

The architecture of a database systems is greatly influenced by
the underlying computer system on which the database is running:
H Centralized

H Client-server

B Parallel (multi-processor)

B Distributed

€425 - Fall 2014 - Boris Glavic 129 @Silberschatz, Korth and Sudarshan

N Transaction Management
S—

B What if the system fails?
What if more than one user is concurrently updating the same data?

B Atransaction is a collection of operations that performs a single
logical function in a database application

W Trar i ponent ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.

m Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

©S425 - Fall 2014 - Boris Glavic 126 @Silberschatz, Korth and Sudarshan

e

Storage manager

disk sorage

©8425 - Fall 2014 - Boris Glavic 128 @Silberschatz, Korth and Sudarshan

Build a Complete Database System in
your free time?

B How much time do you need?
B To get arough idea:
Postgres (about 800,000 lines of code)
» Hundreds of man-years of work
Oracle (about 8,000,000 lines of code)
» Probably thousands of man-years of work?
B Hmm, ... probably not!
B Maybe a limited research prototype or new feature ;-)

©8425 - Fall 2014 - Boris Glavic 1.30 @Silberschatz, Korth and Sudarshan

¥ History of Database Systems

W 1950s and early 1960s:
Data processing using magnetic tapes for storage
» Tapes provided only sequential access
Punched cards for input
W Late 1960s and 1970s:
Hard disks allowed direct access to data
Network and hierarchical data models in widespread use
Ted Codd defines the relational data model
» Would win the ACM Turing Award for this work
» IBM Research begins System R prototype
» UC Berkeley begins Ingres prototype
High-performance (for the era) transaction processing

€425 - Fall 2014 - Boris Glavic 131 @Silberschatz, Korth and Sudarshan

¥ Recap
B Why databases?
B What do databases do?
B Data independence
Physical and Logical
W Database design
H Data models
Relational, object, XML, network, hierarchical
B Query languages
DML
DDL
W Architecture and systems aspects of database systems
Recovery
Concurrency control
Query processing (optimization)
File organization and indexing
W History of databases

€425 - Fall 2014 - Boris Glavic 1.33 @silberschatz, Korth and Sudarshan

y Outline

H Introduction

B Relational Data Model

B Formal Relational Languages (relational algebra)

m sQL

W Database Design

W Transaction Processing, Recovery, and Concurrency Control
W Storage and File Structures

B Indexing and Hashing

B Query Processing and Optimization

€425 - Fall 2014 - Boris Glavic 135 @Silberschatz, Korth and Sudarshan

¥ History (cont.)

W 1980s:
Research relational prototypes evolve into commercial systems
» SQL becomes industrial standard
Parallel and distributed database systems
Object-oriented database systems
W 1990s:
Large decision support and data-mining applications
Large multi-terabyte data warehouses
Emergence of Web commerce
W Early 2000s:
XML and XQuery standards
Automated database administration
W Later 2000s:
Giant data storage systems
» Google BigTable, Yahoo PNuts, Amazon, ..

©S425 - Fall 2014 - Boris Glavic 132 @Silberschatz, Korth and Sudarshan

End of Chapter 1

©8425 - Fall 2014 - Boris Glavic 134 @Silberschatz, Korth and Sudarshan

Figure 1.02

D name dept_iame | salary
222 Einstein | Physics 95000
12121 Wu Finance 90000
32343 ElSaid
45565 Katz
98345 Kim
76766 Crick
10101 Srinivasan
58583 Califieri
83821 Brandt
15151 Mozart
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept_name | building | _budget
Comp.5a. | Taylor | 100000
Biology | Watson | 90000
Elec. Eng. | Taylor | 85000

Music Packard | 80000
Finance | Painter | 120000
History | Painter | 50000

Physics | Watson | 70000

(b) The department table

©8425 - Fall 2014 - Boris Glavic 1.36 @Silberschatz, Korth and Sudarshan

Figure 1.04

D name salary | dept_name | building | budget
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp.Sci. | Taylor | 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan| 65000 | Comp.Sci. | Taylor | 100000
58583 | Califieri | 62000 | History Painter | 50000
83821 | Brandt 92000 | Comp.Sci | Taylor 100000
15151 | Mozart 40000 | Music Packard 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter 120000

©S425 - Fall 2014 - Boris Glavie 137

@Silberschatz, Korth and Sudarshan

(a) Two-tier architecture

©S425 - Fall 2014 - Boris Glavic

Figure 1.06

client

server

(b) Three-tier architecture

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2014
Boris Glavic
Chapter 2: Intro to Relational Model

Modifies from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Example of a Relation

attributes
‘%or columns)

ID name. dept_name salary

10101 | Srinivasan| Comp. Sci. | 65000

12121 | Wu Finance 90000 tuples

15151 | Mozart Music 40000 (or rows)

22222 | Einstein Physics 95000

32343 | El Said History 60000

33456 | Gold Physics 87000

45565 | Katz Comp. Sci. | 75000

58583 | Califieri History 62000

76543 | Singh Finance 80000

76766 | Crick Biology 72000

83821 | Brandt Comp. Sci. 92000

98345 [Kim Elec. Eng. 80000
8425 - Fall 2014 - Boris Glavic 23 @Silberschatz, Korth and Sudarshan
N2 Relation Schema and Instance

B A, A, ..., A, are attributes names

B R=(A, A, ..., A,)is a relation schema

Example:
instructor = (ID, name, dept_name, salary)
B Formally, given sets D,, D,, D, of domains a relation r (or relation
instance) is a subset of
Dyx D, x...xD,
Thus, a relation is a set of n-tuples (a,, a,, ..., a,) where each a; € D;
B The current values (relation instance) of a relation are often
specified in tabular form
W Caveat: being a set, the tuples of the relation do not have any
order defined as implied by the tabular representation
B Anelement tof ris a tuple, represented as a row in a table

©8425 - Fall 2014 - Boris Glavic 25 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2014 - Boris Glavic 22 @Silberschatz, Korth and Sudarshan

Attribute Types

B The set of allowed values for each attribute is called the domain
or data type of the attribute

W Attribute values are (normally) required to be atomic; that is,
indivisible
E.g., integer values
E.g., not address (street, city, zip code, state, country)
W The special value null is a member of every domain
Means unknown or not applicable

B The null value causes complications in the definition of many
operations

Will be detailed later

©8425 - Fall 2014 - Boris Glavic 24 @Silberschatz, Korth and Sudarshan

@ Alternative Definitions

W A relation schema is often defined as a list of attribute-domain pairs

That is the data types of each attribute in the relation are
considered as part of the relation schema

B Tuples are sometimes defined as functions from attribute names to
values (order of attributes does not matter)

W A relation r can be specified as a function
D; x D, x ... x D,->{true, false}

t=(ay, a ..., @, is mapped to trueif tis in r and to false
otherwise

B These alternative definition are useful in database theory
We will stick to the simple definition!

O
'(:;@\%

©8425 - Fall 2014 - Boris Glavic 26 @silberschatz, Korth and Sudarshan

i‘; Relations are Unordered

W Arelation is a set -> the elements of a set are not ordered per se
W From a pratical perspective:

WOrder of tuples is irrelevant (tuples may be stored in an arbitrary
order)

W Example: instructor relation with unordered tuples

D nanie dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000

45565 | Katz Comp. Sci. 75000

98345 | Kim Elec. Eng, 80000
76766 | Crick Biology 72000
10101 | Srinivasan| Comp.Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000
5425 ~ Fall 2014 - Boris Glavic 27 eSilberschatz, Korth and Sudarshan

Bad Design Example Revisited

m Example: Changing the budget of the ‘Physics’ department
Updates to many rows!
» Easy to break integrity

» If we forget to update a row, then we have multiple budget
values for the physics department!

B Example: Deleting all employees from the ‘Physics’ department
How to avoid deleting the ‘Physics’ department?
Dummy employee’s to store departments?

» This is bad. E.g., counting the number of employees per
department becomes more involved

O T T
S5000 70000
90000 120000
000 50000
75000 100000
0000 85000
72000 50000
00 100000
2000 5000
92000 Taylor | 100000
10000 Packard | 50000
7000 | Physics | Watson | 70000
50000 | Finance | Painter_| 120000

©8425 - Fall 2014 - Boris Glavic 29 @silberschatz, Korth and Sudarshan

Keys

W Formally, a set of attributes K C R is a superkey if for every instance r of
R holds that

vVitentK=tK =>t=t
B Asuperkey Kis called a candidate key iff
VK CK: K is not a superkey

m A foreign key constraint FK is quartuple (R, K, R’, K’) where R and R’ are
relation schemata, K C R, K’ is the primary key of R’, and IKI = IK’|

m A foreign key holds over an instance {r, r’} for {R,R’} iff
VteR: IR tK=t'K

©8425 - Fall 2014 - Boris Glavic 21 @Silberschatz, Korth and Sudarshan

¥

©S425 - Fall 2014 - Boris Glavic 28

¥

©8425 - Fall 2014 - Boris Glavic 210

Database

B A database schema S consists of multiple relation schema

B A database instance /for a schema S is a set of relation instances
One relation for each relation schema in S

® Information about an enterprise is broken up into parts

instructor
student
advisor

B Bad design:
univ (instructor -ID, name, dept_name, salary, student_Id, ..)
results in

repetition of information (e.g., two students have the same instructor)

the need for many null values (e.g., represent an student with no
advisor)

m Normalization theory (Chapter 7) deals with how to design “good”
relational schemas avoiding these problems

@Silberschatz, Korth and Sudarshan

Keys

B LetKCR

B Kis a superkey of Rif values for K are sufficient to identify a unique
tuple of each possible relation r(R)

Example: {/D} and {ID,name} are both superkeys of instructor.

B Superkey Kis a candidate key if K'is minimal (no subset of K is also a
superkey)
Example: {/D}is a candidate key for Instructor

W One of the candidate keys is selected to be the primary key.
which one? -> domain specific design choice

B Foreign key constraint: Value in one relation must appear in another
Referencing relation
Referenced relation

@Silberschatz, Korth and Sudarshan

Schema Diagram for University Database

student
L
dp
tot_cred
section course
| course id department
Lyl s title ept_name
o s dept_name .
b depton building
| building budget
1 room_no
time_slot_id
end_time
[prereq] instructor’
classroom e il I
Lyl b ng prereq id name
3| zoom o dept_ame
capacity teaches salary
)
course_id
€5425 - Fall 2014 - Boris Glavie 212 ©Silberschatz, Korth and Sudarshan

¥ Relational Query Languages

W Procedural vs non-procedural (declarative)
W “Pure” languages:
Relational algebra
Tuple relational calculus
Domain relational calculus
B Expressive power of a query language
What queries can be expressed in this language?
B Relational algebra:

Algebra of relations -> set of operators that take relations as input
and produce relations as output

-> composable: the output of evaluating an expression in relational
algebra can be used as input to another relational algebra
expression

m Now: First introduction to operators of the relational algebra

©8425 - Fall 2014 - Boris Glavic 213 @Silberschatz, Korth and Sudarshan

§E Selection of Columns (Attributes)

B Relation r: A[B|C
a|10(1
al20(1
B130]1
B 40| 2

H SelectAand C A|C AlC

WProjection al 1 ol 1
i, g () all = [5 1
g1 Bl 2
pl2
8425 - Fall 2014 - Boris Glavic 215 ©Silberschatz, Korth and Sudarshan
N2 Union of two relations
e
M Relations r, s: A B A B
afll af2
al?2 pl3
Bl1 s
7
W rUs: Al B
afl
af2
Bl1
B3

¥ Selection of tuples
W Relation r A B C D
alall1]7
al|B|5]|7
B|Bl2|3
B | B [23[10

B Select tuples with A=B
andD>5 A B C D

B0 gangp>s (1)

™ R
=
N
w

10

©8425 - Fall 2014 - Boris Glavic 214 @Silberschatz, Korth and Sudarshan

N£ Joining two relations — Cartesian Product

[AB] C[D[E
[a] 1 «[10] a
18] 2 Bl10|a
b
b

M Relations r, s:

‘
=

20
v [10
s

W rxs:

10
10
20
10

PEY Y]]

B |10

TR R R R[N
NN RN == e e
coy s oo oM

v [10

©8425 - Fall 2014 - Boris Glavic 216 @Silberschatz, Korth and Sudarshan

ﬁ: Set difference of two relations

M Relations r, s:

=™ Qfs
N

= 2 2
= N =g

m-s: Al B

s}
-

©8425 - Fall 2014 - Boris Glavic 218 @silberschatz, Korth and Sudarshan

&; Set Intersection of two relations

B Relationr, s:

N

A
a
B

s

= 2 2
= N =t

®mrNs Al|lB

R
N

©8425 - Fall 2014 - Boris Glavic 219 @Silberschatz, Korth and Sudarshan

¥ Natural Join Example

M Relationsr, s:

A|BICI|D BI|D|E
all|ala 1fafa
Bl2]|y|a 3|a|p
v|4|B|b 1|aly
al1|v|a 2(b|[d
5|2|B|b 3|ble
r s
B Natural Join A|B|CIDI|E
s all1]|ala|a
alllafaly
allfy|a
all Ylaly
512|B|b|d
8425 - Fall 2014 - Boris Glavic 221

@silberschatz, Korth and Sudarshan

End of Chapter 2

Modifies from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

N. Joining two relations - Natural Join

B Let rand s be relations on schemas R and S respectively.
Then, the “natural join” of relations AR and Sis a relation on
schema R U S obtained as follows:

Consider each pair of tuples . from rand tg from s.

If t,and t; have the same value on each of the attributes
in RN S, add a tuple t to the result, where

» thas the same value as t on r

» thas the same value as tgon s

©8425 - Fall 2014 - Boris Glavic 220 @Silberschatz, Korth and Sudarshan

Figure in-2.1

Symbol (Name) | Example of Use

; eton S salary>=83000 (fnstriclor)
Selection]

Return rows of the input relation that satisfy the
predicate.

I I

(Projection)

1, salary (instruclor)

Output specified attributes from all rows of the input
relation. Remove duplicate tuples from the output.

inslructor M department

(Natural Join) Output pairs of tows from the two Input relations that
have the same value on all attributes that have the same
name.

x instructor x department

(Cartesian Product)

Gulpul all pairs of rows from Lhe two inpul relations
(regardless of whether or not they have the same values
on common attributes)

u Uy, elnstructor) UTL oo (student)
(Union)
Output the union of Luples from the Lwo inpul
relations.
©8425 - Fall 2014 - Boris Glavic 222

@Silberschatz, Korth and Sudarshan

Recap

W Database Schema (or short schema)
Set of relation schemata
» List of attribute names
W Database Instance (or short database)
Set of relations instances
» Set of tuples
List of attribute values
B Integrity Constraints
Keys (Super-, Candidate-, Primary-)
» For identifying tuples
Foreign keys
» For referencing tuples in other relations
B Query language
Declarative
Retrieve, combine, and analyze data from a database instance

©8425 - Fall 2014 - Boris Glavic 224 @silberschatz, Korth and Sudarshan

Outline Figure 2.01

W Introduction
W Relational Data Model
B Formal Relational Languages (relational algebra)
D nane dept_name_| _salary
® SQL 10101 | Srinivasan| Comp.Sci. [65000
® Database Design 12121 | Wu Finance 90000
:) 15151 | Mozart Music 40000
B Transaction Processing, Recovery, and Concurrency Control 22022 | Einstein Physics 95000
; 32343 | El Said History 60000
W Storage and File Structures 38456 | Gold Physice 87000
W Indexing and Hashing 45565 | Katz Comp. Sci. | 75000
= Q P) d Optimizati 58583 | Califieri | History 62000
uery Processing and Optimization 76543 | Singh Finance 20000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. [92000
98345 | Kim Elec. Eng. | 80000
©S425 - Fall 2014 - Boris Glavie 225 @Silberschatz, Korth and Sudarshan €5425 - Fall 2014 - Boris Glavic 226 @Silberschatz, Korth and Sudarshan
Figure 2.02 Figure 2.03
course_id | title dept_name | _credits
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Genetics Biology 4 _ _
BIO-399 | Computational Biology Biology 3 course_id_| prereq_id
C5-101 | Intro. to Computer Science | Comp. Sci 4 BIO-301 | BIO-101
C5-190 | Game Design Comp.Sci. [4 BIO-399 | BIO-101
CS-315 | Robotics Comp.Sci. [3 C5190 | Cs-101
C5319 [Image Processing Comp.Sci. [3 C5315 | CS-101
5347 | Database System Concepts | Comp.Sci.| 3 Cs319 | Cs-101
EE-181 | Intro. to Digital Systems Elec. Eng. 3 Cs347 | Cs-101
FIN-201 | Investment Banking Finance 3 EE-181 | PHY-101
HIS351 | World History History 3
MU-199 | Music Video Production Music 3
PHY-101 | Physical Principles Physics 4
©S425 - Fall 2014 - Boris Glavic 227 @Silberschatz, Korth and Sudarshan ©5425 - Fall 2014 - Boris Glavie 228 @ilberschatz, Korth and Sudarshan

Figure 2.04 Figure 2.05

D | name dept_name_|_salary
22222 | Einstein | Physics 95000
12121 | Wu Finance 90000 dept_name_| building | budget
32343 | El Said History 60000 o Warsor 50000
45565 | Katz Comp. Sci. | 75000 1008y
: Comp. Sci. | Taylor | 100000
98345 | Kim Elec. Eng. | 80000
g 5 ; Elec. Eng. | Taylor | 85000
6766 | Crick Biology 72000 ; :
-~ 1008y Finance | Painter | 120000
10101 | Srinivasan | Comp. Sci. 65000 " o
s ° History | Painter | 50000
58583 | Califieri | History 62000 ©
. Music Packard | 80000
83821 | Brandt Comp.Sci. | 92000 e Watson | 70000
15151 | Mozart Music 40000 ysics L
33456 | Gold Physics 87000
76543 | Singh Finance 80000

€425 - Fall 2014 - Boris Glavic 229 @Silberschatz, Korth and Sudarshan ©8425 - Fall 2014 - Boris Glavic 230 @Silberschatz, Korth and Sudarshan

Figure 2.06 Figure 2.07

Course_id | sec_id | semester | year | building [room_niumiber] time_slot_id] ID | course_id | sec_id [semester | year
BIO-101 1 Summer | 2009 | Painter 514 B 10101 | CS-101 1 Fall 2009
BIO-301 | 1 | Summer | 2010 | Painter | 514 A 10101 [€315 | 1| Spring | 2010
Cs-101 1| Fall 2009 | Packard | 101 H 10101 [Cs-347 | 1 | Fall 2009
Cs-101 1| Spring | 2010 | Packard | 101 [12121 [FIN-201 | 1| Spring | 2010
C5-190 1 Spring | 2009 | Taylor 3128 E 15151 | MU-199 | 1 Spring | 2010
€519 | 2 | Spring | 2009 | Taylor | 3128 A 2202 [PHY-101| 1 | Fall 2009
1| Spring | 2010 | Watson | 120 D 32343 [HIS351 | 1| Spring | 2010
cs319 | 1 | Spring | 2010 | Watson | 100 B 45565 | 5101 | 1 | Spring | 2010
cs319 | 2 | Spring | 2010 | Taylor | 3128 c 45565 | 5319 | 1 | Spring | 2010
Cs347 1| Fall 2009 | Taylor | 3128 A 76766 | BIO-101 | 1 | Summer | 2009
EE-181 1 Spring | 2009 | Taylor 3128 c 76766 | BIO-301 1 Summer | 2010
FIN-201 1 Spring | 2010 | Packard 101 B 83821 | CS-190 1 Spring | 2009
HIS351 | 1 | Spring | 2010 | Painter | 514 C 83821 [Cs190 | 2 | Spring | 2009
MU-199 | 1 | Spring | 2010 | Packard | 101 D 83821 | 5319 | 2 | Spring | 2010
PHY-101 1 Fall 2009 [Watson 100 A 98345 | EE-181 1 Spring 2009
5425 - Fall 2014 - Boris Giavic 21 GSilberschatz, Korth and Sudarshan 8425 - Fall 2014 - Boris Glavic 232 ilberschatz, Korth and Sudarshan
Figure 2.10 Figure 2.11
D[sdlary
10101 | 65000
12121 | 90000
D[vame | deplname | salary L et
2121 | Wu Tinance | 90000 32313 | 60000
22222 | Einstein | Physics 95000 33456 | 87000
33456 | Gold Physics 87000 15565 | 75000
83821 | Brandt | Comp.Sci. | 92000 58583 | 62000
76543 | 80000
76766 | 72000
83821 | 92000
98345 | 80000
5425 - Fall 2014 - Bors Glavie 23 eSilberschatz, Korth and Sudarshan 5425 - Fall 2014 - Bors Glavie: 234 @Silberschatz, Korth and Sudarshan
Figure 2.12 Figure 2.13
D wanie | salary | dept_name | building | budget
10101 Srinivasan | 65000 | Comp. Sci. [Taylor 100000
12121 Wu 90000 | Finance Painter [120000
15151 | Mozart | 40000 | Music Packard | 80000 o
22222 | Einstein | 95000 | Physics | Watson | 70000] || 52
32343 | ElSaid | 60000 | History | Painter | 50000 12121 | 90000
33456 Gold 87000 | Physics Watson | 70000 22222 | 95000
45565 | Katz 75000 | Comp. Sci. | Taylor | 100000 33456 | 87000
58583 | Califieri 62000 | History Painter | 50000 [83821 [92000 |
76543 | Singh 80000 | Finance | Painter | 120000
76766 Crick 72000 | Biology Watson | 90000
83821 | Brandt | 92000 | Comp. Sci. | Taylor | 100000
98345 | Kim 80000 | Elec. Eng. | Taylor | 85000

€425 - Fall 2014 - Boris Glavic 235 @Silberschatz, Korth and Sudarshan ©8425 - Fall 2014 - Boris Glavic 236 @Silberschatz, Korth and Sudarshan

v

CS425 — Fall 2013
Boris Glavic
Chapter 3: Formal Relational Query
Languages

Modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

N Relational Algebra

W Procedural language

W Six basic operators
select: O
project:]
union: U
set difference: —
Cartesian product: x
rename: p

B The operators take one or two relations as inputs and produce a new
relation as a result.

composable

8425 - Fall 2013 - Boris Glavic 33 @Silberschatz, Korth and Sudarshan

y Select Operation

® Notation: o (1)
B pis called the selection predicate
B Defined as:

op(r) ={t[ternpt)}
Where pis a formula in propositional calculus consisting of terms
connected by : A (and), v (or), - (not)
Each term is one of:
<attribute> op <attribute> or <constant>
where opisone of: =, =, >, 2 < =
m Example of selection:

9 dept_name="Physics Ainstructor)

©S425 - Fall 2013 - Boris Glavic 35 @Silberschatz, Korth and Sudarshan

jr; Chapter 3: Formal Relational Query Languages

B Relational Algebra
B Tuple Relational Calculus
B Domain Relational Calculus

~ Textbook: Chapter 6

CS425 - Fall 2013 - Boris Glavic 32 @Silberschatz, Korth and Sudarshan

N- Select Operation — Example
| S —
W Relation r
A|B|C|D
alal|l]|7
alB|5]7
BlB2l3
B[B 23l10
" Opgr0>s5(")
A=B"D>5 A B C D
alal1]7
B |B|23l10
N- Project Operation — Example
[~—ror
W Relation r: ATBIC
af10[1
al20]1
B 30| 1
B 40 2
u HA,C(V) A|C AlC
all all
all] = |B|1
Bl1 Bl2
Bl2

Project Operation

82

® Notation:
H 4 ,Az,...,Ak(r)

where A, A, are attribute names and ris a relation name.

B The result is defined as the relation of k columns obtained by erasing
the columns that are not listed

® Duplicate rows removed from result, since relations are sets
B Let A be a subset of the attributes of relation r then:

ma(r) ={t.A|ter}
B Example: To eliminate the dept_name attribute of instructor

HID, name, salary (i instructon

Union Operation — Example

A2

©8425 - Fall 2013 - Boris Glavic 37 @Silberschatz, Korth and Sudarshan

B Relations r, s: AlB AlB
all a2
al?2 Pl3
Bl1 s

¥

H rUs: Al B

all
af2
Bl1
B3
©5425 - Fall 2013 - Boris Glavic 38 GSilberschatz, Korth and Sudarshan

Union Operation

B Notation: rU s
m Defined as:

rUs={t|tervtes}

W For rU sto be valid.
1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2" column
of rdeals with the same type of values as does the 2nd
column of s)

B Example: to find all courses taught in the Fall 2009 semester, or in the
Spring 2010 semester, or in both

Hcourseiid (o semester="Fall” A year=2009 (section)) v
Heourse_id (o semester="Spring” A year=2010 (section))

©8425 - Fall 2013 - Boris Glavic 39 @Silberschatz, Korth and Sudarshan

Set difference of two relations

N

M Relations r, s:

AlB AlB
afl al2
al 2 B3
Bl1 B
r
W or-s: Al B
all
Bl1
5425 - Fall 2013 - Bors Glavic a10 GSilberschatz, Korth and Sudarshan

N Set Difference Operation

B Notation r—s
® Defined as:

r—s={t|ternt¢s}

m Set differences must be taken between compatible relations.
rand s must have the same arity
attribute domains of rand s must be compatible

m Example: to find all courses taught in the Fall 2009 semester, but
not in the Spring 2010 semester

Hcourse,id((’ semester="Fall” A year=2009 (section)) -

ncaurse,ld (o semester="Spring” A year=2010 (section))

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic an

Cartesian-Product Operation — Example

N

CI[D|E
a|10fa
B 10| a
B [20]b
v |10]b
s

B Relations 1, s:

W rxs:

©

a |10
Bl10
B |20
v [10
a |10
B |10
B {20
v |10

cow v oo s

TR R R R
NN NN === e
3

P

©8425 - Fall 2013 - Boris Glavic 312 @Silberschatz, Korth and Sudarshan

N Cartesian-Product Operation

Notation rx s
W Defined as:

/ /
rxs={tt |[ternt €s}
Assume that attributes of r(R) and s(S) are
disjoint. (Thatis, RN S= 2).

If attributes of r(R) and s(S) are not disjoint, then
renaming must be used.

©8425 - Fall 2013 - Boris Glavic 313 @Silberschatz, Korth and Sudarshan

N- Composition of Operations
B Can build expressions using multiple operations
B Example: op_c(rxs)

W rxs

af10
Bl1o
B |20
Y10
a|10]

B [20
Y |10]

TR R R RN
NNNNRFR == =
Toe s oo s

B 0, c(rxs)

10
g0
820

NN o
o8 st

=™ !>

©8425 - Fall 2013 - Boris Glavic 314 @Silberschatz, Korth and Sudarshan

Rename Operation

B Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.

W Allows us to refer to a relation by more than one name.
W Example:
px(n
returns the expression E under the name X
B If a relational-algebra expression E has arity n, then

/)JC(A1 Ay ,...‘An)(r)

returns the result of expression E under the name X, and with the

attributes renamed to A;, Ay,, Aj.

px(r) ={t(X) |t e}
pxa)(r) ={t(X). At er}

©8425 - Fall 2013 - Boris Glavic 315

@Silberschatz, Korth and Sudarshan

Nz Example Query

B Find the largest salary in the university

Step 1: find instructor salaries that are less than some other
instructor salary (i.e. not maximum)

using a copy of instructor under a new name d
Tinstructor.salary\Tinstructor.salary<d.salary
(instructor X pq(instructor)))
Step 2: Find the largest salary

Tsalary (instructor)—

Tinstructor.salary (UinstTuctor.sala?‘y<d,sala7‘y

instructor X pg(instructor
p

©8425 - Fall 2013 - Boris Glavic 316 @Silberschatz, Korth and Sudarshan

N- Example Queries
[N—
B Find the names of all instructors in the Physics department, along with the
course_id of all courses they have taught

Query 1
Tinstructor.ID,course_id (O—dept,namez’ Physics’ (

Tinstructor.I D=teaches.ID (ZnStTUCtOT X teaChes)))
Query 2
Tinstructor.1D,course_id (a'instructor.ID=teaches4ID (

Odept_name='Physics' (instructor X teaches)))

©8425 - Fall 2013 - Boris Glavic 317 @Silberschatz, Korth and Sudarshan

NE Formal Definition (Syntax)

B A basic expression in the relational algebra consists of either one of the
following:

A relation in the database
A constant relation: e.g., {(1),(2)}

B Let £, and E, be relational-algebra expressions; the following are all
relational-algebra expressions:

E/UE,

E-E,

E;xEp

0p (E), Pis a predicate on attributes in £,

[1s(E), Sis alist consisting of some of the attributes in E;

P x (E4), xis the new name for the result of E;

©8425 - Fall 2013 - Boris Glavic 318 @Silberschatz, Korth and Sudarshan

Formal Definition (Semantics)

82

W Let E be an relational algebra expression. We use [E](]) to denote the
evaluation of E over a database instance |

For simplicity we will often drop | and []

B The result of evaluating a simple relational algebra expression E over a
database is defined as

Simple relation: [R](l) = R(I)
Constant relation: [C](I) = C

©8425 - Fall 2013 - Boris Glavic 319 @Silberschatz, Korth and Sudarshan

Formal Definition (Semantics)

N
[El UEQ] = {t | te [El] Vte [EQ]}
[Ey — Ex] ={t|t e [Ex] Nt & [Er]}
[El X EQ] {t,t, ‘ te [El] At € [EQ]}
lop(EL)] ={t |t € [Ex] Ap(t)}
]
]

[ma(EL)] ={t.A|te[F]}
[px (E1)] = {t(X) | t € [E1]}

©8425 - Fall 2013 - Boris Glavic 320 @Silberschatz, Korth and Sudarshan

Null Values

W ltis possible for tuples to have a null value, denoted by null, for some
of their attributes

null signifies an unknown value or that a value does not exist.
The result of any arithmetic expression involving nullis null.

Aggregate functions simply ignore null values (as in SQL)

For duplicate elimination and grouping, null is treated like any other
value, and two nulls are assumed to be the same (as in SQL)

©8425 - Fall 2013 - Boris Glavic 321 @Silberschatz, Korth and Sudarshan

Null Values

N

W Comparisons with null values return the special truth value: unknown
If false was used instead of unknown, then not (A <5)

would not be equivalent to A>=5
B Three-valued logic using the truth value unknown:
OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown
AND: (true and unknown) = unknown,
(false and unknown) = false,

(unknown and unknown) = unknown
NOT: (not unknown) = unknown

In SQL “Pis unknown” evaluates to true if predicate P evaluates
to unknown

W Result of select predicate is treated as false if it evaluates to unknown

©8425 - Fall 2013 - Boris Glavic 322

@Silberschatz, Korth and Sudarshan

N Additional Operations

We define additional operations that do not add any expressive power to
the relational algebra, but that simplify common queries.

B Set intersection

B Natural join

B Assignment

[]

Outer join

©8425 - Fall 2013 - Boris Glavic 323 @Silberschatz, Korth and Sudarshan

Set-Intersection Operation

® Notation: rN's
H Defined as:

rOs={t|terntes}

B Assume:

r, s have the same arity

attributes of rand s are compatible
W Note:rNs=r—(r-s)

That is adding intersection to the language does not make it more
expressive

©8425 - Fall 2013 - Boris Glavic 324 @Silberschatz, Korth and Sudarshan

N Set-Intersection Operation — Example
[N —
B Relation r, s: A B A B
all al2
al 2 B3
Bl1 s
r
mrNns AlB
a2

@ Natural-Join Operation (cont.)

B Let rand s be relations on schemas R and S respectively.
Then, rX s is defined as:

X=RnNS
S"=S—-R

rpads = TR,S’ (O’T.X:s.x(r X S))

©8425 - Fall 2013 - Boris Glavic 327 @Silberschatz, Korth and Sudarshan

Natural Join and Theta Join

B Find the names of all instructors in the Comp. Sci. department together with
the course titles of all the courses that the instructors teach

I1 name, title (O dept_name="Comp. Sci.” (instructot teaches)
course))
W Natural join is associative

(instructorq teaches)X course is equivalent to
instructor X (teaches X course)

B Natural join is commutative (we ignore attribute order)

instruct X teaches is equivalent to
teaches M instructor

B The theta join operation rX 4s is defined as

rixp s =op(r xs)

©8425 - Fall 2013 - Boris Glavic 329 @Silberschatz, Korth and Sudarshan

N Natural-Join Operation

H Notation: r X's

B Let rand s be relations on schemas R and S respectively.
Then, rX s is a relation on schema R U S obtained as follows:

Consider each pair of tuples . from rand tg from s.

If t.and s have the same value on each of the attributes in RN S, add
atuple t to the result, where

» thas the same value as t on r
» thas the same value as tgon s
m Example:
R=(A B C D)
S=(E B, D)
Result schema = (A, B, C, D, E)
rX sis defined as:
Ira rB rC 1D, s.E(OrB=5B8rD=5D(X S)

©8425 - Fall 2013 - Boris Glavic 328 @Silberschatz, Korth and Sudarshan

N- Natural Join Example
| —
B Relationsr, s: AlBICID BIDIE
all|lala 1|lafa
Bl2fvla 3lalp
Y|4|B|b Llaly
al1l]|yl|a 2|b|d
5|2|B|b 3|bje
i Bl
morMs A|B|CID|E
all|lafafa
alllafaly
allly|la|a
allfylaly
5|2|B|b]d
5425 - Fall 2013 - Boris Glavie a2 eSilberschatz, Korth and Sudarshan

NE Assignment Operation

W The assignment operation (<) provides a convenient way to
express complex queries.

Write query as a sequential program consisting of
» a series of assignments

» followed by an expression whose value is displayed as a
result of the query.

Assignment must always be made to a temporary relation
variable.
E\ < 0salary>a0000 (instructor)
Es < 0sa1ary<10000 (instructor)

E3<—E1UE2

©8425 - Fall 2013 - Boris Glavic 330 @Silberschatz, Korth and Sudarshan

Outer Join

B An extension of the join operation that avoids loss of information.

B Computes the join and then adds tuples form one relation that does not
match tuples in the other relation to the result of the join.

B Uses null values:
null signifies that the value is unknown or does not exist

All comparisons involving null are (roughly speaking) false by
definition.

» We shall study precise meaning of comparisons with nulls later

©8425 - Fall 2013 - Boris Glavic 331 @Silberschatz, Korth and Sudarshan

Outer Join — Example

m Join

instructor X teaches

‘ D H name [dept_name‘ course_id ‘
10101 Srinivasan Comp. Sci.| CS-101
12121 Wu Finance FIN-201

M Left Outer Join
instructor _1X| teaches

\ ID | name [dept,name\ course_id
10101 Srinivasan Comp. Sci. | CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null
5425 - Fall 2013 - Boris Glavie 333 @Silberschatz, Korth and Sudarshan

N Outer Join using Joins

W Outer join can be expressed using basic operations

r><ds=(re<s)U((r—Ig(rs)) x {(null,. .., null)})

ri><Cs=(re<as)U({(null,... null)} x (s — Hg(r > s)))

r><Cs=(YU ((r = g(r>s)) x {(null,...,null)})
U ({(null, ... ,null)} x (s — Lg(rs)))

s

©8425 - Fall 2013 - Boris Glavic 335 @Silberschatz, Korth and Sudarshan

A2

Outer Join — Example

W Relation instructor1

ID \ name bepL namd
10101 Srinivasan IComp. Sci,
12121 Wu Finance
15151 Mozart Music

B Relation teaches1

D] course_id
10101 Cs-101
12121 FIN-201
76766 BIO-101
©5425 - Fall 2013 - Boris Glavic as GSilberschatz, Korth and Sudarshan

N2

Outer Join — Example

M Right Outer Join
instructor XC teaches

\ ID | name [depL name\ course_id \
10101 Srinivasan Comp. Sci. | CS-101
12121 Wu Finance FIN-201
76766 null null BIO-101

H Full Outer Join
instructor IXC teaches

\ D | name [dept,name\ course_id \
10101 Srinivasan Comp. Sci. | CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null
76766 null null BIO-101
©S425 - Fall 2013 - Boris Glavic 334 @Silberschatz, Korth and Sudarshan

Division Operator

W Given relations r(R) and s(S), such that S C R, r + s is the largest
relation t(R-S) such that
txsCr

Alternatively, all tuples from r.(R-S) such that all their extensions on
R N S with tuples from s exist in R

W E.g.let AID, course_id) = [1p, course ia (takes) and
s(course_id) = [Tcourse i (Gdeaname:“Biology"(cou’se)
then r + s gives us students who have taken all courses in the Biology
department
m Can writer+sas

E1 <— HRfs(T)

Ey < TIp_s((F1 x 8) —lg_s,5(r > 5))
r—s=F — Fs

©8425 - Fall 2013 - Boris Glavic 336 @Silberschatz, Korth and Sudarshan

82

reads

8425 - Fall

[reads + newspaper] = {(Alice)}

Division Operator Example
M Return the name of all persons that read all newspapers

reads newspaper
name | newspaper | [newspaper |

es
Wall Street

Times
Wall Street
Times
Wall Street

Peter
Bob

Alice
Alice

By < Mpame(reads)
By + ((B1 x newspaper) — name,
-+ newspaper = E; — Eo

(reads > newspaper)

2013 - Boris Glavie 337 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 339

Generalized Projection

W Extends the projection operation by allowing arithmetic functions to be
used in the projection list.

TrFlv'-"Fn (E)

W Eis any relational-algebra expression
B Eachof F, F,, ..., F, are arithmetic expressions and function calls
involving constants and attributes in the schema of E.
B Given relation instructor(ID, name, dept_name, salary) where salary is
annual salary, get the same information but with monthly salary
HID, name, dept_name, salary/12 (ins” UCTOF)
B Adding functions increases expressive power!

In standard relational algebra there is no way to change attribute
values

§: Extended Relational-Algebra-Operations

B Generalized Projection
W Aggregate Functions

©8425 - Fall 2013 - Boris Glavic 338 @Silberschatz, Korth and Sudarshan

@Silberschatz, Korth and Sudarshan

8425 - Fal

Aggregate Operation — Example

B Relation r:

alal|7
al|p|7
BB

B | B |10

u g sum(c) (r)

i1 2013 - Boris Glavie 341 @Silberschatz, Korth and Sudarshan

N Aggregate Functions and Operations

W Aggregation function takes a set of values and returns a single value
as aresult.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

B Aggregate operation in relational algebra
G1,Ga,...,Gp gF1 (A1),F2(A2),....Fn(Ayn) (E)

E'is any relational-algebra expression
Gy, G, ..., G, is alist of attributes on which to group (can be empty)
Each F;is an aggregate function
Each A;is an attribute name

B Note: Some books/articles use Y instead of G (Calligraphic G)

©8425 - Fall 2013 - Boris Glavic 3.40 @Silberschatz, Korth and Sudarshan

N Aggregate Operation — Example

B Find the average salary in each department

dept_name gavg(salary) (instructor)

ID_ | name dept_name | salary

76766 | Crick Biology | 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt | Comp. Sci. | 92000
98345 | Kim Tlec. Eng. | 80000
12121 |[Wa Tinance | 90000 -
76543 | Singh Finance | 80000 Finance | 85000
32343 |ElSaid | History | 60000 History 61000
58583 | Califieri | History | 62000 Music 40000
15151 | Mozart 40000 Physics 91000
33456 | Gold Physics | 87000
22022 |Finstein | Physics | 95000

dept_name |avg_salary]
Biology 72000

Comp. Sci. | 77333
Elec. Eng. | 80000

©8425 - Fall 2013 - Boris Glavic 342 @Silberschatz, Korth and Sudarshan

& Aggregate Functions (Cont.)

B What are the names for attributes in aggregation results?
Need some convention!
» E.g., use the expression as a name avg(salary)
For convenience, we permit renaming as part of aggregate
operation

dept_name Gavg(salary) as avg_sal (instructor)

5425 - Fall 2013 - Boris Glavic 343 @Silberschatz, Korth and Sudarshan

N Modification of the Database

B The content of the database may be modified using the following
operations:

Deletion
Insertion
Updating

W All these operations can be expressed using the assignment
operator

m Example: Delete instructors with salary over $1,000,000

R < R — (0salary>1000000(R))

CS425 - Fall 2013 - Boris Glavic 3.44 @Silberschatz, Korth and Sudarshan

Restrictions for Modification

W Consider a modification where R=(A,B) and S=(C)
R+ o C>5 (S)

W This would change the schema of R!
Should not be allowed

B Requirements for modifications
The name R on the left-hand side of the assignment operator
refers to an existing relation in the database schema

The expression on the right-hand side of the assignment operator
should be union-compatible with R

©8425 - Fall 2013 - Boris Glavic 345 @Silberschatz, Korth and Sudarshan

Tuple Relational Calculus

©8425 - Fall 2013 - Boris Glavic 346 @Silberschatz, Korth and Sudarshan

N Tuple Relational Calculus

B A nonprocedural query language, where each query is of the form
{t1P(t))

It is the set of all tuples t such that predicate Pis true for t

tis a tuple variable, t[A] denotes the value of tuple t on attribute A

t€ rdenotes that tuple tis in relation r

Pis a formula similar to that of the predicate calculus

©8425 - Fall 2013 - Boris Glavic 347 @Silberschatz, Korth and Sudarshan

@ Predicate Calculus Formula

. Set of attributes and constants
. Set of comparison operators: (e.g., <, s, =, =, >, 2)
. Set of logical connectives: and (a), or (v), not (=)

AW N =

. Implication (=): x =y, if x if true, then y is true
X=y=-XVy
5. Set of quantifiers:

At r(Q(t)) = "there exists” a tuple in tin relation r
such that predicate Q (t) is true

Yte r(Q(t)) = Qis true “for all” tuples tin relation r

©S425 - Fall 2013 - Boris Glavic 348

@Silberschatz, Korth and Sudarshan

Example Queries

82

W Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000

{t| t& instructor a t[salary] > 80000}
W As in the previous query, but output only the /D attribute value
{t13 s Einstructor (t[ID] =s[ID] A s[salary] > 80000)}
Notice that a relation on schema (/D) is implicitly defined by
the query, because

1) tis not bound to any relation by the predicate
2) we implicitly state that t has an ID attribute (#//D] = s[ID])

©8425 - Fall 2013 - Boris Glavic 3.49 @Silberschatz, Korth and Sudarshan

Example Queries

A2

B Find the names of all instructors whose department is in the Watson
building

{t1 3s € instructor (t[name] = s [name]
A 3u € department (u [dept_name | = s[dept_name] “
A U [building] = “Watson”))}

MW Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

{t1 3s € section (t [course_id] = s [course_id] a
s [semester] = “Fall” a s [year] = 2009)
v 3u € section (t [course_id] = u[course_id] n
u[semester] = “Spring” A u[year] = 2010)}

©8425 - Fall 2013 - Boris Glavic 350 @Silberschatz, Korth and Sudarshan

Example Queries

W Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{t| 3s € section (t[course_id]| = s [course_id] r
s [semester] = “Fall” a s[year] = 2009)

A Ju € section (t [course_id] = u[course_id] a
u[semester] = “Spring” A u[year] = 2010)}

B Find the set of all courses taught in the Fall 2009 semester, but not in
the Spring 2010 semester

{t| 3s € section (t[course_id] = s [course_id] r
s [semester] = “Fall” A s [year] = 2009)

A = Ju € section (t [course_id] = u[course_id] n
u[semester] = “Spring” A u[year] = 2010)}

©8425 - Fall 2013 - Boris Glavic 351 @Silberschatz, Korth and Sudarshan

Safety of Expressions

W ltis possible to write tuple calculus expressions that generate infinite
relations.

W For example, {t| - tE r}results in an infinite relation if the domain of
any attribute of relation r s infinite

W To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

B An expression {t| P (t)}in the tuple relational calculus is safe if every
component of t appears in one of the relations, tuples, or constants that
appear in P

NOTE: this is more than just a syntax condition.

» E.g.{tl t[A] =5 v true } is not safe --- it defines an infinite set
with attribute values that do not appear in any relation or tuples
or constants in P.

©8425 - Fall 2013 - Boris Glavic 352 @Silberschatz, Korth and Sudarshan

y Universal Quantification

B Find all students who have taken all courses offered in the
Biology department
{t13 re student (t[ID] = r[ID]) n
(V u € course (u [dept_name]="Biology” =
ds€E takes (t[ID]=s[ID] A
s [course_id] = u [course_id]))}

Note that without the existential quantification on student,
the above query would be unsafe if the Biology department
has not offered any courses.

©8425 - Fall 2013 - Boris Glavic 353 @Silberschatz, Korth and Sudarshan

Domain Relational Calculus

©8425 - Fall 2013 - Boris Glavic 354 @Silberschatz, Korth and Sudarshan

Domain Relational Calculus

82

B A nonprocedural query language equivalent in power to the tuple
relational calculus

B Each query is an expression of the form:

{<X1, X0 s X > 1 P(Xq, X, o0y X))

Xy, X, ..., X, represent domain variables

» Variables that range of attribute values
P represents a formula similar to that of the predicate calculus
Tuples can be formed using <

» E.g., <'Einstein’,’Physics™>

©8425 - Fall 2013 - Boris Glavic 355 @Silberschatz, Korth and Sudarshan

Example Queries

B Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

{<c>1 3asybrt(<cas,y b, t>€E section a
s="Fall” A y =2009)
via s ybrt(<cas,yb, t>c section] a
s="Spring” A y =2010)}
This case can also be written as
{<c>1 3a s ybrt(<cas,y b, t>€E section a
((s="“Fall” A y=2009) v (s="“Spring” A y =2010))}

B Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{<c>1 3a s ybrt(<ca,s,yb, t>€E section n
s="“Fall” A y=2009)
ada, s ybrt(<ca,s,yb, t>€ section] n
s="“Spring” A y =2010)}

©8425 - Fall 2013 - Boris Glavic 357 @Silberschatz, Korth and Sudarshan

A2

Example Queries

M Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000

{<i,n,d, s>| <i, n, d, s>€E instructor n s> 80000}
B Asin the previous query, but output only the /D attribute value
{<i> 1 <i, n, d, s>€ instructor n s> 80000}

B Find the names of all instructors whose department is in the Watson
building
{<n>I| 13id, s (<i, n, d, s> €E instructor
A3b,a(<d b, a>< department n b= “Watson”))}

©8425 - Fall 2013 - Boris Glavic 356 @Silberschatz, Korth and Sudarshan

N Safety of Expressions
| S —
The expression:

{<Xp, X0 oy Xy > 1 P(Xq, X, oy X,)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values
from dom (P) (that is, the values appear either as constants in P or

in a tuple of a relation mentioned in P).

2. For every “there exists” subformula of the form 3 x (P;(x)), the
subformula is true if and only if there is a value of xin dom (P,)
such that P;(x) is true.

3. For every “for all” subformula of the form V, (P, (x)), the subformula is

true if and only if P,(x) is true for all values x from dom (P;).

y Universal Quantification

B Find all students who have taken all courses offered in the Biology
department

{<i>13n,d tc(<in,d tc>€E student a
(VY ci, ti, dn, cr (< ci, ti, dn, cr> &€ course a dn ="Biology”
= 3si, se, y, g(<i ci si, se,y, g>E takes))}
Note that without the existential quantification on student, the

above query would be unsafe if the Biology department has not
offered any courses.

* Above query fixes bug in page 246, last query

©8425 - Fall 2013 - Boris Glavic 359 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 358 @Silberschatz, Korth and Sudarshan

Relationship between Relational Algebra
and Tuple (Domain) Calculus

B Codd’s theorem
Relational algebra and tuple calculus are equivalent

N

B That means that every query expressible in relational algebra can also
be expressed in tuple calculus and vice versa

W Since domain calculus is as expressive as tuple calculus the same
holds for the domain calculus

B Note: Here relational algebra refers to the standard version (no
aggregation and projection with functions)

©8425 - Fall 2013 - Boris Glavic 360 @Silberschatz, Korth and Sudarshan

10

ot Recap
B Relational algebra
Standard relational algebra:

» Selection, projection, renaming, cross product, union, set
difference

Null values
Semantic sugar operators:
» Intersection, joins, division,
Extensions:
» Aggregation, extended projection
B Tuple Calculus
safety
B Domain Calculus

5425 - Fall 2013 - Boris Glavic 361 @Silberschatz, Korth and Sudarshan

End of Chapter 3

Modified from:

Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Outline

Introduction

Relational Data Model

Formal Relational Languages (relational algebra)

SQL - Introduction

Database Design

Transaction Processing, Recovery, and Concurrency Control
Storage and File Structures

Indexing and Hashing

Query Processing and Optimization

8425 - Fall 2013 - Boris Glavic 363 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 6.01

D[name dept_name | _salary
10101 | Srinivasan | Comp. Sci. 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri | History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
s

@Silberschatz, Korth and Sudarshan

Figure 6.02

©S425 - Fall 2013 - Boris Glavic 365 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 6.03

inivasan
Wu 90000
Mozart | 40000
Einstein | 95000
ElSaid | 60000

Gold 87000
Katz 75000
Califieri | 62000
76543 | Singh 80000
76766 | Crick 72000
83821 | Brandt | 92000
98345 | Kim 80000
3,66

@Silberschatz, Korth and Sudarshan

11

Figure 6.04

course_id | sec_id | semester | year | building |room_number|time_slot_id|
BIO-101 1 Summer | 2009 | Painter 514 B
BIO-301 1 Summer | 2010 | Painter 514 A
Cs-101 1 Fall 2009 | Packard 101 H
Cs-101 1 Spring 2010 | Packard 101 F
Cs-190 1 Spring 2009 | Taylor 3128 E
C5-190 2 Spring | 2009 | Taylor 3128 A
1 Spring | 2010 | Watson 120 D
1 Spring | 2010 | Watson 100 B
2 Spring | 2010 | Taylor 3128 C
1 Fall 2009 | Taylor 3128 A
1 Spring 2009 | Taylor 3128 C
1 Spring | 2010 | Packard [101 B
1 Spring | 2010 | Painter 514 e
1 Spring | 2010 | Packard [101 D
1 Fall 2009 | Watson 100 A
CS425 - Fall 2013 - Boris Glavic 367 ©Silberschatz, Korth and Sudarshan
course_id
©$425 - Fall 2013 - Boris Glavic 369 ©Silberschatz, Korth and Sudarshan
InstID| name | dept_name]salary | teaches.ID] course_id [sec_id]_semester] year
10101 c esooo| 10101 [csaor [1 [Fall [2000
10101 (Comp. Scif 65000 | 10101 |CS315 | 1| Spring {2010
10101 (Comp. Seif 65000 | 10101 |CS347 | 1 | Fall {2009
10101 (Comp.Seif 65000 | 12121 |FIN-201 | 1 | Spring {2010
10101 (Comp. Seif 65000 | 15151 |MU-199 | 1 | Spring {2010
10101 (Comp. Seif 65000 | 22222 |PHY-101| 1| Fall {2009
12121 [Wu go000| 10101 |csao [1| Fa {2009
12121 [Wu 90000| 10101 [CS:315 | 1 | Spring [2010
12121 {Wu 90000| 10101 |CS347 | 1| Fall [2009
12121 [Wu nance [90000| 12121 |FIN-201 | 1 | Spring [2010
12121 [Wu Finance | 90000 15151 |MU-199 | 1 | Spring | 2010
12121 |Wu Pinance |90000| 22222 [PHY-101 [1 | Fall ~ [2009
15151 [Mozart [Music ~ [40000| 10101 1| Fan 2000
15151 [Mozart |Music [40000| 10101 1 | Spring [2010
15151 [Mozart |Music |40000[10101 [CS 1 [Fall o [2009
15151 [Mozart |Music |40000| 12121 [FIN-201 | 1 | Spring |2010
15151 [Mozart [Music 40000 15151 |MU-199 | 1 Spring | 2010
15151 [Mozart |Music ~ |40000| 22222 [PHY-101 [1 | Fall ~ [2009
22222 |Einstein | Physics [95000| 10101 1| Fall - |2009
22022 Einstein [Physics ~[95000(10101 1| Spring [2010
22222 |Einstein |Phy 95000(10101 | CS 1| Fall o [2009
22022 Einstein (i 95000| 12121 |[FIN-201 | 1 | Spring [2010
22022 [Einstein [Physics [95000(15151 |MU-199 | 1 | Spring |2010
22022 [Einstein [Physics [95000(22222 |PHY-101| 1 | Fall 2009
C$425 - Fall 2013 - Boris Glavic a7 ©Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 6.05

@Silberschatz, Korth and Sudarshan

Figure 6.07

1D [course_id | sec_id | _semester | year
10101 | C5-101 1 Fall 2009
10101 | 5315 1 Spring | 2010
10101 | CS-347 1 Fall 2009
12121 | FIN201 | 1 Spring | 2010
15151 | MU-199 | 1 Spring | 2010
22222 | PHY-101| 1 Fall 2009
32343 [HIS-351 | 1 | Spring | 2010
45565 | CS-101 1 | Spring | 2010
45565 | C5-319 1 Spring | 2010
76766 | BIO-101 | 1 | Summer | 2009
76766 | BIO-301 | 1 | Summer | 2010
83821 | C5-190 1| Spring | 2009
83821 | C5-190 2 | Spring | 2009
83821 | CS-319 2 | spring | 2010
98345 | EE-181 1 Spring | 2009

©8425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

Figure 6.09

course_id.
Einstein 10101 | CS-437 1 Fall 2009
Einstein 95000 | 10101 | CS-315 1 Spring | 2010
Einstein 95000 | 12121 |FIN-201 | 1 | Spring | 2010
Einstein 95000 | 15151 |MU-199 | 1 | Spring | 2010
Einstein s | 95000 | 22222 |PHY-101| 1 | Fall | 2009
22222 |Einstein| Physics | 95000 | 32343 | HIS-351 1 Spring | 2010
Gold Physics | 87000 | 10101 | CS-437 1 Fall 2009
Gold Physics | 87000 | 10101 | CS-315 1 Spring | 2010
33456 |Gold Physics | 87000 | 12121 FIN-201 1 Spring | 2010
33456 |Gold | Physics | 87000 | 15151 |MU-19 [1 | Spring | 2010
33456 |Gold Physics | 87000 |22222 |PHY-101| 1 Fall 2009
33456 |Gold | Physics | 87000 | 32343 | HIS-351 | 1 | Spring | 2010
©S425 - Fall 2013 - Boris Glavic 372

@Silberschatz, Korth and Sudarshan

12

425 - Fall 2013 - Boris Glavic

Figure 6.10

[rame T course id]

373

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 6.11

@Silberschatz, Korth and Sudarshan

8425 - Fall 2013 - Boris Glavic

Figure 6.12

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 6.13

@Silberschatz, Korth and Sudarshan

Figure 6.14

dept_name [salary[course_id] sec_id

semester| year

98345

Mozart
Einstein
El Said
Katz
Katz
Crick
Crick
Brandt
Brandt
Brandt
Kim

Comp. Sci.| 65000] Cs-101 | 1
Comp. Sci.| 65000| CS-315
Comp. Sci.| 65000| C5-347
Finance | 90000 FIN-201
Music [40000| MU-199
Physics | 95000| PHY-101
History | 60000| HIS-351
Comp: Sci.| 75000(CS-101
Comp. Sci.| 75000| CS-319
Biology | 72000(BIO-101
Biology | 72000(BIO-301
Comp. Sci.| 92000(CS-190
Comp. Sci.| 92000| CS-190
Comp. Sci.| 92000| C5-319
Elec. Eng. | 80000| EE-181

IO

Fall 2009
Spring | 2010
Fall 2009

Spring | 2010
Spring | 2010
Fall 2009
Spring | 2010
Spring | 2010
Spring | 2010

ummer| 2009

ummer| 2010
Spring | 2009
Spring | 2009
Spring | 2010
Spring | 2009

425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 6.15

Kim EE-181

@Silberschatz, Korth and Sudarshan

13

425 - Fall 2013 - Boris Glavic

Figure 6.16

name lille
Brandt | Game Design
Brandt | Image Processing
Katz Image Processing
Katz Intro. to Computer Science
Srinivasan | Intro. to Computer Science
Srinivasan | Robotics
Srinivasan | Database System Concepts

379

@Silberschatz, Korth and Sudarshan

Figure 6.17

D [name dept_name_| salary | course_id | sec_id | semester | year

Comp. Sci. | 65000 | CS-101 1 |[Fall 2009
10101 |Srinivasan| Comp. Sci.| 65000 | CS-315 | 1 [Spring | 2010
10101 |Srinivasan| Comp. Sci.| 65000 | CS-347 1 |Fall 2009
12121 |Wu Finance | 90000 |FIN-201 | 1 |[Spring | 2010
15151 |Mozart | Music 40000 [MU-199 | 1 [Spring | 2010
22222 |Einstein | Physics 95000 | PHY-101{ 1 |Fall 2009
32343 |El Said History 60000 |HIS-351 | 1 |Spring | 2010
33456 |Gold Physics 87000 | null null | null null
45565 |Katz Comp. Sci.| 75000 | CS-101 1 {Spring | 2010
45565 |Katz Comp. Sci.| 75000 [CS-319 | 1 |Spring | 2010
58583 |Califieri |History | 62000 | null null |null null
76543 |Singh Finance 80000 | null null | null null
76766 |Crick Biology 72000 | BIO-101 | 1 |Summer| 2009
76766 |Crick Biology 72000 |BIO-301 | 1 |Summer| 2010
83821 |Brandt Comp. Sci. | 92000 | CS-190 1 |Spring | 2009
83821 |Brandt Comp. Sci. | 92000 | CS-190 2 |[Spring | 2009
83821 |Brandt Comp. Sci.| 92000 | CS-319 2 |[Spring | 2010
98345 |Kim Elec. Eng. | 80000 |EE-181 | 1 |Spring | 2009

Figure 6.18

ID_ | courseid | scc_id | semester | year | name depl_name_| salary
10101 1 [Fall 2009 [Srinivasan |Comp. Sci. 65000
10101 1| Spring | 2010 [Srinivasan | Comp. Sci.| 65000
10101 1| Fall 2009 | Srinivasan | Comp. Sci.| 65000
12121 1| Spring | 2010 |Wu Finance 90000
15151 1 |Spring | 2010 [Mozart |Music 40000
2022 1| Fall 2009 | Einstein | Physics 95000
32343 | HIS351 | 1 |Spring |2010 [ElSaid |History | 60000
33456 | null nudl | null null | Gold Physics |87000
45565 | CS-101 | 1 |[Spring |2010|Katz Comp. Sci.| 75000
45565 | CS319 | 1 | Spring | 2010 |Katz Comp. Sci.{ 75000
58583 | null nudl | null null | Califieri | History |62000
76543 | null nudl | null null |Singh | Finance [80000
76766 | BIO-101 | 1 | Summer |2009|Crick |Biology |72000
76766 | BIO-301 | 1 | Summer | 2010 |Crick |Biology |72000
83821 | CS-190 | 1 |[Spring |2009 [Brandt |Comp. Sci 92000
83821 | CS-190 | 2 |[Spring |2009|Brandt |Comp. Sci92000
83821 | 5319 | 2 |[Spring |2010|Brandt |Comp. Sci92000
98345 | EE-181 | 1 |[Spring | 2009 | Kim Elec. Eng. | 80000
©8425 - Fall 2013 - Boris Glavic a8t cSilberschatz, Korth and Sudarshan

5425 - Fall 2013 - Boris Glavie

Figure 6.20

History | 61000

Music 40000

Physics | 91000
383

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 6.19

D
76766 | Crick Biolog;

45565 | Katz Comp. Sai.
10101 | Srinivasan | Comp. Sci. | 6
83821 |Brandt | Comp. Sci.
98345 [Kim Flec. Fng.
12121 |Wu Finance
76543 | Singh Finance
32343 |FlSaid_ | History
58583 | Califieri__| History
15151 |Mozart Music

33456 | Gold Physics
22222 | Einstein_| Physics

382

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 6.21

@Silberschatz, Korth and Sudarshan

14

Deletion

82

B Adelete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.

B Can delete only whole tuples; cannot delete values on only
particular attributes

B A deletion is expressed in relational algebra by:
r<r—E
where ris a relation and E'is a relational algebra query.

©8425 - Fall 2013 - Boris Glavic 385 @Silberschatz, Korth and Sudarshan

Insertion

To insert data into a relation, we either:
specify a tuple to be inserted
write a query whose result is a set of tuples to be inserted

in relational algebra, an insertion is expressed by:
r<rUE
where ris a relation and E'is a relational algebra expression.

B The insertion of a single tuple is expressed by letting £ be a constant
relation containing one tuple.

©8425 - Fall 2013 - Boris Glavic 387 @Silberschatz, Korth and Sudarshan

N Updating

B A mechanism to change a value in a tuple without charging all values in
the tuple

W Use the generalized projection operator to do this task

r<Ilse. 7(r)
W Each Fjis either
the I attribute of r, if the /™ attribute is not updated, or,

if the attribute is to be updated F; is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

©8425 - Fall 2013 - Boris Glavic 389 @Silberschatz, Korth and Sudarshan

N Deletion Examples

W Delete all account records in the Perryridge branch.

account < account—O pranch_name = “Perryridge” (@ccount)

W Delete all loan records with amount in the range of 0 to 50

loan < loan = G amount = 0 and amount = 50 (loan)

B Delete all accounts at branches located in Needham.

11 O pranch_city = “Needham” (accountX branch)
fo<= I account_number, branch_name, balance (r; 1)

13 I1 customer_name, account_number (X depositor)
account < account — Iy

depositor < depositor — ry

©8425 - Fall 2013 - Boris Glavic 386 @Silberschatz, Korth and Sudarshan

Insertion Examples

B Insert information in the database specifying that Smith has $1200 in
account A-973 at the Perryridge branch.
account <— account U {(“A-973”, “Perryridge”, 1200)}
depositor < depositor U {(“Smith”, “A-973")}

W Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

Iy <= (Opranch_name = “Peryriage” (POrrower! loan))
account < account U [ipan_ number, oranch_name, 200 (1)
depositor < depositor U [Ieusiomer._name, toan_number (1)

©8425 - Fall 2013 - Boris Glavic 388 @Silberschatz, Korth and Sudarshan

NE Update Examples

B Make interest payments by increasing all balances by 5 percent.

account <= T account_number, branch_name, balance * 1.05 (account)

B Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account <= 1 aceount_number, branch_name, batance* 1.06 (8a » 10000 (aCCOUN))
U I1 account_number, branch_name, batance *1.0s (OaL = 10000
(account))

©8425 - Fall 2013 - Boris Glavic 390 @Silberschatz, Korth and Sudarshan

15

N Example Queries

B Find the names of all customers who have a loan and an account at
bank.

eustomer_name (borrowen 0 T eustomer_name (depositor)

B Find the name of all customers who have a loan at the bank and the
loan amount

chstomer,name, loan_number, amount (borrower X loan)

©$425 - Fall 2013 - Boris Glavic @Silberschatz, Korth and Sudarshan

N Example Queries

B Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.
® Query 1

eustomer_name (Obranch_name = “Downtown" (depositor > account)) N
[eustomer_name (Gbranch_name = “Uptown® (depositorXt: account))
® Query 2

[eustomer_name, branch_name (depositor X account)
*+ Premp(branch_name) {(“Downtown”), (“Uptown”)})
Note that Query 2 uses a constant relation.

©8425 - Fall 2013 - Boris Glavic @Silberschatz, Korth and Sudarshan

82

Bank Example Queries

B Find all customers who have an account at all branches located in
Brooklyn city.

chstomer,name, branch_name (depOSIIOIN accoun ﬂ

+ Hbranch,name (Obranch,city= “Brooklyn” (branch))

©8425 - Fall 2013 - Boris Glavic @Silberschatz, Korth and Sudarshan

16

CS425 - Fall 2013
Boris Glavic
Chapter 4: Introduction to SQL

Modified from:
Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

& Chapter 4: Introduction to SQL

Overview of the SQL Query Language
Data Definition

Basic Query Structure

Additional Basic Operations

Set Operations

Null Values

Aggregate Functions

Nested Subqueries

Modification of the Database

Textbook: Chapter 3

CS425 - Fall 2013 - Boris Glavic 42 @Silberschatz, Korth and Sudarshan

History

B IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

B Renamed Structured Query Language (SQL)
B ANSI and ISO standard SQL:

SQL-86, SQL-89, SQL-92

SQL:1999, SQL:2003, SQL:2008

B Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

Not all examples here may work one-to-one on your
particular system.

©8425 - Fall 2013 - Boris Glavic a3 @Silberschatz, Korth and Sudarshan

Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:
B The schema for each relation.
B The domain of values associated with each attribute.
W Integrity constraints
B And as we will see later, also other information such as
The set of indices to be maintained for each relations.
Security and authorization information for each relation.
The physical storage structure of each relation on disk.

©8425 - Fall 2013 - Boris Glavic a4

@Silberschatz, Korth and Sudarshan

N Domain Types in SQL

B char(n). Fixed length character string, with user-specified length n.

W varchar(n). Variable length character strings, with user-specified
maximum length n.

| int. Integer (a finite subset of the integers that is machine-
dependent).

® smallint. Small integer (a machine-dependent subset of the integer
domain type).

B numeric(p,d). Fixed point number, with user-specified precision of
p digits, with n digits to the right of decimal point.

W real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

| float(n). Floating point number, with user-specified precision of at
least n digits.

B More are covered in Chapter 4.

©8425 - Fall 2013 - Boris Glavic as @Silberschatz, Korth and Sudarshan

@ Create Table Construct

B An SQL relation is defined using the create table command:
create table r (A, D,, A, D,, ..., A, D,
(integrity-constraint,),
ii'ﬁlegrity-constraimk))
ris the name of the relation
each A;is an attribute name in the schema of relation r
D; is the data type of values in the domain of attribute A;
B Example:

create table instructor (
// char(5),
name varchar(20) not nuill,
dept_name varchar(20),
salary numeric(8,2))
B insert into instructor values (‘10211°,’ Smith’, ’ Biology’, 66000);

B insert into instructor values (‘10211’, null, ' Biology’ , 66000);

©8425 - Fall 2013 - Boris Glavic 46 @Silberschatz, Korth and Sudarshan

N Integrity Constraints in Create Table

® not null
B primary key (A,, ..., A,)
m foreign key (A, ..., A,) references r

Example: Declare /D as the primary key for instructor

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

©8425 - Fall 2013 - Boris Glavic a7 @Silberschatz, Korth and Sudarshan

N- Even more
—

W create table course (
course_id varchar(8) primary key,

title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

foreign key (dept_name) references department));

Primary key declaration can be combined with attribute
declaration as shown above

©8425 - Fall 2013 - Boris Glavic a9 @Silberschatz, Korth and Sudarshan

y Basic Query Structure

B The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

B Atypical SQL query has the form:

select A, A,, ..., A,
fromr, ..., 1y
where P

A;represents an attribute
R;represents a relation
Pis a predicate.

B The result of an SQL query is a relation.

& And a Few More Relation Definitions

B create table student
D

varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (/D),

foreign key (dept_name) references department));
W create table fakes (

varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),

foreign key (/D) references student,

foreign key (course_id, sec_id, semester, year) references section);
Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

48 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic an @Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Drop and Alter Table Constructs

W drop table student

Deletes the table and its contents
N alter table

alter table radd A D

» where Ais the name of the attribute to be added to
relation r and D is the domain of A.

» All tuples in the relation are assigned null as the value
for the new attribute.

alter table rdrop A
» where A is the name of an attribute of relation r

» Dropping of attributes not supported by many
databases

And more ...

410 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

N The select Clause

W The select clause list the attributes desired in the result of a query
corresponds to the projection operation of the relational algebra
B Example: find the names of all instructors:

select name
from instructor
®m NOTE: SQL keywords are case insensitive (i.e., you may use upper- or
lower-case letters.)
E.g. Name = NAME = name
Some people use upper case wherever we use bold font.

a12 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword distinct
after select.

B Find the names of all departments with instructor, and remove
duplicates

select distinct dept_name
from instructor

B The (redundant) keyword all specifies that duplicates not be
removed.

select all dept_name
from instructor

©8425 - Fall 2013 - Boris Glavic 413 @Silberschatz, Korth and Sudarshan

N- The select Clause (Cont.)
I N~——
W An asterisk in the select clause denotes “all attributes”

select *
from instructor

B The select clause can contain arithmetic expressions involving
the operation, +, —, *, and /, and operating on constants or
attributes of tuples.

Most systems also support additional functions
» E.g., substring
Most systems allow user defined functions (UDFs)
B The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

©8425 - Fall 2013 - Boris Glavic 414 @Silberschatz, Korth and Sudarshan

The from Clause

B The from clause lists the relations involved in the query
Corresponds to the Cartesian product operation of the
relational algebra.

B Find the Cartesian product instructor X teaches

select *

from instructor, teaches
generates every possible instructor — teaches pair, with all
attributes from both relations

B Cartesian product not very useful directly, but useful combined

with where-clause condition (selection operation in relational
algebra)

©8425 - Fall 2013 - Boris Glavic 415 @Silberschatz, Korth and Sudarshan

The where Clause

B The where clause specifies conditions that the result must
satisfy

Corresponds to the selection predicate of the relational
algebra.

W To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept_name = Comp. Sci.' and salary > 80000

B Comparison results can be combined using the logical
connectives and, or, and not.

W Comparisons can be applied to results of arithmetic expressions.
B SQL standard: any valid expression that returns a boolean result
Vendor specific restrictions may apply!

©8425 - Fall 2013 - Boris Glavic 416 @Silberschatz, Korth and Sudarshan

y Cartesian Product: instructor X teaches

instructor teaches
D name dept_name_|_salary 1D | course_id | sec_id | semester | year
10101 | Srinivasan | Comp.Sci. [65000 10101 Fall 2009
12121 | Wu Finance 90000 10101 1 Spring | 2010
15151 | Mozart Music 40000 10101 1 Fall 2009
22222 | Einstein Physics 95000 12121 1 Spring 2010
32343 | El Said History 60000 15151 1 Spring 2010
""" o o o 22222 | PHY-101 1 Fall 2009
inst.ID | name deptname | salary | teaches.ID | course_id | secid | semester | year

10101 [Srinivasan | Comp. Sci.| 65000 10101 |Cs-101 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. | 65000| 10101 |Cs-315 1 |Spring |2010
10101 [Srinivasan | Comp. Sci.|65000| 10101 |CS-347 1 |Fall 2009
10101 [Srinivasan | Comp. Sci.|65000| 12121 |FIN-201 1 |Spring |2010
10101 |Srinivasan | Comp. Sci. [65000| 15151 [MU-199 1 |Spring |2010

1

10101 | Srinivasan | Comp. Sci. | 65000| 22222 | PHY-101 Fall 2009

12121 |Wu Finance 90000| 10101 |Cs-101 1 |Fall 2009

12121 [Wu Finance 90000| 10101 [cCs-315 1 |Spring |2010

12121 |Wu Finance 90000| 10101 |[Cs-347 1 |Fall 2009

12121 |Wu Finance 90000| 12121 |FIN-201 1 |Spring |2010

12121 [Wu Finance 90000| 15151 [MU-199 1 |Spring |2010
1

12121 [Wu Finance 90000| 22222 |PHY-101 Fall 2009

©8425 - Fall 2013 - Boris Glavic 417 @Silberschatz, Korth and Sudarshan

N- Joins

[~—ror

W For all instructors who have taught some course, find their names
and the course ID of the courses they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

B Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and
. dept_name = ‘Comp. Sci.'
section course

course_id
title
dept_name
credits

room_no
time_slot_id

©8425 - Fall 2013 - Boris Glavic 418 @Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 419

Try Writing Some Queries in SQL

W Suggest queries to be written.....

@Silberschatz, Korth and Sudarshan

Joined Relations

A2

W Join operations take two relations and return as a result
another relation.

W A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

W The join operations are typically used as subquery
expressions in the from clause

©8425 - Fall 2013 - Boris Glavic 420 @Silberschatz, Korth and Sudarshan

82

©8425 - Fall 2013 - Boris Glavic 421

Join operations — Example

W Relation course

course_jd, title dept_name | credits
BIO-301 | Genetics Biology

CS5-190 | Game Design| Comp. Sci.
CS-315 | Robotics Comp. Sci.

[

W Relation prereq

course_id | prereq_id
BIO-301 | BIO-101
CS-190 | CS-101
Cs-347 | CS-101

B Observe that
prereq information is missing for CS-315 and
course information is missing for CS-437

@Silberschatz, Korth and Sudarshan

N Natural Join

| S —

B Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each common
column

This is the natural join from relational algebra

m select *

from instructor natural join teaches;

D name | dept_name | salary| course_id| sec_id | semester| year
10101 |Srinivasan| Comp. Sci.| 65000 CS-101 1 Fall 2009
10101 |Srinivasan| Comp. Sci.| 65000| CS-315 1 |[Spring | 2010
10101 |Srinivasan| Comp. Sci.| 65000 CS-347 1 Fall 2009
12121 (Wu Finance [90000| FIN-201 1 Spring | 2010
15151 |Mozart Music 40000 MU-199 1 Spring | 2010
22222 (Einstein | Physics 95000| PHY-101| 1 Fall 2009
32343 |El Said History 60000| HIS-351 1 Spring | 2010
45565 |Katz Comp. Sci.| 75000 CS-101 1 Spring | 2010
45565 [Katz Comp. Sci.| 75000 CS-319 | 1 |Spring | 2010
76766 |Crick Biology ~|72000| BIO-101 | 1 |Summer| 2009
76766 1Crick Rialaov 720001 RIO-201 1 Summerl 2010

©S425 - Fall 2013 - Boris Glavic a2 ©Silberschatz, Korth and Sudarshan

N

©$425 - Fall 2013 - Boris Glavic 4.23

Natural Join Example

W List the names of instructors along with the course ID of the courses that
they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

select name, course_id
from instructor natural join teaches;

@Silberschatz, Korth and Sudarshan

A2

B Danger in natural join: beware of unrelated attributes with same name which
get equated incorrectly

Natural Join (Cont.)

W List the names of instructors along with the the titles of courses that they
teach

Incorrect version (makes course.dept_name = instructor.dept_name)
» select name, title
from instructor natural join teaches natural join course;
Correct version
» select name, title
from instructor natural join teaches, course
where teaches.course_id = course.course_id;
Another correct version
» select name, title
from (instructor natural join teaches)
join course using(course_id);

©8425 - Fall 2013 - Boris Glavic 424 @Silberschatz, Korth and Sudarshan

N

Outer Join

B An extension of the join operation that avoids loss of
information.

W Computes the join and then adds tuples form one relation

Left Outer Join

W course natural left outer join prereq

that does not match tuples in the other relation to the result
of the join.

W Uses null values.

©8425 - Fall 2013 - Boris Glavic 4.25 @Silberschatz, Korth and Sudarshan

Right Outer Join

course_id, title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. | 4 C5-101
CS5-315_|Robotics Comp. Sci. 3 null

CS425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

B course natural right outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 |Game Design | Comp. Sci. 4 CS-101
CS-347 |null null aull | CS-101

©8425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

Joined Relations

B Join operations take two relations and return as a result
another relation.

B These additional operations are typically used as subquery
expressions in the from clause

B Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the join.

B Join type — defines how tuples in each relation that do not

match any tuple in the other relation (based on the join
condition) are treated.

Join types
inner join

left outer join
right outer join
full outer join

Join Conditions
natural

on <predicate>
using (Ay, Ay, ...

Ay

©S425 - Fall 2013 - Boris Glavic 428

@Silberschatz, Korth and Sudarshan

Full Outer Join

B course natural full outer join prereq

Joined Relations — Examples

course inner join prereq on
course.course_id = prereq.course_id

course_id| title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS-101
CS-315 [Robotics Comp. Sci. 3 null
C8-347 | null null mull | CS-101

course_id title dept_name | credits prereq_id| course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 | Game Design | Comp. Sci. | 4 Cs-101_ | CS-190

B What is the difference between the above, and a natural join?

B course left outer join prereq on
course.course_id = prereq.course_id

©$425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

course_id| title dept_name | credits | prereq_id | course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
C5-190 | Game Design | Comp. Sci. 4 CSs-101 | CS-190
(CS-315 | Robotics Comp. Sci. 3 null null

©S425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

82

Joined Relations — Examples

B course natural right outer join prereq

course_id title dept_name | credits | prereq id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 |Game Design | Comp. Sci. 4 C5-101
CS-347 |null null aull | CS-101

W course full outer join prereq using (course_id)

course_id| title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design | Comp. Sci. 4 CS-101
CS5-315 |Robotics Comp. Sci. 3 null
CS-347 | null null mull | CS-101

©8425 - Fall 2013 - Boris Glavic 431 @Silberschatz, Korth and Sudarshan

String Operations

B SQL includes a string-matching operator for comparisons on
character strings. The operator “like” uses patterns that are
described using two special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

B Find the names of all instructors whose name includes the substring
“dar”.

select name

from instructor

where name like '%dar%'
B Match the string “100 %”

like “100\%' escape "\

©8425 - Fall 2013 - Boris Glavic 433 @Silberschatz, Korth and Sudarshan

N The Rename Operation

S—

B The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

m Eg.

select ID, name, salary/12 as monthly_salary
from instructor

B Find the names of all instructors who have a higher salary than

some instructor in ‘Comp. Sci’ .

select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.”
B Keyword as is optional and may be omitted

instructoras T = instructor T
Keyword as must be omitted in Oracle

©8425 - Fall 2013 - Boris Glavic 432 @Silberschatz, Korth and Sudarshan

N String Operations (Cont.)
W Patters are case sensitive.
B Pattern matching examples:
‘Intro%’ matches any string beginning with “Intro”.
‘%Comp%’ matches any string containing “Comp” as a substring.

_" matches any string of exactly three characters.

_ _ %’ matches any string of at least three characters.

B SQL supports a variety of string operations such as
concatenation (using “Il”)
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

©8425 - Fall 2013 - Boris Glavic 434 @Silberschatz, Korth and Sudarshan

y Case Construct

M Like case, if, and ? Operators in programming languages

case
when c, then e,
when c, then e,

[else e]
end

B Each ¢; is a condition
B Each e, is an expression
B Returns the first e; for which c; evaluates to true
If none of the ¢; is true, then return e (else)
» If there is no else return null

©8425 - Fall 2013 - Boris Glavic 4.35 @Silberschatz, Korth and Sudarshan

N

Case Construct Example
M Like case, if, and ? Operators in programming languages

select
name,
case
when salary > 1000000 then ‘premium’
else ‘standard’
end as customer_group
from customer

©S425 - Fall 2013 - Boris Glavic 436

@Silberschatz, Korth and Sudarshan

N Ordering the Display of Tuples

W List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

B We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.

Example: order by name desc
W Can sort on multiple attributes
Example: order by dept_name, name
W Order is not expressible in the relational model!

©8425 - Fall 2013 - Boris Glavic 437 @Silberschatz, Korth and Sudarshan

& Where Clause Predicates

B SQL includes a between comparison operator
W Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, = $90,000 and < $100,000)
select name
from instructor
where salary between 90000 and 100000

W Tuple comparison

select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’ Biology’);

©8425 - Fall 2013 - Boris Glavic 438 @Silberschatz, Korth and Sudarshan

Set Operations

~——

B Find courses that ran in Fall 2009 or in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

B Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

B Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’ and year = 2010)

©8425 - Fall 2013 - Boris Glavic 439

@Silberschatz, Korth and Sudarshan

Set Operations

B Set operations union, intersect, and except

Each of the above operations automatically eliminates
duplicates

W To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

Suppose a tuple occurs m times in rand ntimes in s, then, it
occurs:

m + ntimes in runion all s
min(m,n) times in rintersect all s
max(0, m —n)times in rexcept all s

©8425 - Fall 2013 - Boris Glavic 440 @Silberschatz, Korth and Sudarshan

y Null Values

B |tis possible for tuples to have a null value, denoted by null, for
some of their attributes

null signifies an unkown value or that a value does not exist.

The result of any arithmetic expression and comparisons
involving null evaluate to null

Example: 5 + null returns null
null>5 returns null
null = null returns null
B The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

©8425 - Fall 2013 - Boris Glavic 441 @Silberschatz, Korth and Sudarshan

N Null Values and Three Valued Logic

W Any comparison with null returns null
Example: 5 <null or null<null or null =null
B Three-valued logic using the truth value null:
OR: (null or true) = true,
(null or false) = null
(null or null) = null
AND: (true and null) = null,
(false and null) = false,
(null and null) = null
NOT: (not null) = null
“Pis null” evaluates to true if predicate P evaluates to null

B Result of where clause predicate is treated as false if it
evaluates to null

©8425 - Fall 2013 - Boris Glavic 442 @Silberschatz, Korth and Sudarshan

N Aggregate Functions

B These functions operate on the multiset of values of a
column of a relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

B Most DBMS support user defined aggregation functions

©$425 - Fall 2013 - Boris Glavic 4.43

@Silberschatz, Korth and Sudarshan

N Aggregate Functions (Cont.)

B Find the average salary of instructors in the Computer Science
department
select avg (salary)
from instructor
where dept_name="Comp. Sci.’ ;
B Find the total number of instructors who teach a course in the
Spring 2010 semester
select count (distinct /D)
from teaches
where semester="Spring’ and year = 2010
B Find the number of tuples in the course relation
select count (*)
from course;

CS425 - Fall 2013 - Boris Glavic 444

@Silberschatz, Korth and Sudarshan

A2 Aggregate Functions — Group By

B Find the average salary of instructors in each department

select dept_name, avg (salary)
from instructor
group by dept_name;

Note: departments with no instructor will not appear in result

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Kalz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. [65000 deptname | avg-salary
83821 BrAandl Comp. Sci. | 92000 Biology 72000
98345 | Kim E_lec. Eng. | 80000 Comp. Sci. | 77333
12121 |Wu Finance 90000 Elec. En 80000
76543 | Singh Finance 80000 Finance 85000
32343 | El Said History 60000 History 61000
58583 | Califieri History 62000 . 7
15151 [Mozart | Music 20000 Music 40000
33456 | Gold Physics | 87000 Physics 91000
22222 |Einstein Physics 95000

5425 - Fall 2013 - Boris Glavie 445 Silberschatz, Korth and Sudarshan

Aggregation (Cont.)

B Attributes in select clause outside of aggregate functions must
appear in group by list
/* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

©8425 - Fall 2013 - Boris Glavic 446 @Silberschatz, Korth and Sudarshan

N°- Adggregate Functions — Having Clause

B Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary)
from instructor

group by dept_name

having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

©8425 - Fall 2013 - Boris Glavic 447 @Silberschatz, Korth and Sudarshan

N Null Values and Aggregates

W Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amount

W All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

B What if collection has only null values?
count returns 0
all other aggregates return null

©8425 - Fall 2013 - Boris Glavic 448 @Silberschatz, Korth and Sudarshan

N- Empty Relations and Aggregates N- Duplicates
W What if the input relation is empty W In relations with duplicates, SQL can define how many copies
m Conventions: of tuples appear in the result.
sum: returns null B Multiset versions of some of the relational algebra operators —

avg: returns null given multiset relations r; and r,:

min: ret:‘rns nu/j/ 1. Og(ry): If there are c, copies of tuple ¢ in r;, and ¢,
max: - .) .
X: returns nuj satisfies selections O/, then there are ¢, copies of t; in O
count: returns 0 (r))
1)

2. TI4(r): For each copy of tuple t, in r,, there is a copy of
tuple TI4(t)in I14(ry) where I, (t,) denotes the
projection of the single tuple t,.

3. ry x r,: If there are ¢, copies of tuple t, in r,; and c, copies
of tuple , in r,, there are ¢ x ¢, copies of the tuple t,. t, in ry

Xry
5425 - Fall 2013 - Boris Glavic 449 @Silberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavic 450 GSilberschatz, Korth and Sudarshan
Multiset Relational Algebra N Duplicates (Cont.)
| S —
B Pure relational algebra operates on set-semantics (no duplicates B Example: Suppose multiset relations r; (A, B) and r, (C)
allowed) are as follows:
e.g. after projection r={(1,a (2a} rn={2), @), 3)}
B Multiset (bag-semantics) relational algebra retains duplicates, to .
match SQL semantics B Then Ig(r,) would be {(a), (a)}, while ITg(ry) x r, would be
SQL duplicate retention was initially for efficiency, but is now a {(@2), (a,2), (a3), (a,3), (a3), (a,3)}
feature B SQL duplicate semantics:
B Multiset relational algebra defined as follows select A, A, ..., A,
selection: has as many duplicates of a tuple as in the input, if the fromry, 1y . 1y
tuple satisfies the selection where P
projection: one tuple per input tuple, even if it is a duplicate is equivalent to the multiset version of the expression:
cross product: If there are m copies of t1in r, and n copies of
t2in s, there are m x n copies of t1.12inr x s HAMAZ‘...,A,,(O-P(E XIX...XI,))
Other operators similarly defined
» E.g. union: m + n copies, intersection: min(m, n) copies
difference: max(0, m— n) copies
5425 - Fall 2013 - Boris Glavic ast ©Silberschatz, Korth and Sudarshan €425 - Fall 2013 - Boris Glavie as2 @Silberschatz, Korth and Sudarshan
N SQL and Relational Algebra N- SQL and Relational Algebra
[S— S—
W selectA, A, .. A, W More generally, the non-aggregated attributes in the select clause
from r,r, ..., 1, may be a subset of the group by attributes, in which case the
where P equivalence is as follows:

is equivalent to the following expression in multiset relational algebra
select A;, sum(A;) AS sumA3

[T a1,., a0 (O p(rix rp XX 1) from 1,y ..., Iy

where P
B select A, A, sum(A;)
from r,r, ..., 1y group by A, A,

where P is equivalent to the following expression in multiset relational algebra
group by A, A,

il (mA2G (O pryX 13 XX 1)
is equivalent to the following expression in multiset relational algebra At sumad A1,A2 G sum(43) as suma3(© p (17X 7 m

A1, A2 Gsum(a3) (O p(r X Iz X X 1))

©8425 - Fall 2013 - Boris Glavic 453 @Silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavic 454 @Silberschatz, Korth and Sudarshan

N Subqueries in the From Clause

B SQL allows a subquery expression to be used in the from clause

B Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)
where avg_salary > 42000;
B Note that we do not need to use the having clause
B Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

©8425 - Fall 2013 - Boris Glavic 455 @Silberschatz, Korth and Sudarshan

N Nested Subqueries

B SQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested
within another query.

B A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

©8425 - Fall 2013 - Boris Glavic 456 @Silberschatz, Korth and Sudarshan

Example Query

B Find courses offered in Fall 2009 and in Spring 2010

select distinct course_id
from section
where semester="Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester =" Spring’ and year= 2010);

m Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester =" Fall’ and year= 2009 and
course_id not in (select course_id
from section
where semester="Spring’ and year=
2010);

©8425 - Fall 2013 - Boris Glavic 457 @Silberschatz, Korth and Sudarshan

N Quantification

B Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name =’ Biology’ ;

m Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept_name =" Biology’);

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 4.59

Example Query

B Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with /D 10101

select count (distinct /D)
from takes
where (course_id, sec_id, semester, year) in
(select course_id, sec_id, semester, year
from teaches
where teaches.ID=10101);

m Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

©S425 - Fall 2013 - Boris Glavic 458 @Silberschatz, Korth and Sudarshan

N Definition of Some Clause

B F <comp>some r < 3 tE r such that (F <comp> t)
Where <comp>canbe: <, <, >, =, =

(5<some | 5 |)=true
E (read: 5 < some tuple in the relation)

(5 <some
(5 =some

(5 # some) = true (since 0 # 5)

(= some) = in
However, (= some);é not in

) = false

) = true

©8425 - Fall 2013 - Boris Glavic 460 @Silberschatz, Korth and Sudarshan

10

N Example Query

B Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept_name =’ Biology’);

©8425 - Fall 2013 - Boris Glavic 461 @Silberschatz, Korth and Sudarshan

¥ Definition of all Clause

B F<comp>allr< Vter (F<comp>t)

(5b<all | 5|)=false

5 #all) =true (since 5 # 4 and 5 # 6)

(= all) = not in
However, (= all) £ in

©8425 - Fall 2013 - Boris Glavic 462 @Silberschatz, Korth and Sudarshan

N Test for Empty Relations

B The exists construct returns the value true if the argument
subquery returns a nonempty result.

W exists re r=0
H notexistsre r=0

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 463

Correlation Variables

B Yet another way of specifying the query “Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester”

select course_id
from section as S
where semester="Fall’ and year= 2009 and
exists (select *
from sectionas T
where semester =" Spring’ and year= 2010
and S.course_id= T.course_id);

B Correlated subquery
B Correlation name or correlation variable

©8425 - Fall 2013 - Boris Glavic 464 @Silberschatz, Korth and Sudarshan

y Not Exists

B Find all students who have taken all courses offered in the
Biology department.

select distinct S./D, S.name
from studentas S
where not exists ((select course_id
from course
where dept_name =’ Biology’)
except
(select T.course_id
from takesas T
where S.ID = T.ID));

m Notethat X-Y=0 < XCVY
m Note: Cannot write this query using = all and its variants

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 4.65

N Test for Absence of Duplicate Tuples

B The unique construct tests whether a subquery has any duplicate tuples
in its result.
(Evaluates to “true” on an empty set)
B Find all courses that were offered at most once in 2009
select T.course_id
from courseas T
where unique (select R.course_id
from sectionas R
where T.course_id= R.course_id
and R.year = 2009);

©8425 - Fall 2013 - Boris Glavic 466 @Silberschatz, Korth and Sudarshan

11

N Correlated Subqueries in the From
- Clause

B And yet another way to write it: lateral clause

select name, salary, avg_salary
from instructor I1,
lateral (select avg(salary) as avg_salary
from instructor 12
where [2.dept_name= |1.dept_name);
W Lateral clause permits later part of the from clause (after the lateral
keyword) to access correlation variables from the earlier part.
® Note: lateral is part of the SQL standard, but is not supported on many

database systems; some databases such as SQL Server offer
alternative syntax

©8425 - Fall 2013 - Boris Glavic 467 @Silberschatz, Korth and Sudarshan

N. Complex Queries using With Clause

B With clause is very useful for writing complex queries

W Supported by most database systems, with minor syntax
variations

B Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total_avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

©8425 - Fall 2013 - Boris Glavic 469 @Silberschatz, Korth and Sudarshan

¥ With Clause

B The with clause provides a way of defining a temporary view
whose definition is available only to the query in which the with
clause occurs.

B Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select budget
from department, max_budget
where department.budget = max_budget.value;

CS425 - Fall 2013 - Boris Glavic 4.68

@Silberschatz, Korth and Sudarshan

Scalar Subquery

W Scalar subquery is one which is used where a single value is expected

m Eg. select dept name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

B E.g. select name
from instructor
where salary * 10 >
(select budget from department
where department.dept_name = instructor.dept_name)

B Runtime error if subquery returns more than one result tuple

©8425 - Fall 2013 - Boris Glavic a70 @Silberschatz, Korth and Sudarshan

N Query Features Recap - Syntax

B An SQL query is either a Select-from-where block or a set operation
B An SQL query block is structured like this:

SELECT [DISTINCT] select_list

[FROM from_list]

[WHERE where_condition]

[GROUP BY group_by_list]

[HAVING having_condition]

[ORDER BY order_by_list]

W Set operations
[Query Block] set_op [Query Block]
set_op: [ALL] UNION | INTERSECT | EXCEPT

©8425 - Fall 2013 - Boris Glavic an @Silberschatz, Korth and Sudarshan

N Query Features Recap - Syntax

B Almost all clauses are optional
B Examples:
SELECT * FROM ;
SELECT 1;
» Convention: returns single tuple
SELECT ‘ok’ FROM accounts HAVING sum(balance) = 0;
SELECT 1 GROUP BY 1;
SELECT 1 HAVING true;
Let r be a relation with two attributes a and b
» SELECT a,b FROM r
WHERE a IN (SELECT a FROM r) AND b IN (SELECT b FROM r)
GROUP BY a,b HAVING count(*) > 0;
H Note:
Not all systems support all of this “non-sense”

©8425 - Fall 2013 - Boris Glavic ar2 @Silberschatz, Korth and Sudarshan

12

Syntax - SELECT

m SELECT [DISTINCT [ON (distinct_list)]] select_list
H select_list
List of projection expressions
» [expr] [AS name]
expr

» Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

| distinct_list
List of expressions

B Examples:
SELECT DISTINCT ON (a % 2) a FROM r;
SELECT substring(a, 1,2) AS x FROM r;
SELECT CASE WHEN a =2 THEN a ELSE null END AS b FROM r;
SELECT a=b ASis_a_equal_to_b FROMr;

©8425 - Fall 2013 - Boris Glavic 473 @Silberschatz, Korth and Sudarshan

N Syntax - FROM

B FROM from_list
| from_list
List of from clause expressions
» subquery | relation | constant_relation | join_expr [alias]
subquery
» Any valid SQL query — alias is not optional
relation
» Arelation in the database
constant_relation
» (VALUES tuples) — alias is not optional
join_expr
» joins between from_clause entries
alias
» [AS] b [(attribute_name_list)]

CS425 - Fall 2013 - Boris Glavic 474

@Silberschatz, Korth and Sudarshan

N Syntax — FROM (cont.)

W Examples (relation r with attributes a and b):
SELECT * FROM;
SELECT * FROM r AS g(v,w);
SELECT * FROM r x;
SELECT * FROM (VALUES (1,2), (3,1)) AS s(u,);
SELECT * FROM r NATURAL JOIN s, t;

SELECT * FROM ((r JOIN s ON (r.a = s.c)) NATURAL JOIN
(SELECT * FROM) AS new);

SELECT * FROM (SELECT * FROM) AS r;
SELECT * FROM (SELECT * FROM (SELECT * FROM) AS) ASr;

©8425 - Fall 2013 - Boris Glavic 475

@Silberschatz, Korth and Sudarshan

Syntax - WHERE

B WHERE where_condition
W where_condition: A boolean expression over
Attributes
Constants: e.g., true, 1, 0.5, ‘hello’
Comparison operators: =, <, >, IS DISTINCT FROM, IS NULL, ...
Arithmetic operators: +,-,/,%
Function calls
Nested subquery expressions
B Examples
SELECT * FROM r WHERE a = 2;
SELECT * FROM r WHERE true OR false;
SELECT * FROM r WHERE NOT(a=2OR a = 3);
SELECT * FROM r WHERE a IS DISTINCT FROM b;
SELECT * FROM r WHERE a < ANY (SELECT c FROM s);
SELECT * FROM r WHERE a = (SELECT count(*) FROM s);

©S425 - Fall 2013 - Boris Glavic 476 @Silberschatz, Korth and Sudarshan

N2 Syntax — GROUP BY

B GROUP BY group_by_list
W group_by_list
List of expressions

» Expression over attributes, constants, arithmetic operators,
functions, CASE-construct, aggregation functions

B Examples:
SELECT sum(a), b FROM r GROUP BY b;
SELECT sum(a), b, c FROM r GROUP BY b, c;
SELECT sum(a), b/2 FROM r GROUP BY b/2;
SELECT sum(a), b FROM r GROUP BY b > 5;

» Incorrect, cannot select b, because it is not an expression in the
group by clause

SELECT sum(a), b FROM r GROUP BY b IN (SELECT ¢ FROM s);

©$425 - Fall 2013 - Boris Glavic a7t

@Silberschatz, Korth and Sudarshan

Az Syntax — HAVING

B HAVING having_condition
B having_condition

Like where_condition except that expressions over attributes have
either to be in the GROUP BY clause or are aggregated

B Examples:
SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) > 10;
SELECT sum(a), b FROM r GROUP BY b HAVING sum(a) + 5 > 10;
SELECT sum(a), b FROM r GROUP BY b HAVING true;
SELECT sum(a), b FROM r GROUP BY b HAVING count(*) = 50;
SELECT b FROM r GROUP BY b HAVING sum(a) > 10;

©8425 - Fall 2013 - Boris Glavic a78 @Silberschatz, Korth and Sudarshan

13

N Syntax - ORDER BY
[N —
B ORDER BY order_by_list
W order_by_list
Like select_list minus renaming
Optional [ASC | DESC] for each item
B Examples:
SELECT * FROM r ORDER BY a;
SELECT * FROM r ORDER BY b, a;
SELECT * FROM r ORDER BY a * 2;
SELECT * FROMr ORDERBY a * 2, a;
SELECT * FROM r ORDER BY a + (SELECT count(*) FROM s);

©8425 - Fall 2013 - Boris Glavic 479 @Silberschatz, Korth and Sudarshan

Query Semantics (Cont.)

5. Compute ORDER BY clause
Order the result of step 4 on the ORDER BY expressions
6. Compute SELECT clause
Project each result tuple from step 5 on the SELECT expressions

m If the WHERE, SELECT, GROUP BY, HAVING, ORDER BY clauses
have any nested subqueries

For each tuple t in the result of the FROM clause
» Substitute the correlated attributes with values from t
» Evaluate the resulting query

» Use the result to evaluate the expression in the clause the
subquery occurs in

©8425 - Fall 2013 - Boris Glavic 481 @Silberschatz, Korth and Sudarshan

Query Semantics

W Evaluation Algorithm (you can do it manually — sort of)
1. Compute FROM clause
Compute cross product of all items in the FROM clause
» Relations: nothing to do

» Subqueries: use this algorithm to recursively compute the result of
subqueries first

» Join expressions: compute the join
2. Compute WHERE clause

For each tuple in the result of 1. evaluate the WHERE clause
condition

3. Compute GROUP BY clause

Group the results of step 2. on the GROUP BY expressions
4. Compute HAVING clause

For each group (if any) evaluate the HAVING condition

©8425 - Fall 2013 - Boris Glavic 480 @Silberschatz, Korth and Sudarshan

Query Semantics (Cont.)

W Equivalent relational algebra expression
ORDER BY has no equivalent, because relations are unordered
Nested subqueries: need to extend algebra (not covered here)
W Each query block is equivalent to

(o (G(m(o(F1 X ... Fy))))

B Where F; is the translation of the i"" FROM clause item
B Note: we leave out the arguments

©8425 - Fall 2013 - Boris Glavic 482 @Silberschatz, Korth and Sudarshan

y Modification of the Database

W Deletion of tuples from a given relation
B Insertion of new tuples into a given relation
B Updating values in some tuples in a given relation

©8425 - Fall 2013 - Boris Glavic 4.83 @Silberschatz, Korth and Sudarshan

i; Modification of the Database — Deletion

W Delete all instructors
delete from instructor

W Delete all instructors from the Finance department
delete from instructor
where dept_name=""Finance’ ;
W Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.
delete from instructor
where dept_name in (select dept_name
from department
where building =’ Watson’);

©S425 - Fall 2013 - Boris Glavic 484

@Silberschatz, Korth and Sudarshan

14

N Deletion (Cont.)

B Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary < (select avg (salary) from instructor);

® Problem: as we delete tuples from instructor, the average salary
changes

@ Solution used in SQL:
1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

©8425 - Fall 2013 - Boris Glavic 4.85 @Silberschatz, Korth and Sudarshan

jg Modification of the Database — Insertion

W Add a new tuple to course

insert into course
values (' CS-437’, ’ Database Systems’, ' Comp. Sci.’, 4);

W or equivalently
insert into course (course_id, title, dept_name, credits)
values (' CS-437’, ’ Database Systems’, " Comp. Sci.’, 4);

B Add a new tuple to student with tot_creds set to null

insert into student
values (' 3003’, ' Green’, ' Finance’, null);

©8425 - Fall 2013 - Boris Glavic 486 @Silberschatz, Korth and Sudarshan

Insertion (Cont.)

B Add all instructors to the student relation with tot_creds set to 0

insert into student
select /D, name, dept_name, 0
from instructor

B The select from where statement is evaluated fully before any of
its results are inserted into the relation (otherwise queries like
insert into tablel1 select * from table1
would cause problems, if table? did not have any primary key
defined.

©8425 - Fall 2013 - Boris Glavic 487 @Silberschatz, Korth and Sudarshan

N Modification of the Database — Updates

B Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise
Write two update statements:
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;
The order is important

Can be done better using the case statement (next slide)

©8425 - Fall 2013 - Boris Glavic 488

@Silberschatz, Korth and Sudarshan

N Case Statement for Conditional Updates

B Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©8425 - Fall 2013 - Boris Glavic 4.89 @Silberschatz, Korth and Sudarshan

N Updates with Scalar Subqueries

B Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes natural join course
where S./D= takes.ID and
takes.grade <’ F’ and
takes.grade is not null);

W Sets fot_creds to null for students who have not taken any course
B Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0
end
B Or COALESCE(sum(credits),0)
COALESCE returns first non-null arguments

©8425 - Fall 2013 - Boris Glavic 490 @Silberschatz, Korth and Sudarshan

15

N Recap

B SQL queries
Clauses: SELECT, FROM , WHERE, GROUP BY, HAVING,
ORDER BY

Nested subqueries

Equivalence with relational algebra
B SQL update, inserts, deletes

Semantics of referencing updated relation in WHERE
m SQL DDL

Table definition: CREATE TABLE

5425 — Fall 2013 - Boris Glavic 491 @Silberschatz, Korth and Sudarshan

End of Chapter 4

Modified from:
Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

S 2

Outline
B Introduction
B Relational Data Model
B Formal Relational Languages (relational algebra)
B SQL - Intermediate
m Database Design
W Transaction Processing, Recovery, and Concurrency Control
W Storage and File Structures
B Indexing and Hashing
B Query Processing and Optimization
8425 - Fall 2013 - Boris Glavic 493 @Silberschatz, Korth and Sudarshan
Figure 3.02
name
Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim
©5425 - Fall 2013 - Boris Glavie a5 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 494

Advanced SQL Features**

B Create a table with the same schema as an existing table:
create table temp_account like account

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 496

Figure 3.03

dept_iame

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

@Silberschatz, Korth and Sudarshan

16

Figure 3.04 Figure 3.05
name dept_name | _building
Srinivasan | Comp. Sci. | Taylor
Wu Finance Painter
Mozart Music Packard
Einstein | Physics Watson
e] El Said History Painter
Katz Gold Physics Watson
Brandt Katz Comp. Sci. [Taylor
Califieri | History Painter
Singh Finance Painter
Crick Biology Watson
Brandt Comp. Sci. [Taylor
Kim Elec. Eng. | Taylor
5425 - Fall 201 - Boris Giavie wer eSitberschatz, Korth and Sudarshan 425 - Fal 2013 - Boris Giavie r Siberschatz, Kori and Sudarshan

Figure 3.07 Figure 3.08
Course_id D name | dept_name | salary | course_id| sec_id | semester| year
Sff"‘v asan Cﬁ-lm 10101 |Srinivasan| Comp. Sci.| 65000 | CS-101 1 |Fall 2009
Efn.n!vasan (_‘E‘r315 10101 |Srinivasan| Comp. Sci.| 65000 | CS-315 1 |[Spring | 2010
Srinivasan| CS-347 10101 |Srinivasan| Comp. Sci.| 65000 | CS-347 1 Fall 2009
Wu FIN-201 12121 |Wu Finance | 90000 | FIN-201 1 Spring | 2010
Mozmjt MU-199 15151 |Mozart Music 40000 MU-199 1 Spring | 2010
Emst.cm PHY-101 22222 |Einstein | Physics 95000| PHY-101| 1 Fall 2009
El Said HIS-351 32343 |El Said History [60000| HIS-351 1 |Spring | 2010
Katz (;SlOl 45565 |Katz Comp. Sci.| 75000| CS-101 1 Spring | 2010
Ka‘(z CS-319 45565 |Katz Comp. Sci.| 75000| CS-319 1 Spring | 2010
Crick BIO-101 76766 |Crick Biology 72000{ BIO-101 1 Summer| 2009
Crick BlO-?A)l 76766 |Crick Biology [72000| BIO-301 1 |Summer| 2010
Brandt C5-190 83821 (Brandt Comp. Sci.[92000(CS-190 1 |Spring | 2009
Brandt CS-190 83821 |Brandt Comp. Sci. [92000| CS-190 2 |Spring | 2009
Brgndi CS-319 83821 [Brandt Comp. Sci.{ 92000| CS-319 2 |Spring | 2010
Kim EE-181 98345 |Kim Elec. Eng. |80000| EE-181 1 |Spring | 2009
Figure 3.09 Figure 3.10

course_id

> Cs-101

course_id Cs-315

Cs-101 Cs-319

Cs-347 Cs-319

PHY-101 FIN-201

HIS-351

MU-199

425 - Fall 2013 - Boris Glavic

Figure 3.11

Course_id

Cs-101
CS-315
Cs-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

4103

@Silberschatz, Korth and Sudarshan

5425 - Fall 2013 - Boris Glavic

Figure 3.13

course_id

CS-347
PHY-101

4105

@Silberschatz, Korth and Sudarshan

425 - Fall 2013 - Boris Glavic

Figure 3.17

4107

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 3.12

4104

@Silberschatz, Korth and Sudarshan

Figure 3.16

dept_name_] count
Comp. Sci.| 3
Finance 1
History 1
Music 1
©5425 - Fall 2013 - Boris Glavie 4106 ©Silberschatz, Korth and Sudarshan

18

CS425 - Fall 2013
Boris Glavic
Chapter 5: Intermediate SQL

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Views

B In some cases, it is not desirable for all users to see the
entire logical model (that is, all the actual relations stored in
the database.)

B Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by

select /D, name, dept_name
from instructor

B A view provides a mechanism to hide certain data from the
view of certain users.

B Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

©8425 - Fall 2013 - Boris Glavic 53 @Silberschatz, Korth and Sudarshan

N Example Views

B A view of instructors without their salary
create view faculty as
select /D, name, dept_name
from instructor

B Find all instructors in the Biology department
select name
from faculty
where dept_name = ‘Biology’

B Create a view of department salary totals
create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

©8425 - Fall 2013 - Boris Glavic 55 @Silberschatz, Korth and Sudarshan

¥ Chapter 5: Intermediate SQL

u Views

W Transactions

B Integrity Constraints

B SQL Data Types and Schemas
W Access Control

Textbook: Chapter 4

©8425 - Fall 2013 - Boris Glavic 52 @Silberschatz, Korth and Sudarshan

View Definition

B A view is defined using the create view statement which has
the form

create view vas <query expression >
where <query expression> is any legal SQL expression. The
view name is represented by v.

B Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.
B View definition is not the same as creating a new relation by
evaluating the query expression
Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view.

©8425 - Fall 2013 - Boris Glavic 54 @Silberschatz, Korth and Sudarshan

NE Views Defined Using Other Views

B create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = Physics’
and section.semester =’ Fall’
and section.year="2009’ ;
B create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall_2009
where building="Watson’ ;

©S425 - Fall 2013 - Boris Glavic 56

@Silberschatz, Korth and Sudarshan

N View Expansion

B Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name =’ Physics’
and section.semester = Fall’
and section.year ="2009")
where building="Watson’ ;

©S425 - Fall 2013 - Boris Glavic 57

@Silberschatz, Korth and Sudarshan

N Views Defined Using Other Views

B One view may be used in the expression defining another view

W A view relation v, is said to depend directly on a view relation
v, if v, is used in the expression defining v,

W A view relation v, is said to depend on view relation v, if either
v, depends directly to v, or there is a path of dependencies
from v, to v,

W A view relation vis said to be recursive if it depends on itself.

CS425 - Fall 2013 - Boris Glavic 58

@Silberschatz, Korth and Sudarshan

View Expansion

B A way to define the meaning of views defined in terms of other
views.

B Let view v, be defined by an expression e, that may itself
contain uses of view relations.
W View expansion of an expression repeats the following
replacement step:
repeat
Find any view relation v;in e,
Replace the view relation v; by the expression defining v;
until no more view relations are present in e,
W As long as the view definitions are not recursive, this loop will
terminate

©8425 - Fall 2013 - Boris Glavic 59 @Silberschatz, Korth and Sudarshan

Update of a View

B Add a new tuple to faculty view which we defined earlier
insert into faculty values (' 30765, ' Green’, ' Music’);
This insertion must be represented by the insertion of the tuple
(’30765, ' Green’, " Music’, null)
into the instructor relation

©8425 - Fall 2013 - Boris Glavic 510 @Silberschatz, Korth and Sudarshan

NC Some Updates cannot be Translated Uniquely

m create view instructor_info as
select /D, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

B insert into instructor_info values (' 69987’ , ' White’, ’ Taylor’);
» which department, if multiple departments in Taylor?
» what if no department is in Taylor?
B Most SQL implementations allow updates only on simple views
The from clause has only one database relation.

The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates, or
distinct specification.

Any attribute not listed in the select clause can be set to null
The query does not have a group by or having clause.

©8425 - Fall 2013 - Boris Glavic 511 @Silberschatz, Korth and Sudarshan

% And Some Not at All

W create view history_instructors as
select *
from instructor
where dept_name="History’ ;

B What happens if we insert (' 25566, ' Brown’ , ’ Biology’,
100000) into history_instructors?

©8425 - Fall 2013 - Boris Glavic 512 @Silberschatz, Korth and Sudarshan

Materialized Views

B Materializing a view: create a physical table containing all the tuples
in the result of the query defining the view

W [f relations used in the query are updated, the materialized view result
becomes out of date
Need to maintain the view, by updating the view whenever the
underlying relations are updated.

©8425 - Fall 2013 - Boris Glavic 513 @Silberschatz, Korth and Sudarshan

Transactions

modified from:

Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Transactions

® Unit of work
B Atomic transaction
either fully executed or rolled back as if it never occurred
B |Isolation from concurrent transactions
B Transactions begin implicitly
Ended by commit work or rollback work

B But default on most databases: each SQL statement commits
automatically

Can turn off auto commit for a session (e.g. using API)
In SQL:1999, can use: begin atomic end
» Not supported on most databases

©8425 - Fall 2013 - Boris Glavic 515 @Silberschatz, Korth and Sudarshan

N Transactions Example
| S —
B Example Atomicity (all-or-nothing)
Recall example from the introduction
Relation accounts(accID, cust, type, balance)

A user want to transfer $100 from his savings (accID = 700) to his
checking account (accID= 107)

UPDATE accounts SET balance = balance — 100 WHERE accID = 100;
UPDATE accounts SET balance = balance + 100 WHERE accID = 101;

This can cause inconsistencies if the system crashes after the first
update (user would loose money)

Using a transaction either both or none of the statements are executed
BEGIN
UPDATE accounts SET balance = balance — 100 WHERE accID = 100;
UPDATE accounts SET balance = balance + 100 WHERE accID = 101;
coMmIT

©8425 - Fall 2013 - Boris Glavic 516

@Silberschatz, Korth and Sudarshan

Transactions and Concurrency

B Transactions are also used to isolate concurrent actions of different
users

W Recall from the introduction that if several users are modifying the
database at the same time that can lead to inconsistencies

W More on that later once we talk about concurrency control

©8425 - Fall 2013 - Boris Glavic 517 @Silberschatz, Korth and Sudarshan

Integrity Constraints

modified from:

Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
ee for conditions on re-use

N Integrity Constraints

B Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

A checking account must have a balance greater than
$10,000.00

A salary of a bank employee must be at least $4.00 an
hour

A customer must have a (non-null) phone number

©8425 - Fall 2013 - Boris Glavic 519 @Silberschatz, Korth and Sudarshan

& Integrity Constraints on a Single Relation

not null

primary key

unique

check (P), where P is a predicate

©8425 - Fall 2013 - Boris Glavic 520 @Silberschatz, Korth and Sudarshan

N Not Null and Unique Constraints

H not null
Declare name and budget to be not null
name varchar(20) not null
budget numeric(12,2) not null
B unique (Aq, Ay, ..., Ap)
The unique specification states that the attributes A1, A2, ...
;\)Tm a candidate key.

Candidate keys are permitted to be null (in contrast to primary
keys).

©8425 - Fall 2013 - Boris Glavic 521 @Silberschatz, Korth and Sudarshan

The check clause

H check (P)
where P is a predicate

Example: ensure that semester is one of fall, winter, spring
or summer:

create table section (

course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semesterin (' Fall’, " Winter’, " Spring’,
’ Summer’))

o425 - Fa 2013 Kot Giavie sz

@Silberschatz, Korth and Sudarshan

L2 Referential Integrity

B Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.

Example: If “Biology” is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

B Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appear in S.

©8425 - Fall 2013 - Boris Glavic 5.23 @Silberschatz, Korth and Sudarshan

i: Cascading Actions in Referential Integrity

W create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)

W create table course (

dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

)

B alternative actions to cascade: set null, set default

©8425 - Fall 2013 - Boris Glavic 524 @Silberschatz, Korth and Sudarshan

$ Integrity Constraint Violation During
— Transactions

m Eg.

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key /D,
foreign key father references person,
foreign key mother references person)

B How to insert a tuple without causing constraint violation ?
insert father and mother of a person before inserting person

OR, set father and mother to null initially, update after
inserting all persons (not possible if father and mother
attributes declared to be not null)

OR defer constraint checking (next slide)

©8425 - Fall 2013 - Boris Glavic 5.25 @Silberschatz, Korth and Sudarshan

N Complex Check Clauses

B check (time_slot_id in (select time_slot_id from time_slot))
why not use a foreign key here?

B Every section has at least one instructor teaching the section.
how to write this?

B Unfortunately: subquery in check clause not supported by
pretty much any database

Alternative: triggers (later)
W create assertion <assertion-name> check <predicate>;
Also not supported by anyone

©8425 - Fall 2013 - Boris Glavic 526 @Silberschatz, Korth and Sudarshan

Indexes and User-Defined Types
(UDTs)

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

@ Built-in Data Types in SQL

B date: Dates, containing a (4 digit) year, month and date
Example: date ‘2005-7-27’
B time: Time of day, in hours, minutes and seconds.
Example: time ‘09:00:30 time ‘09:00:30.75
W timestamp: date plus time of day
Example: timestamp ‘2005-7-27 09:00:30.75’
W interval: period of time
Example: interval ‘1’ day

Subtracting a date/time/timestamp value from another gives
an interval value

Interval values can be added to date/time/timestamp values

©8425 - Fall 2013 - Boris Glavic 528

@Silberschatz, Korth and Sudarshan

y Index Creation

W create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (/D))
B create index student/D_index on student(ID)

B Indices are data structures used to speed up access to records
with specified values for index attributes
e.g. select *
from student
where ID = ‘12345’
can be executed by using the index to find the required
record, without looking at all records of student

More on indices later

©8425 - Fall 2013 - Boris Glavic 5.29 @Silberschatz, Korth and Sudarshan

N- User-Defined Types
S—
B create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

©8425 - Fall 2013 - Boris Glavic 5.30 @Silberschatz, Korth and Sudarshan

@ Domains

B create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

B Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

B create domain degree_level varchar(10)
constraint degree_level_test
check (value in (' Bachelors’, " Masters’, ' Doctorate’));

©8425 - Fall 2013 - Boris Glavic 531 @Silberschatz, Korth and Sudarshan

N Large-Object Types

B Large objects (photos, videos, CAD files, etc.) are stored as a
large object:
blob: binary large object -- object is a large collection of
uninterpreted binary data (whose interpretation is left to an
application outside of the database system)
clob: character large object -- object is a large collection of
character data

When a query returns a large object, a pointer is returned
rather than the large object itself.

©8425 - Fall 2013 - Boris Glavic 532 @Silberschatz, Korth and Sudarshan

Access Control

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Access Control

Forms of authorization on parts of the database:

B Read - allows reading, but not modification of data.

W Insert - allows insertion of new data, but not modification of
existing data.

B Update - allows modification, but not deletion of data.
B Delete - allows deletion of data.

Forms of authorization to modify the database schema

B Index - allows creation and deletion of indices.

B Resources - allows creation of new relations.

W Alteration - allows addition or deletion of attributes in a relation.
W Drop - allows deletion of relations.

©8425 - Fall 2013 - Boris Glavic 534 @Silberschatz, Korth and Sudarshan

y Authorization Specification in SQL

B The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
B <user list> is:
a user-id
public, which allows all valid users the privilege granted
A role (more on this later)
B Granting a privilege on a view does not imply granting any
privileges on the underlying relations.
B The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

©8425 - Fall 2013 - Boris Glavic 5.35 @Silberschatz, Korth and Sudarshan

N Privileges in SQL

B select: allows read access to relation,or the ability to query
using the view

Example: grant users U;, U,, and U, select
authorization on the instructor relation:

grant select on instructorto U,, U,, U,
W insert: the ability to insert tuples

B update: the ability to update using the SQL update
statement

W delete: the ability to delete tuples.

| all privileges: used as a short form for all the allowable
privileges

©8425 - Fall 2013 - Boris Glavic 536 @Silberschatz, Korth and Sudarshan

82

©$425 - Fall 2013 - Boris Glavic 5.37

Revoking Authorization in SQL

B The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

B Example:
revoke select on branch from U,, U,, U,

W <privilege-list>= may be all to revoke all privileges the revokee
may hold.

W If <revokee-list> includes public, all users lose the privilege
except those granted it explicitly.

B If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

W All privileges that depend on the privilege being revoked are
also revoked.

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic 5.38

Roles

B create role instructor;
W grant instructor to Amit;
B Privileges can be granted to roles:
grant select on takes to instructor,
B Roles can be granted to users, as well as to other roles
create role teaching_assistant
grant teaching_assistant to instructor,
» Instructor inherits all privileges of teaching_assistant
W Chain of roles
create role dean;
grant instructor to dean;
grant dean to Satoshi;

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 539

Authorization on Views

W create view geo_instructor as
(select *
from instructor
where dept_name =" Geology’);

W grant select on geo_instructorto geo_staff
B Suppose that a geo_staff member issues

select *
from geo_instructor;

B What if
geo_staff does not have permissions on instructor?

creator of view did not have some permissions on
instructor?

@Silberschatz, Korth and Sudarshan

N2

©8425 - Fall 2013 - Boris Glavic 5.40

Other Authorization Features

H references privilege to create foreign key
grant reference (dept_name) on department to Mariano;
why is this required?

W transfer of privileges
grant select on department to Amit with grant option;
revoke select on department from Amit, Satoshi cascade;
revoke select on department from Amit, Satoshi restrict;

B Etc. read text book Section 4.6 for more details we have
omitted here.

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 5.41

y Understanding RESTRICT/CASCADE

B Bob grants right X on Y to Alice with grant option
W Alice grants right X on Y to Peter

B Abandoned right
A right for which there is no justification anymore

B revoke X on Y from Peter restrict

With restrict fails if it would result in abandoned
rights

B revoke X on Y from Peter cascade

Also revokes rights that would otherwise be
abandoned

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 5.42

Understanding RESTRICT/CASCADE

Bob grants right X on Y to Alice with grant option
W Alice grants right X on Y to Peter
W Bob grants right X on Y to Peter i —

W Abandoned privilege
A privilege for which there is no justification anymore
Indirect justifications count

B revoke X on Y from Peter restrict

Fails: even though there exists additional justification
for the privilege.

B revoke X on Y from Peter cascade
Revokes that right from Peter.
Peter still has the right to do X on Y

@Silberschatz, Korth and Sudarshan

N Recap

H Views
Virtual
Materialized
Updates
B Integrity Constraints
Not null, unique, check
Foreign keys: referential integrity End Of Chapter 5
B Access control
Users, roles
Privileges
GRANT / REVOKE
B Data types
Build-in types, Domains, Large Objects

UDTs
i modified from:
Indices
Database System Concepts, 6" Ed
@Silberschatz, Korth and Sudarshan
CS425 - Fall 2013 - Boris Glavic 543 ©Silberschatz, Korth and Sudarshan See for conditions on re-use

N- Outline Figure 4.01
|~
B Introduction
B Relational Data Model
B Formal Relational Languages (relational algebra) D nane dept_name_[tot_cred
B SQL - Advanced 00128 | Zhang 102
. 12345 | Shankar 32
m Database Design 19991 | Brandt 80
B Transaction Processing, Recovery, and Concurrency Control | Shaver w
55 eltie
W Storage and File Structures 45678 | Levy 16
) . 54321 | Williams 54
W Indexing and Hashing 55739 | Sanchez 38
® Query Processing and Optimization 70557 | Snow Physics 0
76543 | Brown Comp.Sci. [58
76653 | Aoi Elec. Eng. 60
98765 | Bourikas | Elec. Eng. 98
98988 | Tanaka Biology 120
(©8425 - Fall 2013 - Boris Glavie sas ©Silberschatz, Korth and Sudarshan €425 - Fall 2013 - Boris Glavie 545 @Silberschatz, Korth and Sudarshan

Figure 4.02 Figure 4.03
D course_id | sec_id | semester | year | grade D name | dept_name | tot_cred| course_id|sec_id| semester | year | grade
00128 [Cs-101 1 Fall 2009 A 00128 [Zhang 102 1 [Fanl 2009] A
00128 | CS-347 1 Fall 2009 [A- 00128 |Zhang 102 1 [Fall 2009 A-
12345 | CS-101 1 Fall 2009 | € 12345 |Shankar 32 1 |Fall 2009(€
12345 | CS-190 2 |[Spring [2009 [A 12345 |Shankar 32 2 |Spring | 2009| A
12345 | CS315 1 Spring [2010 [A 12345 |Shankar 32 1 [Spring | 2010| A
12345 [CS-347 1 Fall 2009 [A 12345 |Shankar 2 1 [Fall 2009| A
19991 | HIS-351 1 Spring [2010 [B 19991 |Brandt 80 1 |Spring | 2010| B
23121 1 Spring [2010 [C+ 23121 |Chavez 110 1 |Spring | 2010|C+
44553 1 Fall 2009 | B- 44553 |Peltier 56 1 |Fall 2009 | B~
45678 1 Fall 2009 | F 45678 [Levy 46 1 |Fall 2009| F
45678 1 Spring [2010 [B+ 45678 |Levy 46 1 |Spring | 2010| B+
45678 1 Spring (2010 | B 45678 |Levy 46 1 |Spring | 2010(B
54321 1 Fall 2009 [A- 54321 |Williams 54 1 |Fall 2009 | A-
54321 2 |Spring |2009 | B+ 54321 Williams 54 2 |Spring | 2009| B+
55739 1 Spring [2010 [A- 55739 [Sanchez 1 |Spring | 2010 A-
76543 1 Fall 2009 [A 76543 Brown 1 |Fall 2009| A
76543 2 |Spring |2010| A 76543 [Brown 2 |Spring | 2010| A
76653 1 Spring [2009 [C 76653 |Aoi 1 |Spring | 2009(C
98765 1 Fall 2009 [C- 98765 |Bourikas 1 |Fall 2009 C-
98765 1 Spring [2010 [B 98765 |Bourikas 1 |Spring | 2010|B
98988 | BIO-101 1 Summer [2009 [A 98988 |Tanaka 1 |Summer| 2009(A
98988 | BIO-301 1 Summer | 2010 | null 98988 |Tanaka | Biology 120 |BIO-301 | 1 [Summer| 2010 null
C5425 - Fall 2013 - Boris Glavic 547 cSilberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavic 548 @Silberschatz, Korth and Sudarshan

Figure 4.04

ID | name [dept_name [tot_cred] course_id|sec_id]semester | year |grade
00128 |Zhang Comp. Sci.. 102 |Cs-101 1 [Fall 2009 A
00128 [Zhang | Comp.Sci| 102 1 |Fall 2009| A-
12345 |Shankar | Comp. Sci.. 32 1 |Fall 2009| C
12345 [Shankar | Comp. Sci.| 32 2 |Spring | 2009| A
12345 [Shankar | History 2 1 |Spring | 2010| A
12345 |Shankar | Finance 32 1 |Fall 2009 A
19991 |Brandt Music 80 1 |Spring 2010 B
23121 |Chavez | Physics 110 1 |Spring | 2010 C+
44553 |Peltier | Physics 56 1 |Fall 2009| B-
45678 |Levy Physics 46 1 |Fall 2009| F
45678 |Levy Physics 46 1 |Spring | 2010| B+
45678 |Levy Physics 46 1 |Spring 2010\ B
54321 |Williams | Comp. Sci.| 54 1 |Fall 2009| A-
54321 [Williams |Comp.Sci| 54 2 |[Spring | 2009| B+
55739 |Sanchez | Music 38 1 |Spring | 2010| A-
70557 |Snow Physics 0 null |null null | null
76543 |Brown Comp. Sci. 58 1 |Fall 2009| A
76543 [Brown | Comp.Sci| 58 2 |Spring | 2010| A
76653 |Aoi Elec.Eng. | 60 1 |Spring | 2009| C
98765 [Bourikas | Elec. Eng. | 98 1 |Fall 2009| -
98765 |Bourikas | Elec.Eng. | 98 1 |spring | 2010(B
98988 |Tanaka | Biology 120 1 |Summer| 2009 A
98988 |Tanaka Biology 120 | BIO-301 1 Summer| 2010 | null

5425 - Fall 2013 - Borls Giavic 549 cSilberschatz, Korth and Sudarshan

Figure 4.07

[name T

Wu

Mozart

instein

FlSaid |History
56 | Gold Phys

5 |Katz Comp. Sci|

3 | Califieri | History
3|Singh |Finance
Crick |Biology
Brandt | Comp. Sci.
Kim Elec. Eng.
White _|null
instructor

dept _name | building | budget
Biology | Walson | 90000
Comp. Sci Taylor | 100000
Elec. Eng. | Taylor | 85000
Finance | Painter | 120000
History | Painter | 50000
Music | Packard | 80000
Physics | Watson | 70000
nul Taylor | mull

department

8425 - Fall 2013 - Boris Glavic 551 @Silberschatz, Korth and Sudarshan

Figure 4.03

Uy —— U,

AN

2 uS

Us

©S425 - Fall 2013 - Boris Glavie 553 @Silberschatz, Korth and Sudarshan

Figure 4.05
ID | course_id |sec_id| semester | year | grade | name | dept_name | tot_cred
00128 | CS-101 1 Fall 2009 A Zhang Comp. Sci. 102
00128 | CS-347 1 | Fall 2009| A- |Zhang |Comp.Sci| 102
12345 | CS-101 1 Fall 2009| C Shankar | Comp. Sci. 32
12345 | CS-190 2 |Spring | 2009| A [Shankar [Comp.Scif 32
12345 | CS-315 1 Spring 2010 A Shankar | History 32
12345 | CS-347 1 Fall 2009 A Shankar | Finance 32
19991 [HIS351 | 1 |[Spring [2010(B [Brandt |Music 80
23121 | FIN-201 1 Spring 2010| C+ |Chavez |Physics 110
44553 | PHY-101 | 1 Fall 2009 | B- |Peltier Physics 56
45678 | CS-101 1 Fall 2009| F Levy Physics 46
45678 | CS-101 1 |Spring | 2010| B+ |Levy Physics 46
45678 | CS-319 1 |Spring | 2010| B |Levy Physics 16
54321 | CS-101 1 | Fall 2009| A- |Williams | Comp. Sci.| 54
54321 | CS-190 2 Spring 2009| B+ [Williams [Comp. Sci. 54
55739 | MU-199 1 Spring 2010| A- |[Sanchez |Music 38
70557 | null null | null null | null | Snow Physics 0
76543 | CS-101 1 Fall 2009(A Brown Comp. Sci. 58
76543 | CS-319 2 |Spring | 2010| A |Brown [Comp.Sci| 58
76653 | EE-181 1 Spring 2009| C Aoi Elec. Eng. 60
98765 | CS-101 1 Fall 2009| C- |Bourikas |Elec. Eng. 98
98765 | CS-315 1 |Spring | 2010| B |Bourikas | Elec. Eng. 98
98988 | BIO-101 1 Summer| 2009 A Tanaka | Biology 120
98988 | BIO-301 1 Summer| 2010 | null |Tanaka |Biology 120

Figure 4.06

Join types Join conditions

inner join natural

left outer join on <predicate>
right outer join using (A}, Ay, ..., A,)
full outer join

©8425 - Fall 2013 - Boris Glavic 552 @Silberschatz, Korth and Sudarshan

CS425 - Fall 2013
Boris Glavic
Chapter 6: Advanced SQL

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

N Chapter 6: Advanced SQL

B Accessing SQL From a Programming Language
Dynamic SQL
» JDBC and ODBC
Embedded SQL
B Functions and Procedural Constructs
W Triggers

CS425 - Fall 2013 - Boris Glavic 52 @Silberschatz, Korth and Sudarshan

Accessing SQL From a Programming

82 JDBC and ODBC

B API (application-program interface) for a program to interact
with a database server

B Application makes calls to
Connect with the database server
Send SQL commands to the database server
Fetch tuples of result one-by-one into program variables

B ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic

Other API’ s such as ADO.NET sit on top of ODBC
B JDBC (Java Database Connectivity) works with Java

©8425 - Fall 2013 - Boris Glavic 54 @Silberschatz, Korth and Sudarshan

Language
N- Native APIs
[S—

B Most DBMS also define DBMS specific APIs

W Oracle: OCI
W Postgres: libpg

©S425 - Fall 2013 - Boris Glavic 55 @Silberschatz, Korth and Sudarshan

Az JDBC

m JDBC is a Java API for communicating with database systems
supporting SQL.

m JDBC supports a variety of features for querying and updating
data, and for retrieving query results.

W JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

B Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send queries
and fetch results

Exception mechanism to handle errors

©S425 - Fall 2013 - Boris Glavic 56 @Silberschatz, Korth and Sudarshan

N JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{
try{
Class.forName ("oracle.jdbc.driver.OracleDriver"); / load driver

C ion conn = Driver getC // connect to server
jdbc:or i yale. i , userid,

stmt = conn.); // create object
... Do Actual Work
stmt.close(); / close and release
conn.close(); / close Connection and release resources
}
catch (SQLException sqle) {
System.out.printin("SQLException : " + sgle); / handle exceptions

425 - Fall 2013 - Boris Glavic 57 @Silberschatz, Korth and Sudarshan

N JDBC Code (Cont.)

B Update to database
try {
stmt.executeUpdate(
"insert into instructor values(’ 77987’ ,’ Kim’, ’ Physics’,
98000)");
} catch (SQLException sqle)
{

System.out.printin("Could not insert tuple. " + sqle);

B Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)
from instructor
group by dept_name");
while (rset.next()) {
System.out.printin(rset.getString("dept_name") +
rset.getFloat(2));

ey

}

CS425 - Fall 2013 - Boris Glavic 58 @Silberschatz, Korth and Sudarshan

N JDBC Code Details

B Result stores the current row position in the result
Pointing before the first row after executing the statement
.next() moves to the next tuple
» Returns false if no more tuples
W Getting result fields:

rs.getString(“dept_name”) and rs.getString(1)
equivalent if dept_name is the first attribute in select
result.

B Dealing with Null values
int a = rs.getint(“a”);
if (rs.wasNull()) Systems.out.printin(“Got null value”);

8425 - Fall 2013 - Boris Glavic 59 @Silberschatz, Korth and Sudarshan

Nz Prepared Statement

B PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?2,?)");
pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance"); pStmt.setint(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

W For queries, use pStmt.executeQuery(), which returns a ResultSet
B WARNING: always use prepared statements when taking an input
from the user and adding it to a query
NEVER create a query by concatenating strings which you
get as inputs

“insert into instructor values(’ "+ ID+"",” "+ name+"’, "+

+deptname +" ', "’ balance +
"y

What if name is “D’ Souza”?

©8425 - Fall 2013 - Boris Glavic 510 @Silberschatz, Korth and Sudarshan

SQL Injection

W Suppose query is constructed using

"select * from instructor where name =" + name + """
W Suppose the user, instead of entering a name, enters:
X or’'Y =Y
W then the resulting statement becomes:
::§?Iect * from instructor where name =""+"X or 'Y =" Y" +
which is:

» select * from instructor where name =" X" or 'Y’ ="Y’
User could have even used
» X’ ; update instructor set salary = salary + 10000; --

B Prepared statement internally uses:
"select * from instructor where name =" X\" or ' Y\' =\'Y’

Always use prepared statements, with user inputs as
parameters

©S425 - Fall 2013 - Boris Glavic 511 @Silberschatz, Korth and Sudarshan

§ Metadata Features

B ResultSet metadata
B E.g., after executing query to get a ResultSet rs:
ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {
System.out.printin(rsmd.getColumnName(i));
System.out.printin(rsmd.getColumnTypeName(i));
}
B How is this useful?

©S425 - Fall 2013 - Boris Glavic 512 @Silberschatz, Korth and Sudarshan

N Metadata (Cont)

W Database metadata

B DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
/I Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
/I and Column-Pattern
/I Returns: One row for each column; row has a number of attributes
/I such as COLUMN_NAME, TYPE_NAME
while(rs.next()) {

System.out.printin(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

}

B And where is this useful?

5425 — Fall 2013 - Boris Glavic 513 @Silberschatz, Korth and Sudarshan

N Transaction Control in JDBC

W By default, each SQL statement is treated as a separate
transaction that is committed automatically

bad idea for transactions with multiple updates

B Can turn off automatic commit on a connection
conn.setAutoCommit(false);

W Transactions must then be committed or rolled back explicitly
conn.commit(); or
conn.rollback();

B conn.setAutoCommit(true) turns on automatic commit.

CS425 - Fall 2013 - Boris Glavic 514 @Silberschatz, Korth and Sudarshan

@ Other JDBC Features

W Calling functions and procedures

CallableStatement cStmt1 = conn.prepareCall("{? = call some
function(?)}");

CallableStatement cStmt2 = conn.prepareCall("{call some
procedure(?,?)}");

B Handling large object types

getBlob() and getClob() that are similar to the getString()
method, but return objects of type Blob and Clob, respectively

get data from these objects by getBytes()

associate an open stream with Java Blob or Clob object to
update large objects

» blob.setBlob(int parameterindex, InputStream inputStream).

©8425 - Fall 2013 - Boris Glavic 515

@Silberschatz, Korth and Sudarshan

i sQLJ

B JDBC is overly dynamic, errors cannot be caught by compiler
B SQLJ: embedded SQL in Java
#sql iterator deptinfolter (String dept name, int avgSal);
deptinfolter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor
group by dept name };
while (iter.next()) {
String deptName = iter.dept_name();
int avgSal = iter.avgSal();

System.out.printin(deptName + " " + avgSal);
}
iter.close();
5425 - Fal 2013 - Boris Glavic 516 @Silberschatz, Korth and Sudarshan

L2 ODBC

B Open DataBase Connectivity(ODBC) standard

standard for application program to communicate with a
database server.

application program interface (API) to
» open a connection with a database,
» send queries and updates,
» get back results.
B Applications such as GUI, spreadsheets, etc. can use ODBC

B Was defined originally for Basic and C, versions available for
many languages.

©8425 - Fall 2013 - Boris Glavic 517 @Silberschatz, Korth and Sudarshan

NE ODBC (Cont.)

B Each database system supporting ODBC provides a "driver"
library that must be linked with the client program.

B When client program makes an ODBC API call, the code in the
library communicates with the server to carry out the requested
action, and fetch results.

B ODBC program first allocates an SQL environment, then a
database connection handle.

B Opens database connection using SQLConnect(). Parameters for
SQLConnect:
connection handle,
the server to which to connect
the user identifier,
password
B Must also specify types of arguments:
SQL_NTS denotes previous argument is a null-terminated string.

©S425 - Fall 2013 - Boris Glavic 518 @Silberschatz, Korth and Sudarshan

N ODBC Code

B int ODBCexample()
{
RETCODE error;
HENV env; /* environment*/
HDBC conn; /* database connection */
SQLAIllocEnv(&env);
SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu”, SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ Do actual work ... }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

5425 — Fall 2013 - Boris Glavic 519 @Silberschatz, Korth and Sudarshan

N ODBC Code (Cont.)

B Program sends SQL commands to database by using SQLExecDirect

B Result tuples are fetched using SQLFetch()

B SQLBIndCol() binds C language variables to attributes of the query
result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

Arguments to SQLBindCol()

» ODBC stmt variable, attribute position in query result

» The type conversion from SQL to C.

» The address of the variable.

» For variable-length types like character arrays,
The maximum length of the variable
Location to store actual length when a tuple is fetched.
Note: A negative value returned for the length field indicates null
value

B Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

CS425 - Fall 2013 - Boris Glavic 5.20 @Silberschatz, Korth and Sudarshan

N2 ODBC Code (Cont.)

B Main body of program

char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;
char * sqlquery = "select dept_name, sum (salary)
from instructor
group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqglquery, SQL_NTS);
if (error == SQL SUCCESS) {
SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0, &lenOut2);
while (SQLFetch(stmt) == SQL_SUCCESS) {
printf (" %s %g\n", deptname, salary);

Nz ODBC Prepared Statements

B Prepared Statement
SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
Repeatedly executed with actual values for the placeholders

B To prepare a statement
SQLPrepare(stmt, <SQL String>);

B To bind parameters
SQLBindParameter(stmt, <parameter#>,
... type information and value omitted for simplicity..)
B To execute the statement
retcode = SQLExecute(stmt);
W To avoid SQL injection security risk, do not create SQL strings
directly using user input; instead use prepared statements to bind
user inputs

©8425 - Fall 2013 - Boris Glavic 522 @Silberschatz, Korth and Sudarshan

}
}
SQLFreeStmt(stmt, SQL_DROP);
N- More ODBC Features
~——

B Metadata features
finding all the relations in the database and

finding the names and types of columns of a query result or a
relation in the database.

B By default, each SQL statement is treated as a separate
transaction that is committed automatically.

Can turn off automatic commit on a connection
» SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}
Transactions must then be committed or rolled back explicitly by
» SQLTransact(conn, SQL_COMMIT) or
» SQLTransact(conn, SQL_ROLLBACK)

©S425 - Fall 2013 - Boris Glavic 5.23 @Silberschatz, Korth and Sudarshan

§ ODBC Conformance Levels

m Conformance levels specify subsets of the functionality defined
by the standard.

Core

Level 1 requires support for metadata querying

Level 2 requires ability to send and retrieve arrays of
parameter values and more detailed catalog information.

B SQL Call Level Interface (CLI) standard similar to ODBC
interface, but with some minor differences.

©S425 - Fall 2013 - Boris Glavic 524 @Silberschatz, Korth and Sudarshan

N2 ADO.NET

W API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC

Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;
SqlConnection conn = new SqlConnection(
“Data Source=<IPaddr>, Initial Catalog=<Catalog>");
conn.Open();
SglCommand cmd = new SqlCommand(“select * from students”,
conn);
SqglDataReader rdr = cmd.ExecuteReader();
while(rdr.Read()) {
Console.WriteLine(rdr[0], rdr{1]); /* Prints result attributes 1 & 2 */

rdr.Close(); conn.Close();
B Can also access non-relational data sources such as
OLE-DB, XML data, Entity framework

©8425 - Fall 2013 - Boris Glavic 5.25 @Silberschatz, Korth and Sudarshan

N Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

Code with embeded SQL

CS425 - Fall 2013 - Boris Glavic 5.26 @Silberschatz, Korth and Sudarshan

Embedded SQL

B The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

B Alanguage to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

W The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

B EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding
uses #SQL{....};)

©8425 - Fall 2013 - Boris Glavic 527 @Silberschatz, Korth and Sudarshan

Example Query

B From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount.

W Specify the query in SQL and declare a cursor for it
EXEC sQL

declare c cursor for

select /D, name

from student

where tot_cred > :credit_amount

END_EXEC

©8425 - Fall 2013 - Boris Glavic 528 @Silberschatz, Korth and Sudarshan

@ Embedded SQL (Cont.)

B The open statement causes the query to be evaluated
EXEC SQL open ¢ END_EXEC

B The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.
EXEC SQL fetch cinto :si, :sn END_EXEC
Repeated calls to fetch get successive tuples in the query result
B A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is
available

B The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©$425 - Fall 2013 - Boris Glavic 5.29

@Silberschatz, Korth and Sudarshan

NE Updates Through Cursors

W Can update tuples fetched by cursor by declaring that the cursor
is for update

declare c cursor for

select *

from instructor

where dept_name = ‘Music’
for update

B To update tuple at the current location of cursor ¢

update instructor
set salary = salary + 100
where current of ¢

©8425 - Fall 2013 - Boris Glavic 5.30 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 531

Procedural Constructs in SQL

@Silberschatz, Korth and Sudarshan

j; Procedural Extensions and Stored Procedures

B SQL provides a module language

Permits definition of procedures in SQL, with if-then-else
statements, for and while loops, etc.

B Stored Procedures
Can store procedures in the database
then execute them using the call statement

permit external applications to operate on the database
without knowing about internal details

W Object-oriented aspects of these features are covered in Chapter
22 (Object Based Databases) in the textbook

CS425 - Fall 2013 - Boris Glavic 532 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 533

Why have procedural extensions?

B Shipping data between a database server and application
program (e.g., through network connection) is costly

B Converting data from the database internal format into a format
understood by the application programming language is costly
W Example:

Use Java to retrieve all users and their friend-relationships from a
friends relation representing a world-wide social network with
10,000,000 users

Compute the transitive closure

» All pairs of users connects through a path of friend relationships.
E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend
of Magret

Return pairs of users from Chicago — say 4000 pairs
1) cannot be expressed (efficiently) as SQL query, 2) result is small
» =>save by executing this on the DB server

@Silberschatz, Korth and Sudarshan

Functions and Procedures

B SQL:1999 supports functions and procedures

Functions/procedures can be written in SQL itself, or in an
external programming language.

Functions are particularly useful with specialized data types such
as images and geometric objects.

» Example: functions to check if polygons overlap, or to
compare images for similarity.

Some database systems support table-valued functions, which
can return a relation as a result.

B SQL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

B Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

©8425 - Fall 2013 - Boris Glavic 534 @Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 5.35

SQL Functions

B Define a function that, given the name of a department, returns
the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name;
return d_count;
end

B Find the department name and budget of all departments with
more that 12 instructors.
select dept_name, budget
from department
where dept_count (dept_name) > 1

@Silberschatz, Korth and Sudarshan

% Table Functions

B SQL:2003 added functions that return a relation as a result
B Example: Return all accounts owned by a given customer
create function instructors_of (dept_name char(20)
returns table (/D varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructors_of.dept_name)
W Usage
select *
from table (instructors_of (‘Music’))

©8425 - Fall 2013 - Boris Glavic 5.36 @Silberschatz, Korth and Sudarshan

N SQL Procedures

B The dept_count function could instead be written as procedure:
create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)
begin
select count(”) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name
end
B Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.
declare d_count integer;
call dept_count_proc(‘Physics’, d_count);
Procedures and functions can be invoked also from dynamic SQL
B SQL:1999 allows more than one function/procedure of the same

name (called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©8425 - Fall 2013 - Boris Glavic 5.37 @Silberschatz, Korth and Sudarshan

y Procedural Constructs

W Warning: most database systems implement their own variant of the
standard syntax below

read your system manual to see what works on your system
®m Compound statement: begin ... end,
May contain multiple SQL statements between begin and end.
Local variables can be declared within a compound statements
B While and repeat statements :

declare n integer default 0;

while n < 10 do
setn=n+1

end while

repeat
setn=n-1

until =0

end repeat

CS425 - Fall 2013 - Boris Glavic 5.38 @Silberschatz, Korth and Sudarshan

Procedural Constructs (Cont.)

H For loop
Permits iteration over all results of a query
Example:

declare n integer default 0;
forr as
select budget from department
where dept_name = ‘Music’
do
set n= n-r.budget
end for

©8425 - Fall 2013 - Boris Glavic 539

@Silberschatz, Korth and Sudarshan

Procedural Constructs (cont.)

B Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

B Example procedure: registers student after ensuring classroom capacity
is not exceeded

Returns 0 on success and -1 if capacity is exceeded
See book for details
B Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of classroom_seats
begin

.. signal out_of classroom_seats

end
The handler here is exit -- causes enclosing begin..end to be exited
Other actions possible on exception

©8425 - Fall 2013 - Boris Glavic 5.40 @Silberschatz, Korth and Sudarshan

& External Language Functions/Procedures

B SQL:1999 permits the use of functions and procedures written in
other languages such as C or C++

B Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©8425 - Fall 2013 - Boris Glavic 541 @Silberschatz, Korth and Sudarshan

NC External Language Routines (Cont.)

B Benefits of external language functions/procedures:

more efficient for many operations, and more expressive
power.

W Drawbacks

Code to implement function may need to be loaded into
database system and executed in the database system’ s
address space.

» risk of accidental corruption of database structures
» security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance.

Direct execution in the database system’ s space is used
when efficiency is more important than security.

©8425 - Fall 2013 - Boris Glavic 5.42 @Silberschatz, Korth and Sudarshan

NC Security with External Language Routines

B To deal with security problems
Use sandbox techniques

» E.g., use a safe language like Java, which cannot be
used to access/damage other parts of the database
code.

Or, run external language functions/procedures in a
separate process, with no access to the database process’
memory.

» Parameters and results communicated via inter-process
communication

B Both have performance overheads

B Many database systems support both above approaches as
well as direct executing in database system address space.

©8425 - Fall 2013 - Boris Glavic 5.43 @Silberschatz, Korth and Sudarshan

Triggers

B Atrigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

B To design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be
executed.

Specify the actions to be taken when the trigger
executes.

B Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by
most databases.

Syntax illustrated here may not work exactly on your
database system; check the system manuals

©8425 - Fall 2013 - Boris Glavic 545 @Silberschatz, Korth and Sudarshan

Triggers

CS425 - Fall 2013 - Boris Glavic 5.44 @Silberschatz, Korth and Sudarshan

Trigger Example

W E.g. time_slot_id is not a primary key of timeslot, so we cannot
create a foreign key constraint from section to timeslot.

B Alternative: use triggers on section and timeslot to enforce integrity
constraints

create trigger timeslot_check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (
select time_slot_id
from time_slot)) /* time_slot _id not present in time_slot */
begin
rollback
end;

©8425 - Fall 2013 - Boris Glavic 5.46 @Silberschatz, Korth and Sudarshan

y Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot
referencing old row as orow
for each row
when (orow.time_slot_id not in (
select time_slot_id
from time_slot)
/* last tuple for time slot id deleted from time slot */
and orow.time_slot_idin (
select time_slot_id
from section)) /* and time_slot_id still referenced from section®/
begin
rollback
end;

©8425 - Fall 2013 - Boris Glavic 5.47 @Silberschatz, Korth and Sudarshan

N_ Triggering Events and Actions in SQL

W Triggering event can be insert, delete or update
W Triggers on update can be restricted to specific attributes
E.g., after update of fakes on grade

W Values of attributes before and after an update can be
referenced

referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

W Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = * *)
begin atomic
set nrow.grade = null;
end;

©S425 - Fall 2013 - Boris Glavic 5.48

@Silberschatz, Korth and Sudarshan

N_ Trigger to Maintain credits_earned value

B create trigger credits_earned after update of takes on
(grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade < 'F’ and nrow.grade is not null
and (orow.grade = 'F’ or orow.grade is null)
begin atomic
update student
set fot_cred= tot_cred +
(select credits
from course
where course.course_id= nrow.course_id)
where student.id = nrow.id,
end;

©8425 - Fall 2013 - Boris Glavic 5.49 @Silberschatz, Korth and Sudarshan

N Statement Level Triggers

B Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction
Use for each statement instead of for each
row

Use referencing old table or referencing new
table to refer to temporary tables (called transition
tables) containing the affected rows

Can be more efficient when dealing with SQL
statements that update a large number of rows

CS425 - Fall 2013 - Boris Glavic 550 @Silberschatz, Korth and Sudarshan

When Not To Use Triggers

W Triggers were used earlier for tasks such as
maintaining summary data (e.g., total salary of each department)

Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

B There are better ways of doing these now:

Databases today provide built in materialized view facilities to
maintain summary data

Databases provide built-in support for replication
W Encapsulation facilities can be used instead of triggers in many cases
Define methods to update fields

Carry out actions as part of the update methods instead of
through a trigger

©8425 - Fall 2013 - Boris Glavic 551 @Silberschatz, Korth and Sudarshan

When Not To Use Triggers

W Risk of unintended execution of triggers, for example, when
loading data from a backup copy
replicating updates at a remote site
Trigger execution can be disabled before such actions.
W Other risks with triggers:

Error leading to failure of critical transactions that set off the
trigger

Cascading execution

©8425 - Fall 2013 - Boris Glavic 552 @Silberschatz, Korth and Sudarshan

Recursive Queries

©8425 - Fall 2013 - Boris Glavic 553 @Silberschatz, Korth and Sudarshan

% Recursion in SQL

B SQL:1999 permits recursive view definition

W Example: find which courses are a prerequisite, whether
directly or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq
union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id
)
select *
from rec_prereq;

This example view, rec_prereq, is called the transitive closure
of the prereq relation

©8425 - Fall 2013 - Boris Glavic 554 @Silberschatz, Korth and Sudarshan

The Power of Recursion

82

B Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.

Intuition: Without recursion, a non-recursive non-iterative
program can perform only a fixed number of joins of prereq
with itself
» This can give only a fixed number of levels of managers
» Given a fixed non-recursive query, we can construct a
database with a greater number of levels of prerequisites on
which the query will not work
» Alternative: write a procedure to iterate as many times as
required
See procedure findAllPreregs in book

©8425 - Fall 2013 - Boris Glavic 5.55 @Silberschatz, Korth and Sudarshan

The Power of Recursion

A2

B Computing transitive closure using iteration, adding successive
tuples to rec_prereq

The next slide shows a prereq relation

Each step of the iterative process constructs an extended
version of rec_prereq from its recursive definition.

The final result is called the fixed point of the recursive view
definition.

B Recursive views are required to be monotonic. That is,

if we add tuples to prereq the view rec_prereq contains all of
the tuples it contained before, plus possibly more

CS425 - Fall 2013 - Boris Glavic 556 @Silberschatz, Korth and Sudarshan

Example of Fixed-Point Computation

course_id | prereq_id
BIO-101
BIO-101
Cs-101
Cs-101
Cs-101
Cs-101
PHY-101

Iteration Number| Tuples in cl
0
1
2 (€$-301), (CS-201)
3 (CS-301), (CS-201)
4 (CS-301), (C$-201), (CS-101)
5 (€$-301), (C$-201), (CS-101)
Cs425 - Fall 2013 - Boris Glavic ss7 GSilberschatz, Korth and Sudarshan

Another Recursion Example

m Given relation
manager(employee_name, manager_name)

B Find all employee-manager pairs, where the employee reports to the
manager directly or indirectly (that is manager’ s manager, manager’ s
manager’ s manager, etc.)

with recursive empl (employee_name, manager_name) as (
select employee_name, manager_name
from manager
union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select *
from empl
This example view, empl, is the transitive closure of the manager
relation
©S425 - Fall 2013 - Boris Glavic 558 @Silberschatz, Korth and Sudarshan

Recap

W Programming Language Interfaces for Databases
Dynamic SQL (e.g., JDBC, ODBC)
Embedded SQL
SQL Injection

B Procedural Extensions of SQL
Functions and Procedures

B External Functions/Procedures
Written in programming language (e.g., C)

W Triggers
Events (insert, ...)

Conditions (WHEN)

per statement / per row

Accessing old/new table/row versions
B Recursive Queries

©8425 - Fall 2013 - Boris Glavic 5.59 @Silberschatz, Korth and Sudarshan

End of Chapter

modified from:

Database System Concepts, 6" Ed
@Silberschatz, Korth and Sudarshan

ee for conditions on re-use

10

Outline

Introduction

Relational Data Model

Formal Relational Languages (relational algebra)

SQL - Advanced

Database Design — ER model

Transaction Processing, Recovery, and Concurrency Control
Storage and File Structures

Indexing and Hashing

Query Processing and Optimization

©8425 - Fall 2013 - Boris Glavic 561 @Silberschatz, Korth and Sudarshan

11

CS425 - Fall 2013
Boris Glavic
Chapter 7: Entity-Relationship Model

Partially taken from
Klaus R. Dittrich

modified from:

Database System Concepts, 6!" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

Database Design

World

<~ =

Relational DB schema

©S425 - Fall 2013 - Boris Glavic 73 ©Silberschatz, Korth and Sudarshan

Requirement Analysis Example
Zoo

B The zoo stores information about animals, cages, and zoo keepers.
B Animals are of a certain species and have a name. For each animal
we want to record its weight and age.

B Each cage is located in a section of the zoo. Cages can house
animals, but there may be cages that are currently empty. Cages have
a size in square meter.

B Zoo keepers are identified by their social security number. We store a
first name, last name, and for each zoo keeper. Zoo keepers are
assigned to cages they have to take care of (clean, ...). Each cage
that is not empty has a zoo keeper assigned to it. A zoo keeper can
take care of several cages. Each zoo keeper takes care of at least one
cage.

©S425 - Fall 2013 - Boris Glavic 75 ©Silberschatz, Korth and Sudarshan

NEZ Chapter 7: Entity-Relationship Model

Design Process

Modeling

Constraints

E-R Diagram

Design Issues

Weak Entity Sets

Extended E-R Features
Design of the Bank Database
Reduction to Relation Schemas
Database Design

UML

©S425 - Fall 2013 - Boris Glavic 7.2 ©Silberschatz, Korth and Sudarshan

Database Design

B First: need to develop a “mind”-model based on a requirement analysis

World
S S

l Requirement Analysis

English (e.g.)

| “Mind” Model

| Relational DB schema |

©S425 - Fall 2013 - Boris Glavic 74 ©Silberschatz, Korth and Sudarshan

Requirement Analysis Example
Music Collection

W Let'sdoit!

€S425 - Fall 2013 - Boris Glavic 76 ©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 77

Database Design

B Second: Formalize this model by developing a conceptual model

World
S S

l Requirement Analysis

| “Mind” Model

l Conceptual modeling

| Conceptual Model

l m”

| Relational DB schema |

Modeling — ER model

B A database can be modeled as:

a collection of entities,
relationship among entities.

objects.
Example: specific person, company, event, plant

B Entities have attributes

Example: people have names and addresses

English (e.g.)

ER model

©Silberschatz, Korth and Sudarshan

An entity is an object that exists and is distinguishable from other

An entity set is a set of entities of the same type that share the same

Database Design

B Second: Formalize this model by developing a conceptual model

World
S S S
l Requirement Analysis

“Mind” Model English (e.g.)

l Conceptual modeling

| Conceptual Model ER model
1 Logical modeling (possibly automated)
| Relational DB schema | SQL (e.g.)
78 ©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

& Entity Sets instructor and student

instructor_ID instructor_name

a
I
1
@
2
o
a
g
I
)
2
S
o
3
@

properties.
Example: set of all persons, companies, trees, holidays

©S425 - Fall 2013 - Boris Glavic

©S425 - Fall 2013 - Boris Glavic 7.1

7.9

Relationship Sets

©Silberschatz, Korth and Sudarshan

B A relationship is an association among several entities

Example:
44553 (Peltier) advisor 22222 (Einstein)
student entity relationship set instructor entity

B A relationship set is a mathematical relation among n = 2 entities, each

taken from entity sets
{(e, &, ...8) 16 EE;,8,E Ep, ..., 6,E E}

where (ey, &, ...,) is a relationship
Example:
(44553,22222) € advisor

45565
10101
98345
instructor
student
5425 - Fall 2013 - Boris Glavic 740 @Silberschatz, Korth and Sudarshan

2 Relationship Set advisor

©Silberschatz, Korth and Sudarshan

|76766 | Crick

198988 | Tanaka

|45565 | Katz
l 10101 l Srinivasan |\
198345 | Kim

H
[76543[Singh |-
[22222[Einstein |-

instructor

€S425 - Fall 2013 - Boris Glavic

\ { 12345 l Shankar

\ﬁ 00128 |Zhang

\ﬁ 76543 |Brown
{76653 | Aoi

\ﬁ 23121 |Chavez
{44553 | Peltier

student

©Silberschatz, Korth and Sudarshan

& Relationship Sets (Cont.)

B An attribute can also be property of a relationship set.

B For instance, the advisor relationship set between entity sets
instructor and student may have the attribute date which tracks when
the student started being associated with the advisor

3May 208
B
98345 6 June 2009 76543

76543 30]une 2007 76653] Aoi

22222[Einstein R 23121

4 May 2006
instructor 44553 | Peltier
student
CS425 - Fall 2013 - Boris Glavic 713 ©Silberschatz, Korth and Sudarshan

Attributes

B An entity is represented by a set of attributes, that are descriptive
properties possessed by all members of an entity set.

Example:

instructor = (ID, name, street, city, salary)
course= (course_id, title, credits)

B Domain — the set of permitted values for each attribute
B Attribute types:
Simple and composite attributes.
Single-valued and multivalued attributes
» Example: multivalued attribute: phone_numbers
Derived attributes
» Can be computed from other attributes
» Example: age, given date_of_birth

©S425 - Fall 2013 - Boris Glavic 7.15 ©Silberschatz, Korth and Sudarshan

& Mapping Cardinality Constraints

B Express the number of entities to which another entity can be
associated via a relationship set.

B For a binary relationship set the mapping cardinality must be one of
the following types:

One to one (1-1)
One to many (1-N)
Many to one (N-1)
Many to many (N-M)

€S425 - Fall 2013 - Boris Glavic 747 ©Silberschatz, Korth and Sudarshan

& Degree of a Relationship Set

B Dbinary relationship
involve two entity sets (or degree two).

B Relationships between more than two entity sets are rare. Most
relationships are binary. (More on this later.)

» Example: students work on research projects under the
guidance of an instructor.

» relationship proj_guide is a ternary relationship between
instructor, student, and project

©S425 - Fall 2013 - Boris Glavic 7.14 ©Silberschatz, Korth and Sudarshan

Composite Attributes

composite name address
attributes

first_name middle_initial ~ last_name street city state postal_code
component
attributes

street_number street_name apartment_number

©S425 - Fall 2013 - Boris Glavic 7.16 ©Silberschatz, Korth and Sudarshan

One to one One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

€S425 - Fall 2013 - Boris Glavic 7.18 ©Silberschatz, Korth and Sudarshan

§ Mapping Cardinalities Example

Person Birth certificate Advisor Student

(b)

One to one One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©S425 - Fall 2013 - Boris Glavic 7.19 ©Silberschatz, Korth and Sudarshan

Mapping Cardinalities Example

¥

Employee Department Student Course

Many to one Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©S425 - Fall 2013 - Boris Glavic 7.21 ©Silberschatz, Korth and Sudarshan

Mapping Cardinality Constraints Cont.

¥

B Typical Notation
(0:1) — (1:N)

€S425 - Fall 2013 - Boris Glavic 7.23 ©Silberschatz, Korth and Sudarshan

Many to one Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©S425 - Fall 2013 - Boris Glavic 7.20 ©Silberschatz, Korth and Sudarshan

§;:; Mapping Cardinality Constraints Cont.

B What if we allow some elements to not be mapped to another
element?

E.g., 0:1-1

W For a binary relationship set the mapping cardinality must be one of
the following types:

11 H N-1
1-1 N-1
0:1-1 N-0:1
1-0:1 0:N-1
0:1-0:1 0:N-0:1
u 1-N H N-M
0:1-N N-M
0:1-0:N N-0:M
1-N 0:N-M
1-0:N 0:N-0:M
CS425 - Fall 2013 - Boris Glavic 7.22 ©Silberschatz, Korth and Sudarshan

Keys

B A super key of an entity set is a set of one or more attributes
whose values uniquely determine each entity.

B A candidate key of an entity set is a minimal super key
ID is candidate key of instructor
course_id is candidate key of course

W Although several candidate keys may exist, one of the candidate
keys is selected to be the primary key.

B Note: Basically the same as for relational model

€S425 - Fall 2013 - Boris Glavic 7.24 ©Silberschatz, Korth and Sudarshan

N Keys for Relationship Sets

B The combination of primary keys of the participating entity sets
forms a super key of a relationship set.

(s_id, i_id) is the super key of advisor

NOTE: this means a pair of entities can have at most one
relationship in a particular relationship set.

» Example: if we wish to track multiple meeting dates between
a student and her advisor, we cannot assume a relationship
for each meeting. We can use a multivalued attribute
though or model meeting as a separate entity

B Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys

B Need to consider semantics of relationship set in selecting the
primary key in case of more than one candidate key

©S425 - Fall 2013 - Boris Glavic 7.25 @©Silberschatz, Korth and Sudarshan

& Redundant Attributes

B Suppose we have entity sets
instructor, with attributes including dept_name
department
and a relationship
inst_dept relating instructor and department
B Attribute dept_name in entity instructor is redundant since there is an
explicit relationship inst_dept which relates instructors to departments
The attribute replicates information present in the relationship, and
should be removed from instructor

BUT: when converting back to tables, in some cases the attribute
gets reintroduced, as we will see.

©S425 - Fall 2013 - Boris Glavic 7.27 ©Silberschatz, Korth and Sudarshan

ﬁ; Entity With Composite, Multivalued, and Derived
~—— Attributes

instructor

ID
name
first_name
middle_initial
last_name
address
street
street_number
street_name
apt_number
city
state
zip
{ phone_number }
date_of birth
age ()

€S425 - Fall 2013 - Boris Glavic 7.29 @©Silberschatz, Korth and Sudarshan

Keys for Relationship Sets Cont.

B Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys

1-1: both primary keys are candidate keys

» Example: hasBc: (Person-Birthcertificate)
N-1: the N side is the candidate key

» Example: worksFor: (Instructor-Department)
N-M: the combination of both primary keys

» Example: takes: (Student-Course)

©S425 - Fall 2013 - Boris Glavic 7.26 @©Silberschatz, Korth and Sudarshan

N2 E-R Diagrams

instructor student
ID ID

name name
salary tot_cred

B Rectangles represent entity sets.
B Diamonds represent relationship sets.
B Attributes listed inside entity rectangle
B Underline indicates primary key attributes
CS425 - Fall 2013 - Boris Glavic 7.28 ©Silberschatz, Korth and Sudarshan

ﬁ; Entity With Composite, Multivalued, and Derived
[Attributes

instructor

composite

street
street_number
street_name
apt_number

city

state

derived

| —

{ phone_number }

Multi-valued /<

€S425 - Fall 2013 - Boris Glavic 7.30

@©Silberschatz, Korth and Sudarshan

N Relationship Sets with Attributes 2 Roles

B Entity sets of a relationship need not be distinct

Each occurrence of an entity set plays a “role” in the relationship
T B The labels “course_id” and “prereq_id” are called roles.
I

instructor student
ID ID
name name (ORIl course_id
salary tot_cred course id
title . prereq
. rereq_id
credits prereq_
CS425 - Fall 2013 - Boris Glavic 731 ©Silberschatz, Korth and Sudarshan CS425 - Fall 2013 - Boris Glavic 7.32 ©Silberschatz, Korth and Sudarshan

Cardinality Constraints One-to-One Relationship

B We express cardinality constraints by drawing either a directed line

I ¢ J B one-to-one relationship between an instructor and a student
(=), signifying “one,” or an undirected line (—), signifying “many,

between the relationship set and the entity set. an instructor is associated with at most one student via advisor
H One-to-one relationship: and a student is associated with at most one instructor via
A student is associated with at most one instructor via the advisor

relationship advisor
A student is associated with at most one department via

stud_dept .
instructor student
ID ID
name name
salary fot_cred
CS425 - Fall 2013 - Boris Glavic 7.33 ©Silberschatz, Korth and Sudarshan CS425 - Fall 2013 - Boris Glavic 7.34

©Silberschatz, Korth and Sudarshan

One-to-Many Relationship Many-to-One Relationships

B one-to-many relationship between an instructor and a student

an instructor is associated with several (including 0) students
via advisor

B In a many-to-one relationship between an instructor and a student,
an instructor is associated with at most one student via
aavisor,

a student is associated with at most one instructor via advisor, and a student is associated with several (including 0)

instructors via advisor

y instructor student
i student
instructor D D
ID ID name name
name name salary tot_cred
salary tot_cred
CS425 - Fall 2013 - Boris Glavic 7.35 ©Silberschatz, Korth and Sudarshan CS425 - Fall 2013 - Boris Glavic 7.36 ©Silberschatz, Korth and Sudarshan

Many-to-Many Relationship

B Aninstructor is associated with several (possibly 0) students via

advisor

B A student is associated with several (possibly 0) instructors via

aadvisor

instructor

ID
name
salary

©S425 - Fall 2013 - Boris Glavic

student

ID
name
tot_cred

©Silberschatz, Korth and Sudarshan

& Alternative Notation for Cardinality Limits

B Cardinality limits can also express participation constraints

instructor

ID
name
salary

©S425 - Fall 2013 - Boris Glavic

E-R Diagram with a Ternary Relationship

instructor

ID
name
salary

€S425 - Fall 2013 - Boris Glavic

project

proj_guide

student

ID
name
tot_cred

©Silberschatz, Korth and Sudarshan

student

ID
name
tot_cred

©Silberschatz, Korth and Sudarshan

i;: Participation of an Entity Set in a
= Relationship Set

B Total participation (indicated by double line): every entity in the
entity set participates in at least one relationship in the relationship
set

E.g., participation of section in sec_course is total
» every section must have an associated course

B Partial participation: some entities may not participate in any
relationship in the relationship set

Example: participation of instructor in advisor is partial

COulEe section
course id sec_id
title semester
credits year
CS425 - Fall 2013 - Boris Glavic 7.38 ©Silberschatz, Korth and Sudarshan

& Alternative Notation for Cardinality Limits

B Alternative Notation

instructor student
ID ID
name name
salary tot_cred
CS425 - Fall 2013 - Boris Glavic 7.40 ©Silberschatz, Korth and Sudarshan

Cardinality Constraints on Ternary
Relationship

B We allow at most one arrow out of a ternary (or greater degree)
relationship to indicate a cardinality constraint

B E.g, an arrow from proj_guide to instructor indicates each student has
at most one guide for a project

B If there is more than one arrow, there are two ways of defining the
meaning.

E.g., a ternary relationship R between A, Band C with arrows to B
and C could mean

1. each A entity is associated with a unique entity from B .and C or

2. each pair of entities from (A, B) is associated with a unique C
entity, and each pair (A, C) is associated with a unique B

Each alternative has been used in different formalisms
To avoid confusion we outlaw more than one arrow
B Better to use cardinality constraints such as (0,n)

€S425 - Fall 2013 - Boris Glavic 7.42 ©Silberschatz, Korth and Sudarshan

Lets design an ER-model

Let’s design an ER-model for
for parts of the university database
parts of the university database 1) Identify Entities
2) Identify Relationship
3) Determine Attributes
4) Determine Cardinality
e Constraints e
modified from: modified from:
Database System Concepts, 6!" Ed. Database System Concepts, 6!" Ed.
See wencmBon som 1of condions on re-us See wencmBon som 1of condions on re-us

Weak Entity Sets Weak Entity Sets (Cont.)

B We underline the discriminator of a weak entity set with a dashed

B An entity set that does not have a primary key is referred to as a line

weak entity set.
B We put the identifying relationship of a weak entity in a double

B The existence of a weak entity set depends on the existence of a X
diamond.

identifying entity set
It must relate to the identifying entity set via a total, one-to-many
relationship set from the identifying to the weak entity set

B Primary key for section — (course_id, sec_id, semester, year)

Identifying relationship depicted using a double diamond

B The discriminator (or partial key) of a weak entity set is the set of course section
attributes that distinguishes among all the entities of a weak entity course id p
. N . ; g ; course 1 sec_id
set that are associated with the same entity of the identifying entity title semester
set credits vear
B The primary key of a weak entity set is formed by the primary key of
the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set’ s discriminator.
(CS425 - Fall 2013 - Boris Glavic 745 ©Silberschatz, Korth and Sudarshan (CS425 - Fall 2013 - Boris Glavic 7.46 ©Silberschatz, Korth and Sudarshan

Weak Entity Sets (Cont.) E-R Diagram for a University Enterprise

department
course_dept>————>" ot wame
building

¥

® Note: the primary key of the strong entity set is not explicitly stored
with the weak entity set, since it is implicit in the identifying @ S

relationship.

B If course_id were explicitly stored, section could be made a strong
entity, but then the relationship between section and course would el i le"“’”"
D advisor

be duplicated by an implicit relationship defined by the attribute e e
course_id common to course and section N B

teaches T —

‘@ time_slot
art_tine

end_time

section

b

€S425 - Fall 2013 - Boris Glavic 7.47 ©Silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavic 7.48 ©Silberschatz, Korth and Sudarshan

Reduction to Relational Schemas

©S425 - Fall 2013 - Boris Glavic 7.49 ©Silberschatz, Korth and Sudarshan

iﬁ Representing Entity Sets With Simple
= Attributes

B A strong entity set reduces to a schema with the same attributes
student(ID, name, tot_cred)

B A weak entity set becomes a table that includes a column for the primary
key of the identifying strong entity set
section (course_id, sec_id, sem, year)

couise section
a')urse id sec_id
title semester
credits year
CS425 - Fall 2013 - Boris Glavic 751 ©Silberschatz, Korth and Sudarshan

N Redundancy of Schemas
N—
B Many-to-one and one-to-many relationship sets that are total on the

many-side can be represented by adding an extra attribute to the
“many” side, containing the primary key of the “one” side

B Example: Instead of creating a schema for relationship set inst_dept,
add an attribute dept_name to the schema arising from entity set

instructor
department
A dept_name
building
budget
instructor student
D 1D
name name
salary tot_cred
(CS425 - Fall 2013 - Boris Glavic 7.53 ©Silberschatz, Korth and Sudarshan

Reduction to Relation Schemas

B Entity sets and relationship sets can be expressed uniformly as
relation schemas that represent the contents of the database.

B A database which conforms to an E-R diagram can be represented by
a collection of relation schemas.

B For each entity set and relationship set there is a unique relation
schema that is assigned the name of the corresponding entity set or
relationship set.

©S425 - Fall 2013 - Boris Glavic 7.50 ©Silberschatz, Korth and Sudarshan

¥ Representing Relationship Sets

B A many-to-many relationship set is represented as a schema with
attributes for the primary keys of the two participating entity sets, and any
descriptive attributes of the relationship set.

B Example: schema for relationship set advisor
advisor = (s_id, i_id)

instructor student
1D advisor ID
name name
salary tot_cred
CS425 - Fall 2013 - Boris Glavic 7.52 ©Silberschatz, Korth and Sudarshan

Redundancy of Schemas (Cont.)

B For one-to-one relationship sets, either side can be chosen to act
as the “many” side
That is, extra attribute can be added to either of the tables
corresponding to the two entity sets
If the relationship is total in both sides, the relation schemas
from the two sides can be merged into one schema
B If participation is partial on the “many” side, replacing a schema by
an extra attribute in the schema corresponding to the “many” side
could result in null values
B The schema corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.

Example: The section schema already contains the attributes
that would appear in the sec_course schema

€S425 - Fall 2013 - Boris Glavic 7.54 ©Silberschatz, Korth and Sudarshan

§EZ Composite and Multivalued Attributes

instructor m Composite attributes are flattened out by creating a
separate attribute for each component attribute
D Example: given entity set instructor with
name composite attribute name with component
first_name attributes first_name and last_name the schema

middle_initial corresponding to the entity set has two attributes

y ;”5[—”“’“ name_first_name and name_last_name
g Srfrs:e " » Prefix omitted if there is no ambiguity
street number | M Ignoring multivalued attributes, extended instructor
street_name schema is
apt_number instructor(ID,
city first_name, middle_initial, last_name,
state street_number, street_name,
zip apt_number, city, state, zip_code,

{ phone_number } date_of_birth)
date_of_birth

age ()

©S425 - Fall 2013 - Boris Glavic 7.55 @©Silberschatz, Korth and Sudarshan

& Multivalued Attributes (Cont.)

B Special case:entity time_slot has only one attribute other than the
primary-key attribute, and that attribute is multivalued

Optimization: Don’ t create the relation corresponding to the entity,
just create the one corresponding to the multivalued attribute

time_slot(time_slot _id, day, start time, end_time)

Caveat: time_slot attribute of section (from sec_time_slot) cannot be
a foreign key due to this optimization

section
secid. time_slot
semester 2 sec_time_slot time slot id
Year | { day
start_time
end_time
}
CS425 - Fall 2013 - Boris Glavic 7.57 ©Silberschatz, Korth and Sudarshan

N Design Issues
N—
B Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an
action that occurs between entities

Possible hint: the relationship only relates entities, but does not have an
existence by itself. E.g., hasAddress: (department-address)

registration

section_reg student_reg
section student
i D
name
Yyear. tot_cred
(CS425 - Fall 2013 - Boris Glavic 7.59 ©Silberschatz, Korth and Sudarshan

N Composite and Multivalued Attributes

B A multivalued attribute M of an entity E is represented by a separate
schema EM

Schema EM has attributes corresponding to the primary key of E
and an attribute corresponding to multivalued attribute M
Example: Multivalued attribute phone_number of instructor is
represented by a schema:

inst_phone= (ID, phone_number)
Each value of the multivalued attribute maps to a separate tuple of
the relation on schema EM

» For example, an instructor entity with primary key 22222 and
phone numbers 456-7890 and 123-4567 maps to two tuples:
(22222, 456-7890) and (22222, 123-4567)

©S425 - Fall 2013 - Boris Glavic 7.56 @©Silberschatz, Korth and Sudarshan

N2 Design Issues
—

B Use of entity sets vs. attributes

instructor
instructor phone
w ID hone_number
name D p
salary name location
phone_number salary

m Designing phone as an entity allow for primary key constraints for phone

B Designing phone as an entity allow phone numbers to be used in
relationships with other entities (e.g., student)

B Use of phone as an entity allows extra information about phone numbers

©S425 - Fall 2013 - Boris Glavic 7.58 ©Silberschatz, Korth and Sudarshan

Design Issues

B Binary versus n-ary relationship sets

Although it is possible to replace any nonbinary (n-ary, for n>2)
relationship set by a number of distinct binary relationship sets + an
aritifical entity set, a n-ary relationship set shows more clearly that
several entities participate in a single relationship.

B Placement of relationship attributes
e.g., attribute date as attribute of advisor or as attribute of student
Does not work for N-M relationships!

€S425 - Fall 2013 - Boris Glavic 7.60 @©Silberschatz, Korth and Sudarshan

ﬁ Binary Vs. Non-Binary Relationships

B Some relationships that appear to be non-binary may be better
represented using binary relationships

E.g., Aternary relationship parents, relating a child to his/her
father and mother, is best replaced by two binary relationships,
father and mother

» Using two binary relationships allows partial information (e.g.,
only mother being know)

But there are some relationships that are naturally non-binary
» Example: proj_guide

©S425 - Fall 2013 - Boris Glavic 761 @©Silberschatz, Korth and Sudarshan

Converting Non-Binary Relationships
(Cont.)

B Also need to translate constraints

Translating all constraints may not be possible

There may be instances in the translated schema that

cannot correspond to any instance of R

» Exercise: add constraints to the relationships R,, Rg and

Rcto ensure that a newly created entity corresponds to
exactly one entity in each of entity sets A, Band C

We can avoid creating an identifying attribute by making E a

weak entity set (described shortly) identified by the three

relationship sets

©S425 - Fall 2013 - Boris Glavic 7.63 ©Silberschatz, Korth and Sudarshan

ﬁ’j ER-model to Relational Summary

B Rule 1) Strong entity E
Create relation with attributes of E
Primary key is equal to the PK of E

B Rule 2) Weak entity W identified by E through relationship R
Create relation with attributes of W and R and PK(E).
Set PK to discriminator attributes combined with PK(E). PK(E) is a
foreign key to E.

B Rule 3) Binary relationship R between A and B: one-to-one
If no side is total add PK of A to as foreign key in B or the other
way around. Add any attributes of the relationship R to A
respective B.
If one side is total add PK of the other-side as foreign key. Add any
attributes of the relationship R to the total side.
If both sides are total merge the two relation into a new relation E

and choose either PK(A) as PK(B) as the new PK. Add any
attributes of the relationship R to the new relation E.

€S425 - Fall 2013 - Boris Glavic 7.65 @©Silberschatz, Korth and Sudarshan

ﬁi Converting Non-Binary Relationships to Binary Form
—

B In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.

Replace R between entity sets A, B and C by an entity set £, and
three relationship sets:

1. R,, relating Eand A 2. Rg, relating Eand B
3. R, relating Eand C

Create a special identifying attribute for £

Add any attributes of Rto E

For each relationship (g;, b;, ¢) in R, create

1. anew entity e;in the entity set E =~ 2. add (e;, a;) to R,
4.add (e;, ¢;) to Re

3. add (e;, b;) to Rg

©S425 - Fall 2013 - Boris Glavic 7.62 @©Silberschatz, Korth and Sudarshan

Converting Non-Binary Relationships:
Is the New Entity Set E Necessary?

B Yes, because a non-binary relation ship stores more information that
any number of binary relationships

Consider again the example (a) below
Replace R with three binary relationships:

1. Ry, relating Aand B 2. Rgg, relating B and C
3. Ry, relating Aand C

For each relationship (&;, b;, ¢) in R, create
» 1.add (a;, b;) to Ryg
» 2.add (b;, ¢;) to Rge (@)
» 8.add (a;, ¢;) to Ry
Consider R = order, A = supplier, B = item, C = customer
(Gunnar, chainsaw, Bob) — Bob ordered a chainsaw from Gunnar

=
(Gunnar, chainsaw), (chainsaw, Bob), (Gunnar, Bob)

Gunnar supplies chainsaws, Bob ordered a chainsaw, Bob ordered
something from Gunnar. E.g., we do not know what Bob ordered from
Gunnar.

©S425 - Fall 2013 - Boris Glavic 7.64 ©Silberschatz, Korth and Sudarshan

ER-model to Relational Summary (Cont.)

B Rule 4) Binary relationship R between A and B: one-to-many/many-to-
one

Add PK of the “one” side as foreign key to the “many” side.
Add any attributes of the relationship R to the “many” side.

B Rule 5) Binary relationship R between A and B: many-to-many
Create a new relation R.
Add PK’s of A and B as attributes + plus all attributes of R.
The primary key of the relationship is PK(A) + PK(B). The PK
attributes of A/B form a foreign key to A/B

B Rule 6) N-ary relationship R between E, ... E,
Create a new relation.
Add all the PK’s of E, ... E,. Add all attributes of R to the new
relation.
The primary key or R is PK(E,) ... PK(E,). Each PK(E)) is a foreign
key to the corresponding relation.

€S425 - Fall 2013 - Boris Glavic 7.66 @©Silberschatz, Korth and Sudarshan

i}i" ER-model to Relational Summary (Cont.)

B Rule 7) Entity E with multi-valued attribute A
Create new relation. Add A and PK(E) as attributes.
PK is all attributes. PK(E) is a foreign key.

©S425 - Fall 2013 - Boris Glavic 7.67 ©Silberschatz, Korth and Sudarshan

& Translate the University ER-Model

B Rule 1) Strong Entities
department(dept name, building, budget)
instructor(ID, name, salary)
student(ID, name, tot_cred)
course(course id, title, credits)
time_slot(time slot id)
classroom(building,room_number, capacity)

B Rule 2) Weak Entities
section(course id, sec id, semester, year)

©S425 - Fall 2013 - Boris Glavic 7.69 ©Silberschatz, Korth and Sudarshan

& Translate the University ER-Model

B Rule 5) Relationships many-to-many
department(dept name, building, budget)
instructor(ID, name, salary, dept_name)
student(ID, name, tot_cred, dept_name, instr_ID)
course(course id, title, credits, dept_name)
time_slot(time_slot id)
classroom(building,room number, capacity)
section(course id, sec id, semester, year,

room_building, room_number, time_slot_id)
prereq(course id, prereq_id)
teaches(ID, course id, sec_id, semester, year)
takes(ID, course_id, sec_id, semester, year, grade)
® Rule 6) N-ary Relationships
none exist

©Silberschatz, Korth and Sudarshan

€S425 - Fall 2013 - Boris Glavic 7.7

& E-R Diagram for a University Enterprise

department

dept_name

Course_dept

budget

@ stud_dept

instructor student
D advisor D
salary

fot_cred

teaches

course

section
time_slot
me_slot_id
{ day
start_tine

end_time

classroont
b

©S425 - Fall 2013 - Boris Glavic 7.68 ©Silberschatz, Korth and Sudarshan

& Translate the University ER-Model

B Rule 3) Relationships one-to-one
None exist

B Rule 4) Relationships one-to-many
department(dept name, building, budget)
instructor(ID, name, salary, dept_name)
student(ID, name, tot_cred, dept_name, instr_ID)
course(course _id, title, credits, dept_name)

time_slot(time_slot id)
classroom(building,room number, capacity)

section(course id, sec id, semester, year, room_building,
room_number, time_slot_id)

©S425 - Fall 2013 - Boris Glavic 7.70 ©Silberschatz, Korth and Sudarshan

N Translate the University ER-Model
~——
B Rule 7) Multivalued attributes
department(dept name, building, budget)
instructor(ID, name, salary, dept_name)
student(ID, name, tot_cred, dept_name, instr_ID)
course(course id, title, credits, dept_name)
time_slot(time_slot_id)
time_slot_day(time_slot id, start time, end_time)

classroom(building,room_number, capacity)

section(course id, sec_id, semester, year,
room_building, room_number, time_slot_id)

prereq(course id, prereq_id)

teaches(ID, course id, sec id, semester, year)

takes(ID, course id, sec id, semester, year, grade)

©Silberschatz, Korth and Sudarshan

€S425 - Fall 2013 - Boris Glavic 772

Extended ER Features

©S425 - Fall 2013 - Boris Glavic 7.73 @©Silberschatz, Korth and Sudarshan

Specialization Example

person

ID
name
address

/N

employee student

salary tot_credits

instructor secretary
rank hours_per_week

©S425 - Fall 2013 - Boris Glavic 7.75 ©Silberschatz, Korth and Sudarshan

& Specialization and Generalization (Cont.)

B Can have multiple specializations of an entity set based on different
features.

B E.g., permanent_employee vs. temporary_employee, in addition to
instructor vs. secretary

B Each particular employee would be
a member of one of permanent_employee or temporary_employee,
and also a member of one of instructor, secretary

B The ISA relationship also referred to as superclass - subclass
relationship

€S425 - Fall 2013 - Boris Glavic 777 @©Silberschatz, Korth and Sudarshan

N. Extended E-R Features: Specialization

B Top-down design process; we designate subgroupings within an entity set
that are distinctive from other entities in the set.

B These subgroupings become lower-level entity sets that have attributes or
participate in relationships that do not apply to the higher-level entity set.

W Depicted by a triangle component labeled ISA (E.g., instructor “is a”
person).

B Attribute inheritance — a lower-level entity set inherits all the attributes
and relationship participation of the higher-level entity set to which it is
linked.

©S425 - Fall 2013 - Boris Glavic 774 @©Silberschatz, Korth and Sudarshan

Extended ER Features: Generalization

B A bottom-up design process — combine a number of entity sets
that share the same features into a higher-level entity set.

B Specialization and generalization are simple inversions of each
other; they are represented in an E-R diagram in the same way.

B The terms specialization and generalization are used
interchangeably.

©S425 - Fall 2013 - Boris Glavic 7.76 ©Silberschatz, Korth and Sudarshan

Design Constraints on a Specialization/
Generalization

W Constraint on which entities can be members of a given lower-level entity
set.

condition-defined

» Example: all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA person.

user-defined

H Constraint on whether or not entities may belong to more than one lower-
level entity set within a single generalization.

Disjoint
» an entity can belong to only one lower-level entity set

» Noted in E-R diagram by having multiple lower-level entity sets link
to the same triangle

Overlapping
» an entity can belong to more than one lower-level entity set

€S425 - Fall 2013 - Boris Glavic 7.78 @©Silberschatz, Korth and Sudarshan

N Specialization Example
R
person
Disjoint, employees ID
are either instructors or name
secretaries address

Overlapping, a
person can be

both an employee
employee student | ;04 4 student
rsalary tot_credits

ins tru%ss_//secretary
rank hours_per_week
(CS425 - Fall 2013 - Boris Glavic 7.79 ©Silberschatz, Korth and Sudarshan

N Aggregation

M Consider the ternary relationship proj_guide, which we saw earlier
B Suppose we want to record evaluations of a student by a guide on a

project
project
instructor /\ student
proj_guide
evaluation
CS425 - Fall 2013 - Boris Glavic 7.81 ©Silberschatz, Korth and Sudarshan

N Aggregation (Cont.)
S~——
B Without introducing redundancy, the following diagram represents:
A student is guided by a particular instructor on a particular project

A student, instructor, project combination may have an associated
evaluation

project

instructor /\ student

proj_guide

<>

evaluation

€S425 - Fall 2013 - Boris Glavic 7.83 ©Silberschatz, Korth and Sudarshan

Design Constraints on a Specialization/
Generalization (Cont.)

B Completeness constraint -- specifies whether or not an entity in
the higher-level entity set must belong to at least one of the lower-
level entity sets within a generalization.

total: an entity must belong to one of the lower-level entity sets

partial: an entity need not belong to one of the lower-level
entity sets

©S425 - Fall 2013 - Boris Glavic 7.80 ©Silberschatz, Korth and Sudarshan

¥ Aggregation (Cont.)

W Relationship sets eval_for and proj_guide represent overlapping
information

Every eval_for relationship corresponds to a proj_guide
relationship

However, some proj_guide relationships may not correspond to
any eval_for relationships
» So we can’ t discard the proj_guide relationship
B Eliminate this redundancy via aggregation
Treat relationship as an abstract entity
Allows relationships between relationships
Abstraction of relationship into new entity

©S425 - Fall 2013 - Boris Glavic 7.82 ©Silberschatz, Korth and Sudarshan

Representing Specialization via
Schemas

B Method 1:
Form a relation schema for the higher-level entity

Form a relation schema for each lower-level entity set, include
primary key of higher-level entity set and local attributes

schema attributes
person ID, name, street, city
student ID, tot_cred
employee ID, salary

Drawback: getting information about, an employee requires
accessing two relations, the one corresponding to the low-level
schema and the one corresponding to the high-level schema

€S425 - Fall 2013 - Boris Glavic 7.84 ©Silberschatz, Korth and Sudarshan

N Representing Specialization as Schemas
- (Cont.)

B Method 2:

Form a single relation schema for each entity set with all local and
inherited attributes

schema attributes

person ID, name, street, city

student ID, name, street, city, tot_cred
employee ID, name, street, city, salary

If specialization is total, the schema for the generalized entity set
(person) not required to store information

» Can be defined as a “view” relation containing union of
specialization relations

» But explicit schema may still be needed for foreign key constraints

Drawback: name, street and city may be stored redundantly for people
who are both students and employees

©S425 - Fall 2013 - Boris Glavic 7.85 @©Silberschatz, Korth and Sudarshan

Schemas Corresponding to Aggregation

B To represent aggregation, create a schema containing
primary key of the aggregated relationship,
the primary key of the associated entity set
any descriptive attributes

©S425 - Fall 2013 - Boris Glavic 7.87 ©Silberschatz, Korth and Sudarshan

iﬁ ER-model to Relational Summary (Cont.)
B Rule 8) Specialization of E into S, ... ,S, (method 1)

Create a relation for E with all attributes of E. The PK of E is the
PK.

For each S; create a relation with PK(E) as PK and foreign key to
relation for E. Add all attributes of S; that do not exist in E.

B Rule 9) Specialization of E into S,, ... ,S, (method 2)

Create a relation for E with all attributes of E. The PK of E is the
PK.

For each S; create a relation with PK(E) as PK and foreign key to
relation for E. Add all attributes of S;.

B Rule 10) Specialization of E into S,, ... ,S, (method 3)
Create a new relation with all attributes from E and S, ... ,S,
Add single attribute type or a boolean type attribute for each S;
The primary key is PK(E)

€S425 - Fall 2013 - Boris Glavic 7.89 @©Silberschatz, Korth and Sudarshan

N Representing Specialization as Schemas
- (Cont.)

B Method 3:
Form a single relation schema for each entity set with all local and
inherited attributes
» For total and disjoint specialization add a single “type” attribute that
stores the type of an entity

schema \ attributes
person ‘ ID, type, name, street, city, tot_cred, salary

» For partial and/or overlapping specialization add multiple boolean
“type” attributes

schema ‘ attributes
person ID, isEmployee, isStudent, name, street, city, tot_cred, salary

Drawback: large number of NULL values, potentially large relation

©S425 - Fall 2013 - Boris Glavic 7.86 @©Silberschatz, Korth and Sudarshan

Schemas Corresponding to
Aggregation (Cont.)

B For example, to represent aggregation manages between
relationship works_on and entity set manager, create a schema

eval_for (s_ID, project _id, i_ID, evaluation_id)

proj__guide

instructor student

evaluation

©S425 - Fall 2013 - Boris Glavic 7.88 ©Silberschatz, Korth and Sudarshan

ER-model to Relational Summary (Cont.)

B Rule 11) Aggregation: Relationship R, relates entity sets E,, ..., E,,.
This is related by relationship A to an entity set B
Create a relation for A with attributes PK(E,) ... PK(E,) + all
attributes from A + PK(B). PK are all attributes except the ones
from A

€S425 - Fall 2013 - Boris Glavic 7.90 @©Silberschatz, Korth and Sudarshan

ER Design Decisions

B The use of an attribute or entity set to represent an object.

B Whether a real-world concept is best expressed by an entity set or
a relationship set.

B The use of a ternary relationship versus a pair of binary
relationships.

B The use of a strong or weak entity set.

B The use of specialization/generalization — contributes to modularity
in the design.

B The use of aggregation — can treat the aggregate entity set as a
single unit without concern for the details of its internal structure.

©S425 - Fall 2013 - Boris Glavic 7.91 ©Silberschatz, Korth and Sudarshan

E’Summary of Symbols Used in E-R Notation

entity set
d Al

A2 attributes:

simple (A1),
composite (A2) and
multivalued (A3)

A21
<?> relationship set A22 !
(A3} derived (A4)
gl

A40

identifying
relationship set E
for weak entity set primary key

total participation E discriminating
of entity set in Al attribute of
relationship | -t weak entity set

©S425 - Fall 2013 - Boris Glavic 7.93

©Silberschatz, Korth and Sudarshan

& Alternative ER Notations

B Chen, IDETFX, ...

entity set E with

simple attribute Al,
composite attribute A2,
multivalued attribute A3,
derived attribute A4,

and primary key Al

total
weak entity set E’ generalization (f; generalization

€S425 - Fall 2013 - Boris Glavic 7.95 ©Silberschatz, Korth and Sudarshan

How about doing another ER design
interactively on the board?

Partially taken from
Klaus R. Dittrich

modified from:

Database System Concepts, 6!" Ed.

Korth and
See www.db-book.com for conditions on re-use

-

Symbols Used in ER Notation (Cont.)

many-to-many many-to-one
relationship relationship

one-to-one

cardinality
relationship

limits

ISA: generalization
or specialization

role-
name
role indicator

total (disjoint)
generalization

disjoint

[\-total generalization

©S425 - Fall 2013 - Boris Glavic 7.94 ©Silberschatz, Korth and Sudarshan

many-to-many
relationship

< (@]

one-to-one
relationship

:

many-to-one
relationship

.
participation R
in R: total (E1) El = > o “

and partial (E2)

€S425 - Fall 2013 - Boris Glavic 7.96 ©Silberschatz, Korth and Sudarshan

UML

B UML: Unified Modeling Language

B UML has many components to graphically model different aspects
of an entire software system

B UML Class Diagrams correspond to E-R Diagram, but several
differences.

©S425 - Fall 2013 - Boris Glavic 7.97

N ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

n-ary
relationships

overlapping
generalization

disjoint A disjoint
generalization
E2 E3

*Generalization can use merged or separate arrows independent
of disjoint/overlapping

©S425 - Fall 2013 - Boris Glavic 7.99

& Recap

B ER-model

Entities

» Strong

» Weak
Attributes

» Simple vs. Composite

» Single-valued vs. Multi-valued
Relationships

» Degree (binary vs. N-ary)
Cardinality constraints
Specialization/Generalization

» Total vs. partial

» Disjoint vs. overlapping
Aggregation

©S425 - Fall 2013 - Boris Glavic 7.101

@©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

@©Silberschatz, Korth and Sudarshan

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML
E entity with E class with simple attributes
Al attributes (simple, Al and methods (attribute
composite, — prefixes: + = public,
M10 multivalued, derived) +M10 — = private, # = protected)

©S425 - Fall 2013 - Boris Glavic 7.98

©S425 - Fall 2013 - Boris Glavic 7.100

©S425 - Fall 2013 - Boris Glavic 7.102

rolel, role2 binary - rolel R role2 -
6 2 relationship Bl 12

rolel role2 relationship rolel role2
O e e
0.* 0.1 cardinality 0.1 R oo.*
constraints

*Note reversal of position in cardinality constraint depiction

@©Silberschatz, Korth and Sudarshan

UML Class Diagrams (Cont.)

B Binary relationship sets are represented in UML by just drawing a
line connecting the entity sets. The relationship set name is written
adjacent to the line.

B The role played by an entity set in a relationship set may also be
specified by writing the role name on the line, adjacent to the entity
set.

B The relationship set name may alternatively be written in a box,
along with attributes of the relationship set, and the box is
connected, using a dotted line, to the line depicting the relationship
set.

©Silberschatz, Korth and Sudarshan

Recap Cont.

B ER-Diagrams
Alternative notations
UML-Diagrams
Design decisions
Multi-valued attribute vs. entity
Entity vs. relationship
Binary vs. N-ary relationships
Placement of relationship attributes
Total 1-1 vs. single entity
B ER to relational model
Translation rules

@©Silberschatz, Korth and Sudarshan

End of Chapter 7

Partially taken from
Klaus R. Dittrich

modified from:

Database System Concepts, 6!" Ed.

il Korth and
See www.db-book.com for conditions on re-use

Figure 7.01

anaka

8988
[45565[Katz] 2345 [sh
10101 [Srinivasan | 0128 |Zhan.
[98345[Kim | 76543 |Brown
76653 | Aoi

—
()
5
o | [&
(=)
=

i I

22222 | Einstein 23121 |Chavez
instructor 44553

student

©S425 - Fall 2013 - Boris Glavic 7.105 ©Silberschatz, Korth and Sudarshan

¥ Figure 7.03

76766 98988 Tanaka |

45565
10101 | Srinivasan
98345
76543
Einstein

instructor

3 May 2008
10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

23121

student

4May 2006

©S425 - Fall 2013 - Boris Glavic 7.107 ©Silberschatz, Korth and Sudarshan

Outline

(

B Introduction
B Relational Data Model
B Formal Relational Languages (relational algebra)
B SQL - Advanced
B Database Design — Database modelling
B Transaction Processing, Recovery, and Concurrency Control
B Storage and File Structures
B Indexing and Hashing
B Query Processing and Optimization
CS425 - Fall 2013 - Boris Glavic 7.104 ©Silberschatz, Korth and Sudarshan

yl Figure 7.02

[76766 | Crick | 198988 | Tanaka
45565 Katz ' 112345 [Shankar

|
|
110101 | Srinivasan |~\~| 00128 [Zhang |
|
|
|
|

198345 | Kim H 176543 |Brown
[76543 [Singh }si 76653 | Aoi

H 123121 |Chavez
\~| 44553 | Peltier

[22222 [Einstein

instructor
student
CS425 - Fall 2013 - Boris Glavic 7.106 ©Silberschatz, Korth and Sudarshan
>
¥ Figure 7.04
.
composite name address
attributes
first_name middle_initial ~ last_name street city state postal_code
component
attributes
street_number street_name apartment_number
CS425 - Fall 2013 - Boris Glavic 7.108 ©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

instructor

ID
name
salary

©S425 - Fall 2013 - Boris Glavic

€S425 - Fall 2013 - Boris Glavic

instructor

D
name
salary

instructor

D
name
salary

instructor

D
name
salary

Figure 7.05

Figure 7.06

7.109

Figure 7.07

7411

Figure 7.09

(b)

(0

7.113

©Silberschatz, Korth and Sudarshan

student

ID
name
tot_cred

©Silberschatz, Korth and Sudarshan

student

tot_cred

student

tot_cred

student

tot_cred

©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

instructor

ID
name
salary

©S425 - Fall 2013 - Boris Glavic

instructor

ID
name
salary

€S425 - Fall 2013 - Boris Glavic

7.110

Figure 7.08

7112

Figure 7.10

7114

©Silberschatz, Korth and Sudarshan

student

ID
name

tot_cred

©Silberschatz, Korth and Sudarshan

student

ID
name
tot_cred

©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 7.11

instructor

ID
name
first_name
middle_initial
last_name
address
street
street_number
street_name
apt_number
city
state
zip
{ phone_number }
date_of birth
age ()

7115 ©Silberschatz, Korth and Sudarshan

Figure 7.13

course .
course_id
course_id
title . prereq
. rereq_id
credits prereq_
CS425 - Fall 2013 - Boris Glavic 717 ©Silberschatz, Korth and Sudarshan

Course_dept

Figure 7.15

department

@ stud_dept

instructor student

s}
name
salary

advisor D
name
tot_cred

€S425 - Fall 2013 - Boris Glavic

s s e

section

il time_slot
seutester me_slot
vear { day
start_tine|
end_time
@ |

classroomt

Tulding

capacity

7.119 ©Silberschatz, Korth and Sudarshan

Figure 7.12

course .
course_id
course_id
title . prereq
. rereq_id
credits prereq_
CS425 - Fall 2013 - Boris Glavic 7.116 ©Silberschatz, Korth and Sudarshan
—
¥ Figure 7.14
COUHEG section
course id sec_id
title semester
credits year
CS425 - Fall 2013 - Boris Glavic 7.118 ©Silberschatz, Korth and Sudarshan
Figure 7.17
instructor
instructor phone
D phone_number
name b location
salary name
phone_number salary

@

©S425 - Fall 2013 - Boris Glavic

(b)

7.120 ©Silberschatz, Korth and Sudarshan

i Figure 7.18

registration
section_reg student_reg
section student
sec_id. D
semester name
vear. tot_cred
(CS425 - Fall 2013 - Boris Glavic 7121 ©Silberschatz, Korth and Sudarshan

i Figure 7.20

Crick

{98988 [Tanaka |May 2009

45565 | Katz

{00128 [Zhang _[June 2006

\-l 76543 | Brown |June 2009

\-l 76653 | Aoi _ |June 2007

\-l 23121 | Chavez | May 2007
\

instructor 44553 [Peltier |May 2006

[12345 [Shankar [June 2007

©S425 - Fall 2013 - Boris Glavic 7123

student

©Silberschatz, Korth and Sudarshan

¥ Figure 7.22

project

P

e

instructor /\ student
roj_guide

evaluation

©S425 - Fall 2013 - Boris Glavic 7125

©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 7.19

7122

Figure 7.21

person

ID
name
address

/N

©Silberschatz, Korth and Sudarshan

employee student

salary tot_credits

i

|

instructor secretary

rank

hours_per_week

©S425 - Fall 2013 - Boris Glavic

7124

Figure 7.23

©Silberschatz, Korth and Sudarshan

instructor

project

s

student

proj_guide

©S425 - Fall 2013 - Boris Glavic

evaluation

7.126

©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 7.24
II' entity set e]

attributes:

simple (A1),
composite (A2) and
multivalued (A3)

relationship set
derived (A4)

identifying
relationship set

for weak entity set

&

primary key

discriminating
attribute of

total participation
— & | ofentiy siin

&

relationship weak entity set
many-to-many many-to-one
relationship relationship
one-to-one cardinality
relationship limits
role-
name| . i
. —
or specialization
total (disjoint) disjoint
total izati
E2 E3

7427 ©Silberschatz, Korth and Sudarshan

Figure 7.26

ER Diagram Notation

entity with

§>H

composite,

rolel 0 rol

o

E §
& &

©S425 - Fall 2013 - Boris Glavic

attributes (simple,

multivalued, derived)

rolel, role2| binary rolel R role2
Ryl e, [mefa]

allm
8B

Equivalent in UML

class with simple attributes
and methods (attribute

prefix

+ = public,

= private, # = protected)

constraints

overlapping
generalization

isjoint
generalization

7.129

Figure 7.28

X

E2
wary =] ‘ g
relationships. -

E3

o

X

relationship rolel | role2
attributes E

cardinality o Roo.e

verlapping

©Silberschatz, Korth and Sudarshan

Y

NN

A

©S425 - Fall 2013 - Boris Glavic

B

7431

C

©Silberschatz, Korth and Sudarshan

simple attribute A1,

composite attril

multivalued attribute A3,

derived attribu;

and primary key Al

many-to-many
relationship

one-to-one
relationship

‘many-to-one
relationship

participation
in R: total (E1)
and partial (E2,

entity set E with

Figure 7.25
@ @&

bute A2,

te Ad,

.
.
i =]
)
. L total
weak entity set generalization generalization

©S425 - Fall 2013 - Boris Glavic

7128

Figure 7.27

©Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 7.29

author publisher
lame name
address address
URL phone
URL
published_by
book
ISBN
title shopping_basket|
Yyear basket_id
price

©S425 - Fall 2013 - Boris Glavic

number

warehouse

code
address
phone

7132

©Silberschatz, Korth and Sudarshan

customer
email

name
address
phone

basket_of

©Silberschatz, Korth and Sudarshan

NC Chapter 8: Relational Database Design

Features of Good Relational Design
Atomic Domains and First Normal Form

Decomposition Using Functional Dependencies

]
]
CS425 - Fall 2013 -
- - B Functional Dependency Theory
BOI’IS GlaVIC W Algorithms for Functional Dependencies
B Decomposition Using Multivalued Dependencies
® More Normal Form
B Database-Design Process
]

Modeling Temporal Data

Chapter 8: Relational Database Design

modified from:

Database System Concepts, 6t Ed.
©Silberschatz, Korth and Sudarshan

See for conditions on re-use
©5425 - Fall 2013 - Boris Glavic 82 @Silberschatz, Korth and Sudarshan
N- Combine Schemas?
| S —
B Suppose we combine instructor and department into inst_dept
(No connection to relationship set inst_dept)
B Resultis possible repetition of information
What is Good Desig n', ID | name salary | dept_name | building | budget ‘
. . . 22222 | Einstein 95000 | Physics Watson 70000
1) Easier: What is Bad Design? 12121 Wu 90000 | Finance | Painter | 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz. 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. | Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandl 92000 | Comp. Sci. | Taylor 100000
15151 | Mozart 40000 | Music Packard | 80000
modified from: 33456 | Gold 7000 | Physics Watson | 70000
76543 | Singh 80000 | Finance Painter | 120000
Database System Concepts, 6" Ed.
©Silberschatz, Korth and Sudarshan
See for conditions on re-use
©5425 - Fall 2013 - Boris Glavie 84 Silberschatz, Korth and Sudarshan

N Redundancy is Bad! N2 A Combined Schema Without Repetition

ID_| name salary building | budget
i 2022 Finstein._| 95000 Watson | 70000 P
B Update Physics Department w 0000 Pt | 20000 ® Combining is not always bad!
multiple tuples to update oo e | om0 m Consider combining relations

80000

Efficiency + potential for errors 72000 90000 sec_class(sec_id, building, room_number) and
- 65000 | Comp.Sci. | Taylor | 100000 i i i
W Delete Physics Department 62000 | History | Painter | 50000 section(course_id, sec_id, semester, year)
92000 | Comp. Sci. | Taylor | 100000
update multiple tuples 10 | Py | ekl 000 into one relation
80000 | Finance Painter 120000

Efficiency + potential for errors section(course_id, sec_id, semester, year,
building, room_number)

W No repetition in this case

B Departments without instructor or instructors without departments
Need dummy department and dummy instructor
Makes aggregation harder and error prone.

5425 - Fall 2013 - Boris Glavic 85 @silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavic 86 @Silberschatz, Korth and Sudarshan

E What About Smaller Schemas?

B Suppose we had started with inst_dept. How would we know to split up
(decompose) it into instructor and department?

W Write a rule “if there were a schema (dept_name, building, budget), then
dept_name would be a candidate key”

B Denote as a functional dependency:
dept_name — building, budget

W In inst_dept, because dept_name is not a candidate key, the building
and budget of a department may have to be repeated.

This indicates the need to decompose inst_dept

W Not all decompositions are good. Suppose we decompose
employee(ID, name, street, city, salary) into

employee1 (ID, name)
employee2 (name, street, city, salary)

W The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.

5425 — Fall 2013 - Boris Glavic 87 @Silberschatz, Korth and Sudarshan

N A Lossy Decomposition

iff Example of Lossless-Join Decomposition
| —

B Lossless join decomposition

B Decomposition of R = (A, B, C)
R,=(AB) R,=(BC)

[a[8]c] [8]c]
all1|A 1 A
Al2|B 2 | B
r Mscn
[Tap @ HB,C (r)
(©$425 - Fall 2013 - Boris Glavie) @ilberschatz, Korth and Sudarshan

ID_ | name | street city salary
57766 | Kim | Main | Perryridge | 75000
98776 | Kim North | Hampton 67000
employee
ID [name name | street city salary
Kim Kim | Main | Perryridge | 75000
Kim Kim | North | Hampton | 67000
natural join
ID | name | street city salary
57766 | Kim | Main | Perryridge | 75000
57766 | Kim North | Hampton 67000
98776 | Kim Main | Perryridge | 75000
98776 | Kim North | Hampton 67000
5425 - Fall 2013 - Borls Giavic os Silberschatz, Korth and Sudarshan
iﬁ Goals of Lossless-Join Decomposition
—

B Lossless-Join decomposition means splitting a table in a way so
that we do not loose information
That means we should be able to reconstruct the original
table from the decomposed table using joins

[al8]c] [8]c]
al1|A 1 A
pl2|B 2| B
r s
[INGLE NG
5425 - Fal 2013 - Boris Glavic 810 Silberschatz, Korth and Sudarshan

N Goal — Devise a Theory for the Following

B Decide whether a particular relation Ris in “good” form.

B In the case that a relation Ris not in “good” form, decompose it into a
set of relations {Ry, R,, ..., R} such that

each relation is in good form
the decomposition is a lossless-join decomposition
W Our theory is based on:
1) Models of dependency between attribute values
» functional dependencies
» multivalued dependencies
2) Concept of lossless decomposition
3) Normal Forms Based On
» Atomicity of values
» Avoidance of redundancy
» Lossless decomposition

©S425 - Fall 2013 - Boris Glavic a1 @Silberschatz, Korth and Sudarshan

Modeling Dependencies between
Attribute Values:
Functional Depedencies
Multivalued Depedencies

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

N- Functional Dependencies
[—
B Constraints on the set of legal instances for a relation schema.

B Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

W A functional dependency is a generalization of the notion of a key.
Thus, every key is a functional dependency

©8425 - Fall 2013 - Boris Glavic 813 @Silberschatz, Korth and Sudarshan

Functional Dependencies (Cont.)

W Let Rbe a relation schema
aCRand BCR
B The functional dependency

a—f
holds on Rif and only if for any legal relations r(R), whenever any
two tuples t, and t, of r agree on the attributes a, they also agree
on the attributes . That is,
tlal=tla] = {[B] =4[B]

B Example: Consider r(A,B) with the following instance of r.

14
15
3 7

B On this instance, A — B does NOT hold, but B — A does hold.

CS425 - Fall 2013 - Boris Glavic 814 @Silberschatz, Korth and Sudarshan

@ Functional Dependencies (Cont.)

B Let Rbe a relation schema
aCRand BCR
B The functional dependency
a—f
holds on Rif and only if for any legal relations r(R), whenever any
two tuples t, and t, of ragree on the attributes «, they also agree
on the attributes . That is,

tlo]=tla] = 4B] =5[B]
B Example: Consider r(A,B) with the following instance of r.

1)(4] |A
1)\s) |~

W On this instance, A — B does NOT hold, but B— A does hold.

andB=4
andB=5

©8425 - Fall 2013 - Boris Glavic 815 @Silberschatz, Korth and Sudarshan

@ Functional Dependencies (Cont.)

B Kis a superkey for relation schema Rif and only if K— R
B Kis a candidate key for Rif and only if

K— R, and

fornoaCK, a— R

B Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:
dept_name— building
and ID > building
but would not expect the following to hold:
dept_name — salary

©8425 - Fall 2013 - Boris Glavic 816 @Silberschatz, Korth and Sudarshan

N Use of Functional Dependencies

B We use functional dependencies to:

test relations to see if they are legal under a given set of functional
dependencies.

» If arelation ris legal under a set F of functional dependencies, we
say that r satisfies F.

specify constraints on the set of legal relations

» We say that F holds on Rif all legal relations on R satisfy the set
of functional dependencies F.
m Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.

For example, a specific instance of instructor may, by chance, satisfy
name — ID.

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 817

Functional Dependencies (Cont.)

N

B A functional dependency is trivial if it is satisfied by all instances of a
relation

Example:
» ID, name — ID
» name — name
In general, a — s trivial if 8C a

©8425 - Fall 2013 - Boris Glavic 818 @Silberschatz, Korth and Sudarshan

Closure of a Set of Functional
Dependencies

Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A— Band B — C, then we can infer that A —
c

W The set of all functional dependencies logically implied by Fis the
closure of F.

B We denote the closure of F by F*.
W F*is a superset of F.

©8425 - Fall 2013 - Boris Glavic 819 @Silberschatz, Korth and Sudarshan

Closure of a Set of Functional
Dependencies

B We can find F* the closure of F, by repeatedly applying
Armstrong’ s Axioms:
if fCa thena — B (reflexivity)
ifa— B thenya— v (augmentation)
if o = B, and g —y, then o — y (transitivity)
B These rules are

sound (generate only functional dependencies that actually hold),
and

complete (generate all functional dependencies that hold).

©8425 - Fall 2013 - Boris Glavic 821 @Silberschatz, Korth and Sudarshan

Functional-Dependency Theory

B We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.

B How do we get the initial set of FDs?
Semantics of the domain we are modelling
Has to be provided by a human (the designer)
B Example:
Relation Citizen(SSN, FirstName, LastName, Address)
We know that SSN is unique and a person has a a unique SSN
Thus, SSN — FirstName, LastName

CS425 - Fall 2013 - Boris Glavic 820 @Silberschatz, Korth and Sudarshan

Example
B some members of F*
A—H
» by transitivity from A — Band B— H
AG— |

» by augmenting A — C with G, to get AG — CG
and then transitivity with CG — |

CG— HI
» by augmenting CG — /to infer CG — CGl/,
and augmenting of CG — H'to infer CGI — HI,
and then transitivity

©8425 - Fall 2013 - Boris Glavic 822 @Silberschatz, Korth and Sudarshan

N Prove Additional Implications

W Prove or disprove the following rules from Amstrong’s axioms
1)A— B, Cimplies A— Band A — C
2)A—Band A — Cimplies A— B, C
3)A, B— B, Cimplies A— C
4)A— Band C — Dimplies A, C— B, D

©8425 - Fall 2013 - Boris Glavic 823 @Silberschatz, Korth and Sudarshan

N

Procedure for Computing F+

B To compute the closure of a set of functional dependencies F:

F+=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+
for each pair of functional dependencies f,and f, in F*
if f, and f, can be combined using transitivity
then add the resulting functional dependency to F *
until F+ does not change any further

NOTE: We shall see an alternative more efficient procedure for this task
later

©S425 - Fall 2013 - Boris Glavic 824

@Silberschatz, Korth and Sudarshan

N Closure of Functional Dependencies
— (Cont.)

B Additional rules:
If @ — B holds and o. — y holds, then a — By holds (union)

If @ — By holds, then & — B holds and o — y holds
(decomposition)

If & — B holds and y # — & holds, then o y — & holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’ s axioms.

©8425 - Fall 2013 - Boris Glavic 8.25 @Silberschatz, Korth and Sudarshan

Example of Attribute Set Closure

R=(A B C GHI)

B—H
u (AG)
1. result =AG
2. result=ABCG (A— Cand A— B)
3. result=ABCGH (CG — Hand CGC AGBC)
4. result=ABCGHI (CG— |and CG C AGBCH)
s AG a candidate key?
Is AG a super key?
1. Does AG— R?==Is (AG)*CR
Is any subset of AG a superkey?
1. Does A— R? ==1Is (A)*CR
2. Does G— R? ==1s (G)*CR

©8425 - Fall 2013 - Boris Glavic 827 @Silberschatz, Korth and Sudarshan

& O(n) Algorithm for Attribute Closure

B Data Structures
Enumerate the FDs and attributes
int[] c: an integer array with one element per FD that is initialized
to the size of the LHS of the FD
list<int>[] rhs: an array of lists with one element per FD. The
element stores the numeric ID of the attributes of the FDs RHS
list<int>[] lhs: an array of lists of integers, one element per
attribute. The element for each attribute stores the numeric IDs of
the FDs that have the attribute in its LHS
set<int> aplus: a set storing the attributes currently established to
be implied by A
stack<int> todo: a stack of attributes to be processed next

©8425 - Fall 2013 - Boris Glavic 829 @Silberschatz, Korth and Sudarshan

Closure of Attribute Sets

B Given a set of attributes «, define the closure of o. under F (denoted
by o) as the set of attributes that are functionally determined by o
under F

B Algorithm to compute o*, the closure of o under F

result = a;
while (changes to resulf) do
foreach § —yin Fdo

begin
if p C resultthen result := result U y
end
©425 - Fall 2013 - Boris Glavie 825 ©Silberschatz, Korth and Sudarshan
v$ Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
W Testing for superkey:

To test if a is a superkey, we compute a* and check if o* contains
all attributes of R.

B Testing functional dependencies

To check if a functional dependency a. — f holds (or, in other
words, is in F*), just check if p C a*.

That is, we compute o* by using attribute closure, and then check
if it contains f3.

Is a simple and cheap test, and very useful
B Computing closure of F

For each y C R, we find the closure y*, and for each S C y+, we
output a functional dependency y — S.

©8425 - Fall 2013 - Boris Glavic 828 @Silberschatz, Korth and Sudarshan

& O(n) Algorithm for Attribute Closure

m Algorithm
Initialize ¢, rhs, lhs, aplus to the emptyset, todo to A
while(!todo.isEmpty) {
curA = todo.pop();
aplus.add(curA); // add curA to result
for fd in lhs[curA]l { // update how many attribute found for LHS
clfdl-——; // found a LHS attr for fd
if (c[fd] == 0) {
remove(lhs[curA], fd); // avoid firing twice
for newA in rhs[fd] { // add implied attributes
if (laplusinewAl) // if attribute is new add to todo
todo.push(newA);
aplus.add(newA);

©S425 - Fall 2013 - Boris Glavic 830

@Silberschatz, Korth and Sudarshan

82

©S425 - Fall 2013 - Boris Glavic 831

Canonical Cover

B Sets of functional dependencies may have redundant dependencies
that can be inferred from the others
For example: A — Cisredundantin: {A—-B, B—C, A— C}
Parts of a functional dependency may be redundant
» Eg.:onRHS: {A— B, B—C, A— CD} canbe simplified
to
{A=-B B—C A-D}
» Eg.:onlHS: {A— B, B— C, AC— D} canbe simplified
to
{A—-B B—C, A—D}
M Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies or
redundant parts of dependencies

@Silberschatz, Korth and Sudarshan

Extraneous Attributes

W Consider a set F of functional dependencies and the functional
dependency a — fin F.
Attribute A is extraneous in a.if A€ a
and F logically implies (F—{a — #}) U {(a —A) — B}.
Attribute A is extraneous in if A€ B
and the set of functional dependencies
(F —{o. = B}) U{a —(B — A)} logically implies F.

B Note: implication in the opposite direction is trivial in each of the
cases above, since a “stronger” functional dependency always
implies a weaker one

B Example: Given F={A— C, AB— C}

Bis extraneous in AB — C because {A — C, AB — C} logically
implies A — C (l.e. the result of dropping B from AB — C).

B Example: Given F={A— C, AB— CD}

Cis extraneous in AB— CDsince AB — C can be inferred even
after deleting C

CS425 - Fall 2013 - Boris Glavic 832 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 833

Testing if an Attribute is Extraneous

W Consider a set F of functional dependencies and the functional

dependency a — B in F.

B To testif attribute A € o is extraneous in o

compute ({a} — A)* using the dependencies in F
check that ({a} — A)* contains B; if it does, A is extraneous in o

B To testif attribute A€ p is extraneous in B

compute a* using only the dependencies in
F'=(F ~{a =B} U{a =B - A},

check that a* contains A; if it does, A is extraneous in

@Silberschatz, Korth and Sudarshan

Canonical Cover

N

B A canonical cover for Fis a set of dependencies F_such that
Flogically implies all dependencies in F, and
F_logically implies all dependencies in F, and
No functional dependency in F, contains an extraneous attribute, and
Each left side of functional dependency in F is unique.
B To compute a canonical cover for F:
repeat
Use the union rule to replace any dependencies in £
. a; — By and a;, — B, with a; = B, B,
Find a functional dependency o — f with an
extraneous attribute either in o orin
/* Note: test for extraneous attributes done using £, not F*/
If an extraneous attribute is found, delete it from a. — p
until Fdoes not change
B Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©8425 - Fall 2013 - Boris Glavic 834 @Silberschatz, Korth and Sudarshan

N

©$425 - Fall 2013 - Boris Glavic 835

Computing a Canonical Cover

® R=(ABC)
F={A—BC

B—C

A—B

AB— C}
Combine A— BCand A — Binto A— BC

Setis now {A — BC, B— C, AB— C}
Ais extraneous in AB— C

Check if the result of deleting A from AB — C is implied by the other
dependencies

» Yes:infact, B— Cis already present!
Setis now {A — BC, B— C}
m Cis extraneous in A — BC

Check if A— Cis logically implied by A — B and the other dependencies
» Yes: using transitivity on A— B and B — C.
Can use attribute closure of A in more complex cases

W The canonical cover is: A—B
B—C

@Silberschatz, Korth and Sudarshan

Lossless Join-Decomposition
Dependency Preservation

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

N- So Far
[N —
B Theory of dependencies
B What is missing?
When is a decomposition loss-less
» Lossless-join decomposition
» Dependencies on the input are preserved
B What else is missing?
Define what constitutes a good relation
» Normal forms
How to check for a good relation
» Test normal forms
How to achieve a good relation
» Translate into normal form
» Involves decomposition

©8425 - Fall 2013 - Boris Glavic 8.37 @Silberschatz, Korth and Sudarshan

Example

m R=(ABC)
F={A—-B B—C)
Can be decomposed in two different ways
B R =(AB) R=(BC)
Lossless-join decomposition:
R, N R, ={Byand B— BC
Dependency preserving
m R=(AB), R=(AC)
Lossless-join decomposition:
R, N R, ={A}and A — AB

Not dependency preserving
(cannot check B — C without computing R, X R;)

©8425 - Fall 2013 - Boris Glavic 839 @Silberschatz, Korth and Sudarshan

NC Testing for Dependency Preservation

W To check if a dependency o — f is preserved in a decomposition
of Rinto Ry, Ry, ..., R, we apply the following test (with attribute
closure done with respect to F)

result=a
while (changes to result) do
for each R;in the decomposition
t=(resultn R)*N R;
result = result U t

If result contains all attributes in B, then the functional
dependency
a — f is preserved.

B We apply the test on all dependencies in F to check if a
decomposition is dependency preserving

W This procedure (attribute closure) takes polynomial time, instead of
the exponential time required to compute F*and (F, U F,U ... U
R

©8425 - Fall 2013 - Boris Glavic 841 @Silberschatz, Korth and Sudarshan

Lossless-join Decomposition

A2

W For the case of R = (R,, R,), we require that for all possible relation
instances ron schema R

r=[1as (r)X [1p(r)
A decomposition of Rinto R, and R, is lossless join if at least one of
the following dependencies is in F*:

R, N R, — R,
R, NR,— R,
The above functional dependencies are a sufficient condition for

lossless join decomposition; the dependencies are a necessary
condition only if all constraints are functional dependencies

CS425 - Fall 2013 - Boris Glavic 838 @Silberschatz, Korth and Sudarshan

N Dependency Preservation
| S —
B Let F;be the set of dependencies F * that include only attributes in
R.
» A decomposition is dependency preserving, if
(FRUFRU...UF,)*=F*

» If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is
expensive.

€425 - Fall 2013 - Boris Glavie 840 @Silberschatz, Korth and Sudarshan
N- Example
[~—ror
m R=(AB,C)
F={A—B
B— G}
Key = {A}

® Decomposition R, = (A, B), R,= (B, C)
Lossless-join decomposition
Dependency preserving

©S425 - Fall 2013 - Boris Glavic 842

@Silberschatz, Korth and Sudarshan

Normal Forms

modified from:

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

N- So Far
S—
B Theory of dependencies
B Decompositions and ways to check whether they are “good”
Lossless
Dependency preserving
B What is missing?
Define what constitutes a good relation
» Normal forms
How to check for a good relation
» Test normal forms
How to achieve a good relation
» Translate into normal form
» Involves decomposition

CS425 - Fall 2013 - Boris Glavic 844 @Silberschatz, Korth and Sudarshan

Goals of Normalization

W Let R be a relation scheme with a set F of functional dependencies.
B Decide whether a relation scheme Ris in “good” form.

B In the case that a relation scheme Ris not in “good” form,
decompose it into a set of relation scheme {R;, R,, ..., R} such that

each relation scheme is in good form
the decomposition is a lossless-join decomposition
Preferably, the decomposition should be dependency preserving.

©8425 - Fall 2013 - Boris Glavic 845 @Silberschatz, Korth and Sudarshan

N First Normal Form
| S —
B A domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:
» Set of names, composite attributes

» Identification numbers like CS101 that can be broken up into
parts

B Arelational schema R is in first normal form if the domains of all
attributes of R are atomic

® Non-atomic values complicate storage and encourage redundant
(repeated) storage of data

Example: Set of accounts stored with each customer, and set of
owners stored with each account

We assume all relations are in first normal form
(revisited in Chapter 22 of the textbook: Object Based Databases)

©8425 - Fall 2013 - Boris Glavic 846 @Silberschatz, Korth and Sudarshan

N First Normal Form (Cont’ d)

W Atomicity is actually a property of how the elements of the domain are
used.

Example: Strings would normally be considered indivisible
Suppose that students are given roll numbers which are strings of
the form CS0012 or EE1127

If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.

Doing so is a bad idea: leads to encoding of information in
application program rather than in the database.

©8425 - Fall 2013 - Boris Glavic 847 @Silberschatz, Korth and Sudarshan

N- Second Normal Form
[~—ror
B A relation schema Rin 1NF is in second normal form (2NF) iff

No non-prime attribute depends on parts of a candidate key
An attribute is non-prime if it does not belong to any candidate key for
R

©S425 - Fall 2013 - Boris Glavic 848

@Silberschatz, Korth and Sudarshan

Second Normal Form Example

®m R(A,B,C,D)
AB—-CD
A—-C
B—-D
{A,B} is the only candidate key

W Ris notin 2NF, because A->C where A is part of a candidate key and C
is not part of a candidate key

B Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID, InstrName,
StudentName)

Indication that we are putting stuff together that does not belong
together

©8425 - Fall 2013 - Boris Glavic 8.49 @Silberschatz, Korth and Sudarshan

2NF is What We Want?

W Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

A—-B,CD

C—-D
® {Name} is the only candidate key
H lisin 2NF

W However, as we have seen before | still has update redundancy that can
cause update anomalies

We repeat the budget of a department if there is more than one
instructor working for that department

©8425 - Fall 2013 - Boris Glavic 851 @Silberschatz, Korth and Sudarshan

Second Normal Form Interpretation

B Why is a dependency on parts of a candidate key bad?
That is why is a relation that is not in 2NF bad?

B 1) A dependency on part of a candidate key indicates potential for
redudancy

Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
StudentCWID — StudentName

If a student is advised by multiple instructors we record his name
several times

B 2) A dependency on parts of a candidate key shows that some
attributes are unrelated to other parts of a candidate key

That means the table should be split

CS425 - Fall 2013 - Boris Glavic 850 @Silberschatz, Korth and Sudarshan

N- Third Normal Form
| —
B Arelation schema Ris in third normal form (3NF) if for all:
a—> Bin F*
at least one of the following holds:
o — Bis trivial (i.e., BE a)
o is a superkey for R
Each attribute Ain g— o is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)

Alternatively,
Every attribute depends directly on a candidate key, i.e., for every

attribute A there is a dependency X — A, but no dependency Y — A
where Y is not a candidate key

©8425 - Fall 2013 - Boris Glavic 852 @Silberschatz, Korth and Sudarshan

3NF Example

B Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)

A—-B,CD

C—-D
B {Name} is the only candidate key
B lisin 2NF

W |is notin 3NF

©8425 - Fall 2013 - Boris Glavic 853 @Silberschatz, Korth and Sudarshan

N

Testing for 3NF

W Optimization: Need to check only FDs in F, need not check all FDs in
F*.

W Use attribute closure to check for each dependency a — B, if ais a
superkey.

W If o is not a superkey, we have to verify if each attribute in f is
contained in a candidate key of R

this test is rather more expensive, since it involve finding
candidate keys

testing for 3NF has been shown to be NP-hard

Interestingly, decomposition into third normal form (described
shortly) can be done in polynomial time

©S425 - Fall 2013 - Boris Glavic 854

@Silberschatz, Korth and Sudarshan

N 3NF Decomposition Algorithm

Let F, be a canonical cover for F;
i=0;

for each functional dependency o — gin F do
if none of the schemas R, 1 </ < icontains o g
then begin

end
if none of the schemas Flj, 1 =j =icontains a candidate key for R
then begin

+1;
any candidate key for R;

end
/* Optionally, remove redundant relations */

repeat
if any schema R;is contained in another schema Ry
then /* delete R, */

i2i1:
return (R, Ry, ..., R)

©8425 - Fall 2013 - Boris Glavic 8.55 @Silberschatz, Korth and Sudarshan

N 3NF Decomposition: An Example

B Relation schema:
cust_banker_branch = (customer_id, employee_id, branch_name, type)

W The functional dependencies for this relation schema are:

customer_id, employee_id — branch_name, type

employee_id — branch_name

customer_id, branch_name — employee_id
B We first compute a canonical cover

branch_name is extraneous in the r.h.s. of the 15t dependency

No other attribute is extraneous, so we get F =

customer_id, employee_id — type
employee_id — branch_name
customer_id, branch_name — employee_id

N© 3NF Decomposition Algorithm (Cont.)

B Above algorithm ensures:
each relation schema R;is in 3NF
decomposition is dependency preserving and lossless-join
Proof of correctness is at end of this presentation ()

CS425 - Fall 2013 - Boris Glavic 856 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 857 @Silberschatz, Korth and Sudarshan

N Another 3NF Example

W Relation dept_advisor:

dept_advisor (s_ID, i_ID, dept_name)
F ={s_ID, dept_name — i_ID,

i_ID — dept_name}
Two candidate keys: s_ID, dept_name, and i_ID, s_ID
Risin 3NF
» s_ID, dept_name — i ID s_ID
dept_name is a superkey
» i_ID— dept_name
dept_name is contained in a candidate key

©8425 - Fall 2013 - Boris Glavic 8.59 @Silberschatz, Korth and Sudarshan

NC 3NF Decompsition Example (Cont.)

B The for loop generates following 3NF schema:
(customer_id, employee_id, type)
(employee_id, branch_name)
(customer_id, branch_name, employee_id)
Observe that (customer_id, employee_id, type) contains a
candidate key of the original schema, so no further relation schema
needs be added

W At end of for loop, detect and delete schemas, such as (employee_id,
branch_name), which are subsets of other schemas

result will not depend on the order in which FDs are considered
B The resultant simplified 3NF schema is:
(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)

©8425 - Fall 2013 - Boris Glavic 858 @Silberschatz, Korth and Sudarshan

Redundancy in 3NF

N

B There is some redundancy in this schema dept_advisor (s_ID, i_ID,

dept_name)

B Example of problems due to redundancy in 3NF
R=(JKL) J|L|K
F={JK—L, L—>K} AR

b2 h| k
| bk
null | b | k

W repetition of information (e.g., the relationship /, k;)
(i_ID, dept_name)
M need to use null values (e.g., to represent the relationship
I, ky where there is no corresponding value for J).
(i_ID, dept_namel) if there is no separate relation mapping
instructors to departments

©8425 - Fall 2013 - Boris Glavic 860 @Silberschatz, Korth and Sudarshan

10

Boyce-Codd Normal Form

Arelation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F* of
the form
a—=f

where o C Rand C R, at least one of the following holds:

B o — g istrivial (ie., fC a)

B ais asuperkey for R
Example schema notin BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name— building, budget
holds on instr_dept, but dept_name is not a superkey

©8425 - Fall 2013 - Boris Glavic 861 @Silberschatz, Korth and Sudarshan

Testing for BCNF

B To check if a non-trivial dependency a—p causes a violation of BCNF
1. compute a* (the attribute closure of «), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.
m Simplified test: To check if a relation schema Ris in BCNF, it suffices
to check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.
If none of the dependencies in F causes a violation of BCNF, then
none of the dependencies in F* will cause a violation of BCNF
either.
B However, simplified test using only Fis incorrect when testing a
relation in a decomposition of R
Consider R =(A, B, C, D, E), with F={ A — B, BC — D}
» Decompose Rinto R, =(A,B) and R,=(A,C,D, E)
» Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R, satisfies
BCNF.
» In fact, dependency AC — Din F* shows R, is not in BCNF.

©8425 - Fall 2013 - Boris Glavic 863 @Silberschatz, Korth and Sudarshan

N. Decomposing a Schema into BCNF

W Suppose we have a schema R and a non-trivial dependency a—f
causes a violation of BCNF.

We decompose R into:
(aUp)
(R-(p-a))
W Inour example,
o = dept_name
B = building, budget
and inst_dept is replaced by
(o U B) = (dept_name, building, budget)
(R-(B-a))=(ID, name, salary, dept_name)

& BCNF and Dependency Preservation

W If arelation is in BCNF it is in 3NF

B Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation

Because it is not always possible to achieve both BCNF and
dependency preservation, we usually consider normally third normal
form.

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 8.65 @Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic 862

M- Testing Decomposition for BCNF

B To check if a relation R;in a decomposition of Ris in BCNF,
Either test R, for BCNF with respect to the restriction of F to R,
(that is, all FDs in F* that contain only attributes from R;)
or use the original set of dependencies F that hold on R, but with
the following test:
for every set of attributes o C R, check that o* (the
attribute closure of) either includes no attribute of R o,
or includes all attributes of R,
» If the condition is violated by some a— f8 in F, the
dependency
o= (ar-a) N A;
can be shown to hold on R, and R; violates BCNF.
» We use above dependency to decompose R;

©8425 - Fall 2013 - Boris Glavic 864 @Silberschatz, Korth and Sudarshan

BCNF Decomposition Algorithm

result:={R};
done = false;
compute F+;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin
let « — B be a nontrivial functional dependency that
holds on R; such that o — R;is notin F+,
andaNp =0;
result := (result—R;) U (R,—p) U (o, B);
end
else done = true;

Note: each R;is in BCNF, and decomposition is lossless-join.

©8425 - Fall 2013 - Boris Glavic 866 @Silberschatz, Korth and Sudarshan

11

N Example of BCNF Decomposition

® R=(ABC)
F={A—B
B¢
Key = {A}

B Risnotin BCNF (B— Cbut Bis not superkey)
m Decomposition

R, =(B,C)

R,=(AB)

©8425 - Fall 2013 - Boris Glavic 8.67 @Silberschatz, Korth and Sudarshan

Example of BCNF Decomposition

W class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)
B Functional dependencies:
course_id— title, dept_name, credits
building, room_number— capacity
course_id, sec_id, semester, year— building, room_number,
time_slot_id
B A candidate key {course_id, sec_id, semester, year}.

B BCNF Decomposition:
course_id— title, dept_name, credits holds
» but course_id is not a superkey.
We replace class by:
» course(course_id, title, dept_name, credits)

» class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

CS425 - Fall 2013 - Boris Glavic 8.68 @Silberschatz, Korth and Sudarshan

BCNF Decomposition (Cont.)

W courseis in BCNF
How do we know this?
W building, room_number— capacity holds on class-1
but {building, room_number} is not a superkey for class-1.
We replace class-1 by:
» classroom (building, room_number, capacity)

» section (course_id, sec_id, semester, year, building,
room_number, time_slot_id)

W classroom and section are in BCNF.

©8425 - Fall 2013 - Boris Glavic 8.69 @Silberschatz, Korth and Sudarshan

- BCNF and Dependency Preservation

Itis not always possible to get a BCNF decomposition that is
dependency preserving

® R=(JKL)
F={UK—L
L—K}

Two candidate keys = JK and JL

H Ris notin BCNF
B Any decomposition of R will fail to preserve
JK— L
This implies that testing for JK — L requires a join

©8425 - Fall 2013 - Boris Glavic 870 @Silberschatz, Korth and Sudarshan

N How good is BCNF?

B There are database schemas in BCNF that do not seem to be
sufficiently normalized

H Consider a relation
inst_info (ID, child_name, phone)

where an instructor may have more than one phone and can have
multiple children

[D [child_name | phone |
99999 David 512-555-1234
99999 William 512-555-4321
99999 Willian
inst_info
o425 - Fal 2013 - Bors lave an eSilberschatz, Korh and Sudarshan

How good is BCNF? (Cont.)

N

W There are no non-trivial functional dependencies and therefore the
relation is in BCNF
W Insertion anomalies —i.e., if we add a phone 981-992-3443 to 99999,
we need to add two tuples
(99999, David, 981-992-3443)
(99999, William, 981-992-3443)

©8425 - Fall 2013 - Boris Glavic 872 @Silberschatz, Korth and Sudarshan

12

E How good is BCNF? (Cont.)

W Therefore, it is better to decompose inst_info into:

\ D [child_name

inst_child 99999 David

99999 David

99999 William

99999 Willian

D I phone

) 512-555-1234
inst_phone 99999 512-555-4321

99999 512-555-1234

99999 512-556-4321

99999

This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.

©8425 - Fall 2013 - Boris Glavic 873 @Silberschatz, Korth and Sudarshan

Summary Normal Forms

B BCNF ->3NF ->2NF -> 1NF

m 1INF
atomic attributes
H 2NF
no non-trivial dependencies of non-prime attributes on parts of the
key
m 3NF
no transitive non-trivial dependencies on the key
B BCNF
only non-trivial dependencies on a superkey

©8425 - Fall 2013 - Boris Glavic 875 @Silberschatz, Korth and Sudarshan

N Comparison of BCNF and 3NF

W ltis always possible to decompose a relation into a set of relations
that are in 3NF such that:

the decomposition is lossless
the dependencies are preserved

W [tis always possible to decompose a relation into a set of relations
that are in BCNF such that:

the decomposition is lossless
it may not be possible to preserve dependencies.

CS425 - Fall 2013 - Boris Glavic 874 @Silberschatz, Korth and Sudarshan

Design Goals Revisited

B Goal for a relational database design is:
BCNF.
Lossless join.
Dependency preservation.

W If we cannot achieve this, we accept one of
Lack of dependency preservation
Redundancy due to use of 3NF

W Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)

B Even if we had a dependency preserving decomposition, using SQL we

would not be able to efficiently test a functional dependency whose left
hand side is not a key.

©8425 - Fall 2013 - Boris Glavic 876 @Silberschatz, Korth and Sudarshan

Multivalued Dependencies and 4NF,
5NF

modified from:

Database System Concepts, 6t" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

N

Multivalued Dependencies

B Suppose we record names of children, and phone numbers for
instructors:

inst_child(ID, child_name)
inst_phone(ID, phone_number)

W If we were to combine these schemas to get

inst_info(ID, child_name, phone_number)
Example data:
(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

W This relation is in BCNF

Why?

©S425 - Fall 2013 - Boris Glavic 878

@Silberschatz, Korth and Sudarshan

13

N Multivalued Dependencies (MVDs)

B Let Rbe arelation schema andleta C Rand p C R. The
multivalued dependency

o= f

holds on Rif in any legal relation r(R), for all pairs for tuples ¢, and t,
in rsuch that t,[o] = t,[a], there exist tuples t; and t, in r such that:

tlo] = ta] = f; [a] = 4 [o]

[B] = 4[p]
4R —pl= LIR —f]
4[] =

b
4R —pl= 4R -f]

—_
©8425 - Fall 2013 - Boris Glavic 879 @Silberschatz, Korth and Sudarshan

Example

W Let R be a relation schema with a set of attributes that are partitioned
into 3 nonempty subsets.

Y, ZWwW

B We say that Y =»=+ Z (Y multidetermines Z)
if and only if for all possible relations r (R)

<ynzyw,>Erand<y, z, W,>Er
then
<ypz,W,>€Erand<y, z, Wy >ETr
B Note that since the behavior of Zand W are identical it follows that
Y Zif Y>> W

©8425 - Fall 2013 - Boris Glavic 881 @Silberschatz, Korth and Sudarshan

MVD (Cont.)

A2

B Tabular representation of o =—

a 8 R-a-p
t1 ar...a; ﬂi+1...11]' ﬂj+1...[l"
b | ag...4; bi+1...h/' b]‘+1...bn
t3 ap...a; ﬂ,‘+1...11]' b]'+1...bn
t4 aj...a; bl‘+1...b]'

ﬂj+1...ﬂn

CS425 - Fall 2013 - Boris Glavic 880 @Silberschatz, Korth and Sudarshan

N Example (Cont.)
B Inour example:

ID —— child_name

1D —— phone_number

B The above formal definition is supposed to formalize the notion that given
a particular value of Y (/D) it has associated with it a set of values of Z
(child_name) and a set of values of W (phone_number), and these two
sets are in some sense independent of each other.

H Note:

If Y—Z then Y»— 2
Indeed we have (in above notation) Z, = Z,
The claim follows.

©8425 - Fall 2013 - Boris Glavic 882 @Silberschatz, Korth and Sudarshan

N Use of Multivalued Dependencies

B We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a
given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall
thus concern ourselves only with relations that satisfy a given
set of functional and multivalued dependencies.

W If arelation rfails to satisfy a given multivalued dependency, we can
construct a relations r’ that does satisfy the multivalued dependency
by adding tuples to r.

©8425 - Fall 2013 - Boris Glavic 883 @Silberschatz, Korth and Sudarshan

N

Theory of MVDs

B From the definition of multivalued dependency, we can derive the
following rule:

If o — B, then o ——>
That is, every functional dependency is also a multivalued dependency
B The closure D* of Dis the set of all functional and multivalued
dependencies logically implied by D.
We can compute D* from D, using the formal definitions of
functional dependencies and multivalued dependencies.

We can manage with such reasoning for very simple multivalued
dependencies, which seem to be most common in practice

For complex dependencies, it is better to reason about sets of
dependencies using a system of inference rules (see Appendix C).

©S425 - Fall 2013 - Boris Glavic 884

—->>
@Silberschatz, Korth and Sudarshan

14

E Fourth Normal Form

W A relation schema Ris in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D* of
the form a. —— 3, where o C Rand p C R, at least one of the following
hold:

o ——> B is trivial (i.e., pCaoraUp =R)
o is a superkey for schema R
B [f arelation is in 4NF it is in BCNF

—
©8425 - Fall 2013 - Boris Glavic 8.85 @silberschatz, Korth and Sudarshan

N 4NF Decomposition Algorithm
result: ={R};
done :=false;
compute D¥;

Let D; denote the restriction of D* to R;

while (not done)
if (there is a schema R; in result that is not in 4NF) then
begin
let & —=»—+ {3 be a nontrivial multivalued dependency that holds
on R, such that a — R; is not in D, and aNp=¢;
result := (result- R) U (R;- B) U (a, B);
end
else done:=true;

Note: each R;is in 4NF, and decomposition is lossless-join

—_

©8425 - Fall 2013 - Boris Glavic 8.87 @Silberschatz, Korth and Sudarshan

N© Restriction of Multivalued Dependencies
S—
M The restriction of D to R is the set D, consisting of
All functional dependencies in D* that include only attributes of R;
All multivalued dependencies of the form
a=— B NR)
where a CR; and o ——fis in D*

CS425 - Fall 2013 - Boris Glavic 886 @Silberschatz, Korth and Sudarshan

Example

B R=(AB,C GH,I
F={(A—>—B
B—— HI
CG——H}
W Ris notin 4NF since A—— Band A is not a superkey for R
m Decomposition
a) R, = (A, B) (R, is in 4NF)
b)R,=(A, C, G H,) (R, is not in 4NF, decompose into Ryand R,)
¢) Ry=(C, G, H) (Ry is in 4NF)
dR,=(AC G (R, is not in 4NF, decompose into Ry and Rg)
A —-— Band B—— HI & A —— HI, (MVD transitivity), and
and hence A ——= | (MVD restriction to R,)

e) Ry=(A) (Rsis in 4NF)
f)Rs= (A, C, G) (Rgisin 4NF)
425 Fll 2013 Bl Gl ass CSilbrsshatz Korth and Sudarshan

y Further Normal Forms

W Join dependencies generalize multivalued dependencies

lead to project-join normal form (PJNF) (also called fifth normal
form)

W A class of even more general constraints, leads to a normal form
called domain-key normal form.

W Problem with these generalized constraints: are hard to reason with,
and no set of sound and complete set of inference rules exists.

W Hence rarely used

©8425 - Fall 2013 - Boris Glavic 8.89 @Silberschatz, Korth and Sudarshan

Final Thoughts on Design Process

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

15

82

©S425 - Fall 2013 - Boris Glavic 891

Overall Database Design Process

B We have assumed schema Ris given

R could have been generated when converting an ER diagram to a
set of tables.

R could have been a single relation containing all attributes that are
of interest (called universal relation).

Normalization breaks R into smaller relations.

R could have been the result of some ad hoc design of relations,
which we then test/convert to normal form.

@Silberschatz, Korth and Sudarshan

ER Model and Normalization

A2

B When an ER diagram is carefully designed, identifying all entities
correctly, the tables generated from the ER diagram should not need
further normalization.

® However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of
the entity
Example: an employee entity with attributes
department_name and building,
and a functional dependency
department_name— building
Good design would have made department an entity
B Functional dependencies from non-key attributes of a relationship set
possible, but rare --- most relationships are binary

CS425 - Fall 2013 - Boris Glavic 892 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 893

Denormalization for Performance

B May want to use non-normalized schema for performance

For example, displaying prereqgs along with course_id, and title requires
join of course with prereq

W Alternative 1: Use denormalized relation containing attributes of course
as well as prereq with all above attributes

faster lookup
extra space and extra execution time for updates
extra coding work for programmer and possibility of error in extra code

B Alternative 2: use a materialized view defined as
course prereq

Benefits and drawbacks same as above, except no extra coding work
for programmeer and avoids possible errors

@Silberschatz, Korth and Sudarshan

N Other Design Issues
| S —
B Some aspects of database design are not caught by normalization
B Examples of bad database design, to be avoided:
Instead of earnings (company_id, year, amount), use
earnings_2004, earnings_2005, earnings_2006, etc., all on the
schema (company._id, earnings).

» Above are in BCNF, but make querying across years difficult and
needs new table each year

company._year (company._id, earnings_2004, earnings_2005,
earnings_2006)

» Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.

» Is an example of a crosstab, where values for one attribute
become column names

» Used in spreadsheets, and in data analysis tools

©8425 - Fall 2013 - Boris Glavic 894 @Silberschatz, Korth and Sudarshan

N

8425 - Fal

Recap
B Functional and Multi-valued Dependencies
Axioms
Closure

Minimal Cover

Attribute Closure
B Redundancy and lossless decomposition
® Normal-Forms

1NF, 2NF, 3NF

BCNF

4NF, 5NF

i1 2013 - Boris Glavie 8.95 @Silberschatz, Korth and Sudarshan

End of Chapter

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

16

Proof of Correctness of 3NF
Decomposition Algorithm

modified from:

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

N Correctness of 3NF Decomposition
— Algorithm

B 3NF decomposition algorithm is dependency preserving (since there
is a relation for every FD in F)

W Decomposition is lossless
A candidate key (C) is in one of the relations R;in decomposition
Closure of candidate key under F, must contain all attributes in
R.

Follow the steps of attribute closure algorithm to show there is
only one tuple in the join result for each tuple in R;

CS425 - Fall 2013 - Boris Glavic 8.98 @Silberschatz, Korth and Sudarshan

N Correctness of 3NF Decomposition
— Algorithm (Cont’ d.)

Claim: if a relation R;is in the decomposition generated by the

above algorithm, then R; satisfies 3NF.

B Let R;be generated from the dependency o — f

W Lety — B be any non-trivial functional dependency on R, (We need only
consider FDs whose right-hand side is a single attribute.)

B Now, Bcan be in either or a but not in both. Consider each case
separately.

©8425 - Fall 2013 - Boris Glavic 899 @Silberschatz, Korth and Sudarshan

N Correctness of 3NF Decomposition
— (Cont’d.)

H Case1:If Binp:
If y is a superkey, the 2nd condition of 3NF is satisfied
Otherwise o must contain some attribute not in y

Since y — Bis in F* it must be derivable from F,, by using attribute
closure on y.

Attribute closure not have used o —p. If it had been used, a must
be contained in the attribute closure of y, which is not possible, since
we assumed y is not a superkey.

Now, using a— (B- {B}) and y — B, we can derive a —B

(since y C o. B, and B & y since y — Bis non-trivial)

Then, Bis extraneous in the right-hand side of a —f; which is not
possible since o —f is in F.

Thus, if Bis in p then y must be a superkey, and the second
condition of 3NF must be satisfied.

©8425 - Fall 2013 - Boris Glavic 8.100 @Silberschatz, Korth and Sudarshan

N Correctness of 3NF Decomposition
— (Cont’ d.)

B Case2: Bisina.

Since o is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.

In fact, we cannot show that y is a superkey.

This shows exactly why the third alternative is present in the
definition of 3NF.

©8425 - Fall 2013 - Boris Glavic 8101 @Silberschatz, Korth and Sudarshan

Figure 8.02

ID | name salary | dept_name | building | budget
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter | 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. | Taylor 85000
76766 | Crick 72000 | Biology Watson 90000

10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000

15151 | Mozart 40000 | Music Packard | 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter | 120000
5425 - Fall 2013 - Borls Gilavic s02 silberschatz, Korth and Sudarshan

17

425 - Fall 2013 - Boris Glavic

Figure 8.03

D name_| street city salary

57766 | Kim | Main
98776 | Kim | North

Perryridge | 75000
Hampton | 67000

employee
1D [name name | street city salary
57766 | Kim Kim | Main | Perryridge | 75000
98776 | Kim Kim | North | Hampton | 67000
\ walburdl /mn‘/
ID_| name | street | ity salary
57766| Kim | Main | Perryridge | 75000
57766 | Kim North | Hampton 67000
98776 Kim | Main | Perryridge | 75000
98776 | Kim North | Hampton 67000
8103

@Silberschatz, Korth and Sudarshan

©5425 - Fall 2013 - B

Figure 8.05

building | room_number | capacity
Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

8105

@Silberschatz, Korth and Sudarshan

5425 - Fall 2013 - Boris Glavic

Figure 8.14

dept_name]_ID_| _street Gity
Physics | 22222 | North | Rye
Physics | 22222 | Main | Manchester
Finance | 12121 | Lake | Horseneck
807

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 8.04

8.104

@Silberschatz, Korth and Sudarshan

Figure 8.06

department
dept_name
building
budget
instructor
ID dept_advisor
name
salary

©8425 - Fall 2013 - Boris Glavic

8.106

student
D
name
tot_cred

@Silberschatz, Korth and Sudarshan

Figure 8.15

©S425 - Fall 2013 - Boris Glavic

dept_name| 1D | street i

Physics | 22222 | North | Rye

Math [22222 | Main este
6108

@Silberschatz, Korth and Sudarshan

Figure 8.17

AlB|cC

ol b e

a| b |c
b |«
b;

425 - Fall 2013 - Boris Glavic 8109

@Silberschatz, Korth and Sudarshan

19

Chapter 9: Transactions

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Chapter 9: Transactions

Transaction Concept
Transaction State
Concurrent Executions
Serializability

Recoverability
Implementation of Isolation
Transaction Definition in SQL

Testing for Serializability.

©8425 - Fall 2013 - Boris Glavic 92 @Silberschatz, Korth and Sudarshan

82

Transaction Concept

W A transaction is a unit of program execution that accesses and
possibly updates various data items.
B E.g. transaction to transfer $50 from account A to account B:
1. read(A)
2. A=A-50
3. write(A)
4. read(B)
5. B:==B+50
6. write(B)
B Two main issues to deal with:
Recovery: Failures of various kinds, such as hardware failures
and system crashes
Concurrent: execution of multiple transactions

©8425 - Fall 2013 - Boris Glavic 93 @Silberschatz, Korth and Sudarshan

Example of Fund Transfer

B Transaction to transfer $50 from account A to account B:
. read(A)

A=A-50

. write(A)

. read(B)

. B:=B+50

. write(B)

® Atomicity requirement

[RN SRR

=)

if the transaction fails after step 3 and before step 6, money will be “lost”
leading to an inconsistent database state
» Failure could be due to software or hardware
the system should ensure that updates of a partially executed transaction
are not reflected in the database
W Durability requirement — once the user has been notified that the transaction

has completed (i.e., the transfer of the $50 has taken place), the updates to the
database by the transaction must persist even if there are software or
hardware failures.

©8425 - Fall 2013 - Boris Glavic 94 @Silberschatz, Korth and Sudarshan

N Example of Fund Transfer (Cont.)

B Transaction to transfer $50 from account A to account B:

1. read(A)
A=A-50
write(A)
read(B)
B:=B+50

6. write(B)
B Consistency requirement in above example:

the sum of A and B is unchanged by the execution of the transaction
B In general, consistency requirements include
» Explicilly specified integrity constraints such as primary keys and foreign
eys

o s wN

» Implicit integrity constraints

e.g. sum of balances of all accounts, minus sum of loan amounts
must equal value of cash-in-hand

A transaction must see a consistent database.
During transaction execution the database may be temporarily inconsistent.

When the transaction completes successfully the database must be
consistent

» Erroneous transaction logic can lead to inconsistency

©8425 - Fall 2013 - Boris Glavic 95 @Silberschatz, Korth and Sudarshan

Example of Fund Transfer (Cont.)

W Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated database, it
will see an inconsistent database (the sum A + B will be less than it
should be).

T T2

. read(A)
2. Ai=A-50
. write(A)

w

read(A), read(B), print(A+B)
4. read(B)
5. B:==B+50
. write(B
W |solation can be ensured trivially by running transactions serially
that is, one after the other.

B However, executing multiple transactions concurrently has significant
benefits, as we will see later.

o

©8425 - Fall 2013 - Boris Glavic 96 @Silberschatz, Korth and Sudarshan

ACID Properties Transaction State

A transaction is a unit of program execution that accesses and possibly B Active - the initial state; the transaction stays in this state while it is
updates various data items.To preserve the integrity of data the database executing
system must ensure: B Partially committed — after the final statement has been executed.
W Atomicity. Either all operations of the transaction are properly reflected B Failed - after the discovery that normal execution can no longer
in the database or none are. proceed.
B Consistency. Execution of a transaction in isolation preserves the B Aborted — after the transaction has been rolled back and the
consistency of the database. database restored to its state prior to the start of the transaction.
B Isolation. Although multiple transactions may execute concurrently, Two options after it has been aborted:
each transaction must be unaware of other concurrently executing restart the transaction

transactions. Intermediate transaction results must be hidden from other . . .
concurrently executed transactions » can be done only if no internal logical error

That is, for every pair of transactions T;and T, it appears to T; that kill the transacion

either T, finished execution before T, started, or T} started execution B Committed - after successful completion.
after T, finished.
B Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

©S425 - Fall 2013 - Boris Glavic 97 @Silberschatz, Korth and Sudarshan ©8425 - Fall 2013 - Boris Glavic 98 @Silberschatz, Korth and Sudarshan

Transaction Model Transaction State (Cont.)

W Operations

Read(A) — read value of data item A

partially
Write(A) — write a new value of data item A committed,
Commit — commit changes of the transaction
Abort — Revert changes made by the transaction
B Data ltems
Objects in the data base

Usually we consider tuples (rows) or disk pages

5425 - Fall 2013 - Boris Glavic 99 @Silberschatz, Korth and Sudarshan 5425 - Fal 2013 - Boris Glavic 910 @silberschatz, Korth and Sudarshan
N Concurrent Executions N- Schedules
[N— [~—ror
B Multiple transactions are allowed to run concurrently in the system. B Schedule — a sequences of instructions that specify the chronological
Advantages are: order in which instructions of concurrent transactions are executed
increased processor and disk utilization, leading to better a schedule for a set of transactions must consist of all instructions
transaction throughput of those transactions
» E.g. one transaction can be using the CPU while another is must preserve the order in which the instructions appear in each
reading from or writing to the disk individual transaction.
» In multi-processor systems each statement can use one or B A transaction that successfully completes its execution will have a
more CPUs commit instructions as the last statement
reduced average response time for transactions: short by default transaction assumed to execute commit instruction as its
transactions need not wait behind long ones. last step
B Concurrency control schemes — mechanisms to achieve isolation B A transaction that fails to successfully complete its execution will have
that is, to control the interaction among the concurrent an abort instruction as the last statement
transactions in order to prevent them from destroying the
consistency of the database
5425 - Fall 2013 - Boris Glavic o1 @Silberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavie 912 ©Silberschatz, Korth and Sudarshan

@ Schedule 1

B Let T, transfer $50 from Ato B, and T, transfer 10% of the
balance from Ato B.

B A serial schedule in which T, is followed by T, :

T, T,

read (A)

A:=A-50

write (A)

read (B)

B:=B+50

write (B)

commit
read (A)
temp = A*0.1
A=A -temp
write (A)
read (B)
B =B+ temp
write (B)
commit

CS425 - Fall 2013 - Boris Glavic 913 ©Silberschatz, Korth and Sudarshan

& Schedule 2

* A serial schedule where T, is followed by T,

T, T,
read (A)
temp :=A*0.1
= A - temp
write (A)
read (B)
B =B + temp
write (B)
commit
read (A)
A=A-50
write (A)
read (B)
B:=B+50
write (B)
commit
©S425 - Fall 2013 - Boris Glavic 914 ©Silberschatz, Korth and Sudarshan

Schedule 3

A2

B Let T, and T, be the transactions defined previously. The
following schedule is not a serial schedule, but it is equivalent
to Schedule 1.

T, T,
read (A)

A=A=-50
write (A)

read (A)

write (A)
read (B)
B:=B+50
write (B)
commit
read (B)
B:=B+temp
write (B)
commit

In Schedules 1, 2 and 3, the sum A + B is preserved.

©8425 - Fall 2013 - Boris Glavic 915 @Silberschatz, Korth and Sudarshan

@ Schedule 4

W The following concurrent schedule does not preserve the
value of (A + B).

Serializability

B Basic Assumption — Each transaction preserves database
consistency.

W Thus serial execution of a set of transactions preserves
database consistency.

B A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability
2. view serializability

©S425 - Fall 2013 - Boris Glavic 917 @Silberschatz, Korth and Sudarshan

T T,
read (A)
A=A-50
read (A)
temp :=A*0.1
A=A-temp
write (A)
read (B)
write (4)
read (B)
B :=B+50
write (B)
commit
B =B+ temp
write (B)
commit
©5425 - Fall 2013 - Boris Glavie 916 ©Silberschatz, Korth and Sudarshan
N- Simplified view of transactions

We ignore operations other than read and write
instructions

We assume that transactions may perform arbitrary
computations on data in local buffers in between reads

and writes.
Our simplified schedules consist of only read and write
instructions.
©5425 - Fall 2013 - Boris Glavie 918 @Silberschatz, Korth and Sudarshan

Conflicting Instructions

82

B Instructions /;and /;of transactions T; and T, respectively, conflict
if and only if there exists some item Q accessed by both /;and /,
and at least one of these instructions wrote Q.

1. l;=read(Q), |, = read(Q). /;and /;don’t conflict.
2. l;=read(Q), I;=write(Q). They conflict.
3. /= write(Q), ;= read(Q). They conflict
4. ;= write(Q), | = write(Q). They conflict

B Intuitively, a conflict between /;and /; forces a (logical) temporal
order between them.

If J;and /; are consecutive in a schedule and they do not
conflict, their results would remain the same even if they had
been interchanged in the schedule.

©8425 - Fall 2013 - Boris Glavic 919 @Silberschatz, Korth and Sudarshan

Conflict Serializability (Cont.)

B Schedule 3 can be transformed into Schedule 6, a serial
schedule where T, follows T;, by series of swaps of non-
conflicting instructions. Therefore Schedule 3 is conflict
serializable.

T T, T, T,
reaf: (?/i) read (A)
write .
read (A) w,”;e gq)
write (A) read (B)
write (B)
read (B) rez{d (A)
write (B) write (A)
read (B) read (B)
write (B) write (B)
Schedule 3 Schedule 6
CS425 - Fall 2013 - Boris Giavie 021 cSilberschatz, Korth and Sudarshan

A2

CS425 - Fall 2013 - Boris Glavic 920

Conflict Serializability

B If a schedule S can be transformed into a schedule S”by a series of
swaps of non-conflicting instructions, we say that Sand S”are
conflict equivalent.

That is the order of each pair of conflicting operations in S and S
is the same

B We say that a schedule Sis conflict serializable if it is conflict
equivalent to a serial schedule

@Silberschatz, Korth and Sudarshan

N

N View Serializability

B Let Sand S’be two schedules with the same set of transactions. S
and S’ are view equivalent if the following three conditions are met,
for each data item Q,

If in schedule S, transaction T; reads the initial value of Q, then in
schedule S’ also transaction T; must read the initial value of Q.
If in schedule S transaction T; executes read(Q), and that value
was produced by transaction T; (if any), then in schedule S” also
transaction T; must read the value of Q that was produced by the
same write(Q) operation of transaction T;.

The transaction (if any) that performs the final write(Q) operation
in schedule S must also perform the final write(Q) operation in
schedule S’.

As can be seen, view equivalence is also based purely on reads and
writes alone.

©8425 - Fall 2013 - Boris Glavic 923 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 922

Conflict Serializability (Cont.)

W Example of a schedule that is not conflict serializable:

T3 T,
read (Q)
write (Q)
write (Q)

B We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T;, T, >, or the serial
schedule < T, T3>.

@Silberschatz, Korth and Sudarshan

N

©S425 - Fall 2013 - Boris Glavic 924

View Serializability (Cont.)

B Aschedule Sis view serializable if it is view equivalent to a serial
schedule.

W Every conflict serializable schedule is also view serializable.
W Below is a schedule which is view-serializable but not conflict

serializable.
T, Ty Ty
read (Q)
write (Q)
write (Q)
write (Q)

B What serial schedule is above equivalent to?

B Every view serializable schedule that is not conflict serializable has
blind writes.

@Silberschatz, Korth and Sudarshan

Other Notions of Serializability

82

B The schedule below produces same outcome as the serial
schedule < T;, T; >, yet is not conflict equivalent or view
equivalent to it.

T; Ts

read (A)

A=A-50

write (A)
read (B)
B:=B-10
write (B)

read (B)

B:=B+50

write (B)
read (A)
A=A+10
write (A)

B Determining such equivalence requires analysis of operations
other than read and write.

©8425 - Fall 2013 - Boris Glavic 925 @Silberschatz, Korth and Sudarshan

Testing for Serializability

B Consider some schedule of a set of transactions T;, T, ..., T,

B Precedence graph — a directed graph where the vertices
are the transactions (names).

m We draw an arc from T;to T;if the two transaction conflict,
and T, accessed the data item on which the conflict arose
earlier.

B We may label the arc by the item that was accessed.

Example 1

©8425 - Fall 2013 - Boris Glavic 926 @Silberschatz, Korth and Sudarshan

Test for Conflict Serializability

W A schedule is conflict serializable if and only °
if its precedence graph is acyclic.

W Cycle-detection algorithms exist which take ‘ °
order n? time, where n is the number of
vertices in the graph. °
(Better algorithms take order n + e
where e is the number of edges.) Ll
W If precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.
This is a linear order consistent with the
partial order of the graph.
For example, a serializability order for
Schedule A would be
Ts=T—>T—>T,->T,
» Are there others? @

00

©8425 - Fall 2013 - Boris Glavic 927 @Silberschatz, Korth and Sudarshan

Test for View Serializability

N

B The precedence graph test for conflict serializability cannot be used
directly to test for view serializability.

Extension to test for view serializability has cost exponential in the
size of the precedence graph.

W The problem of checking if a schedule is view serializable falls in the
class of NP-complete problems.

Thus existence of an efficient algorithm is extremely unlikely.

B However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

©8425 - Fall 2013 - Boris Glavic 928 @Silberschatz, Korth and Sudarshan

y Recoverable Schedules

Need to address the effect of transaction failures on concurrently

running transactions.

B Recoverable schedule — if a transaction T;reads a data item
previously written by a transaction T;, then the commit operation of T;
appears before the commit operation of ;.

B The following schedule (Schedule 11) is not recoverable if T, commits
immediately after the read

Ty Ty
read (A)
write (A)
read (A)
commit
read (B)

W If Ty should abort, Ty would have read (and possibly shown to the user)
an inconsistent database state. Hence, database must ensure that
schedules are recoverable.

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 929

N

Cascading Rollbacks

B Cascading rollback — a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

T Ty Ty,
read (A)
read (B)
write (A)
read (A)
write (A)
read (A)
abort

If Ty, fails, T,; and T,, must also be rolled back.
B Can lead to the undoing of a significant amount of work

©8425 - Fall 2013 - Boris Glavic 930 @Silberschatz, Korth and Sudarshan

Cascadeless Schedules

B Cascadeless schedules — cascading rollbacks cannot occur; for
each pair of transactions T;and T;such that T; reads a data item
previously written by T, the commit operation of 7, appears before the
read operation of T,

W Every cascadeless schedule is also recoverable

B ltis desirable to restrict the schedules to those that are cascadeless

©8425 - Fall 2013 - Boris Glavic 931 @Silberschatz, Korth and Sudarshan

Concurrency Control

B A database must provide a mechanism that will ensure that all possible
schedules are

either conflict or view serializable, and
are recoverable and preferably cascadeless

W A policy in which only one transaction can execute at a time generates
serial schedules, but provides a poor degree of concurrency

Are serial schedules recoverable/cascadeless?
B Testing a schedule for serializability after it has executed is a little too

late!
B Goal - to develop concurrency control protocols that will assure
serializability.
©5425 - Fall 2013 - Boris Glavic 932 GSilberschatz, Korth and Sudarshan

Concurrency Control (Cont.)

B Schedules must be conflict or view serializable, and recoverable,
for the sake of database consistency, and preferably cascadeless.

B A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of
concurrency.

W Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they
incur.

B Some schemes allow only conflict-serializable schedules to be
generated, while others allow view-serializable schedules that are
not conflict-serializable.

©8425 - Fall 2013 - Boris Glavic 933 @Silberschatz, Korth and Sudarshan

&: Concurrency Control vs. Serializability Tests

B Concurrency-control protocols allow concurrent schedules, but ensure
that the schedules are conflict/view serializable, and are recoverable
and cascadeless .

m Concurrency control protocols generally do not examine the
precedence graph as it is being created

Instead a protocol imposes a discipline that avoids nonseralizable
schedules.
We study such protocols in Chapter 10.

| Different concurrency control protocols provide different tradeoffs
between the amount of concurrency they allow and the amount of
overhead that they incur.

W Tests for serializability help us understand why a concurrency control
protocol is correct.

©8425 - Fall 2013 - Boris Glavic 934 @Silberschatz, Korth and Sudarshan

N Weak Levels of Consistency

B Some applications are willing to live with weak levels of consistency,
allowing schedules that are not serializable

E.g. a read-only transaction that wants to get an approximate total
balance of all accounts

E.g. database statistics computed for query optimization can be
approximate (why?)

Such transactions need not be serializable with respect to other
transactions

W Tradeoff accuracy for performance

©8425 - Fall 2013 - Boris Glavic 935 @Silberschatz, Korth and Sudarshan

NE Levels of Consistency in SQL-92

W Serializable — default

B Repeatable read — only committed records to be read, repeated
reads of same record must return same value. However, a
transaction may not be serializable — it may find some records
inserted by a transaction but not find others.

B Read committed — only committed records can be read, but
successive reads of record may return different (but committed)
values.

B Read uncommitted — even uncommitted records may be read.

B Lower degrees of consistency useful for gathering approximate
information about the database

B Warning: some database systems do not ensure serializable
schedules by default

E.g. Oracle and PostgreSQL by default support a level of
consistency called snapshot isolation (not part of the SQL
standard)

©8425 - Fall 2013 - Boris Glavic 936 @Silberschatz, Korth and Sudarshan

E Transaction Definition in SQL

M Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

W In SQL, a transaction begins implicitly.
W A transaction in SQL ends by:

Commit work commits current transaction and begins a new
one.

Rollback work causes current transaction to abort. End Of Chapter 1 0
B In almost all database systems, by default, every SQL statement
also commits implicitly if it executes successfully
Implicit commit can be turned off by a database directive
» E.g.in JDBC, connection.setAutoCommit(false);

modified from:

Database System Concepts, 6" Ed
@Silberschatz, Korth and Sudarshan

ee for conditions on re-use

©S425 - Fall 2013 - Boris Glavic 937 ©Silberschatz, Korth and Sudarshan

Recap

A2

Figure 14.01

B Transactions

ACID — Properties
B Schedules

Serial

partially
committed

Equivalence
» Conflict-equivalent
» View-equivalent
Serializability
» = Equivalent to a serial schedule
Recoverable
Cascading Aborts

©8425 - Fall 2013 - Boris Glavic 939 @Silberschatz, Korth and Sudarshan ©8425 - Fall 2013 - Boris Glavic 9.0 @Silberschatz, Korth and Sudarshan

W Transactions in SQL

Figure 14.02 Figure 14.03
T] TZ
i T, read (A)
read (A) temp :=A*0.1
A=A-50 A=A -temp
write (A) write (A)
read (B) read (B)
B:=B+50 B =B+ temp
write (B) write (B)
commit commit
read (4) . read (A)
temp = A*0.1 A=A—50
A= A-temp)
write (A) write (4)
read (B) read (B)
B:=B+temp B:=B+50
write (B) write (B)
commit commit
©S425 - Fall 2013 - Boris Glavic 941 ©Silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavie %2 ©@Silberschatz, Korth and Sudarshan

N Figure 14.04

T; T,

read (A)

A=A-50

write (A)
read (A)
temp = A*0.1
A= A-temp
write (A)

read (B)

B:=B+50

write (B)

commit
read (B)
B:=B+ temp
write (B)
commit

425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

N Figure 14.05

T T,

read (A)

A=A-50
read (A)
temp = A*0.1
A=A-temp
write (A)
read (B)

write (4)

read (B)

B:=B+50

write (B)

commit
B:=B+temp
write (B)
commit

©S425 - Fall 2013 - Boris Glavic 544

@Silberschatz, Korth and Sudarshan

Figure 14.06

T; T,
read (A)
write (A)
read (A)
write (A)
read (B)
write (B)
read (B)
write (B)

8425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

Figure 14.07

T, T,
read (A)
write (A)
read (A)
read (B)
write (A)
write (B)
read (B)
write (B)
8425 - Fall 2013 - Bors Glavic 04

@Silberschatz, Korth and Sudarshan

Figure 14.08

T T,

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)

425 - Fall 2013 - Boris Glavic

@Silberschatz, Korth and Sudarshan

Figure 14.09

T3 T,

read (Q)
write (Q)

write (Q)

©S425 - Fall 2013 - Boris Glavic 9.8

@Silberschatz, Korth and Sudarshan

A2 Figure 14.10 X Figure 14.11

(a) (b)

425 - Fall 2013 - Boris Glavic 949 @Silberschatz, Korth and Sudarshan ©8425 - Fall 2013 - Boris Glavic 950 @Silberschatz, Korth and Sudarshan

Figure 14.12 Figure 14.13

oo s |
e read (A)

A=A-50
write (A)
(@) read (B)

B:=B-10
write (B)

read (B)

B:=B+50

write (B)
read (A)
A=A+10

° ° write (A)
®) ©
©$425 - Fall 2013 - Boris Glavic 951 ©Silberschatz, Korth and Sudarshan ©5425 - Fall 2013 - Boris Glavic 952 ©Silberschatz, Korth and Sudarshan

N Figure 14.14 N Figure 14.15

Ty | T, Tzo Ty Ty

rea-d (A) read (A)
write (A) 4 read (B)
Zf);n(m) write (A)
read (B) read (A)
write (A)

read (A)
abort

©S425 - Fall 2013 - Boris Glavic 953 @Silberschatz, Korth and Sudarshan ©S425 - Fall 2013 - Boris Glavic 954 @Silberschatz, Korth and Sudarshan

Figure 14.16

5

425 - Fall 2013 - Boris Glavic 955

@Silberschatz, Korth and Sudarshan

10

Chapter 10 : Concurrency Control

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

NZ Chapter 10: Concurrency Control

Lock-Based Protocols
Timestamp-Based Protocols
Validation-Based Protocols
Multiple Granularity
Multiversion Schemes

Insert and Delete Operations

Concurrency in Index Structures

©8425 - Fall 2013 - Boris Glavic 102 @Silberschatz, Korth and Sudarshan

@ Intuition of Lock-based Protocols

W Transactions have to acquire locks on data items before accessing them

W If alock is hold by one transaction on a data item this restricts the ability
of other transactions to acquire locks for that data item

W By locking a data item we want to ensure that no access to that data
item is possible that would lead to non-serializable schedules

W The trick is to design a lock model and protocol that guarantees that

W Lock-based concurrency protocols are a form of pessimistic
concurrency control mechanism
We avoid ever getting into a state that can lead to a non-serializable
schedule
B Alternative concurrency control mechanism do not avoid conflicts, but
determine later on (at commit time) whether committing a transaction
would cause a non-serializable schedule to be generated

Optimistic concurrency control mechanism

©8425 - Fall 2013 - Boris Glavic 103 @Silberschatz, Korth and Sudarshan

N Lock-Based Protocols

| S —

B Alock is a mechanism to control concurrent access to a data item
B Data items can be locked in two modes :

. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

N

. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

W Lock requests are made to concurrency-control manager.
Transaction do not access data items before having acquired a lock on
that data item
Transactions release their locks on a data item only after they have
accessed a data item

©8425 - Fall 2013 - Boris Glavic 104 @Silberschatz, Korth and Sudarshan

N Lock-Based Protocols (Cont.)

B Lock-compatibility matrix
S X

S | true | false

X | false | false

W A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

B Any number of transactions can hold shared locks on an item,

but if any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item.
B If alock cannot be granted, the requesting transaction is made to wait till
all incompatible locks held by other transactions have been released.
The lock is then granted.

©$425 - Fall 2013 - Boris Glavic 105

@Silberschatz, Korth and Sudarshan

NE Lock-Based Protocols (Cont.)

B Example of a transaction performing locking:
T,: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)
B Locking as above is not sufficient to guarantee serializability — if Aand B

get updated in-between the read of A and B, the displayed sum would be
wrong.
B A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

©8425 - Fall 2013 - Boris Glavic 106 @Silberschatz, Korth and Sudarshan

Pitfalls of Lock-Based Protocols

82

W Consider the partial schedule

TJ TA}

lock-x (B)

read (B)

B=B-50

wrile (B)
lock-s ()
read (A)
lock-s (B)

lock-x (A)

® Neither T;nor T, can make progress — executing lock-S(B) causes T,
to wait for T to release its lock on B, while executing lock-X(A) causes
T, to wait for T, to release its lock on A.
B Such a situation is called a deadlock.
To handle a deadlock one of T;or T, must be rolled back
and its locks released.

©8425 - Fall 2013 - Boris Glavic 107 @Silberschatz, Korth and Sudarshan

Pitfalls of Lock-Based Protocols (Cont.)

W The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

W Starvation is also possible if the concurrency control manager is
badly designed. For example:

A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock
on the same item.

The same transaction is repeatedly rolled back due to deadlocks.
B Concurrency control managers can be designed to prevent starvation.

©8425 - Fall 2013 - Boris Glavic 108 @Silberschatz, Korth and Sudarshan

NE The Two-Phase Locking Protocol

W This is a protocol which ensures conflict-serializable schedules.
B Phase 1: Growing Phase
transaction may obtain locks
transaction may not release locks
B Phase 2: Shrinking Phase
transaction may release locks
transaction may not obtain locks
W The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.
the point where a transaction acquired its final lock).

©8425 - Fall 2013 - Boris Glavic 109 @Silberschatz, Korth and Sudarshan

N The Two-Phase Locking Protocol (Cont.)

B Two-phase locking does not ensure freedom from deadlocks

B Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking. Here
a transaction must hold all its exclusive locks till it commits/aborts.

W Rigorous two-phase locking is even stricter: here all locks are held
till commit/abort. In this protocol transactions can be serialized in the
order in which they commit.

©8425 - Fall 2013 - Boris Glavic 10.10

@Silberschatz, Korth and Sudarshan

The Two-Phase Locking Protocol (Cont.)

B There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

W However, in the absence of extra information (e.g., ordering of access
to data), two-phase locking is needed for conflict serializability in the
following sense:

Given a transaction T; that does not follow two-phase locking, we can
find a transaction T; that uses two-phase locking, and a schedule for T;
and T;that is not conflict serializable.

©8425 - Fall 2013 - Boris Glavic 1011 @Silberschatz, Korth and Sudarshan

N- Lock Conversions
S—
B Two-phase locking with lock conversions:
— First Phase:
can acquire a lock-S on item
can acquire a lock-X on item
can convert a lock-S to a lock-X (upgrade)
— Second Phase:
can release a lock-S
can release a lock-X
can convert a lock-X to a lock-S (downgrade)

W This protocol assures serializability. But still relies on the programmer to
insert the various locking instructions.

©8425 - Fall 2013 - Boris Glavic 10.12 @Silberschatz, Korth and Sudarshan

N Automatic Acquisition of Locks

W Atransaction T, issues the standard read/write instruction, without
explicit locking calls.
W The operation read(D) is processed as:
if T;has alock on D
then
read(D)
else begin
if necessary wait until no other
transaction has a lock-X on D
grant T;a lock-S on D;
read(D)
end

©$425 - Fall 2013 - Boris Glavic 10.13

@Silberschatz, Korth and Sudarshan

& Automatic Acquisition of Locks (Cont.)

W write(D) is processed as:
if T,has a lock-X on D
then
write(D)
else begin
if necessary wait until no other trans. has any lock on D,
if T;has a lock-S on D
then
upgrade lock on D to lock-X
else
grant T;a lock-X on D
write(D)
end;
Al locks are released after commit or abort

CS425 - Fall 2013 - Boris Glavic 10.14

Implementation of Locking

B Alock manager can be implemented as a separate process to which
transactions send lock and unlock requests

W The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)

B The requesting transaction waits until its request is answered

B The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

B The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

©8425 - Fall 2013 - Boris Glavic 10.15 @Silberschatz, Korth and Sudarshan

N Graph-Based Protocols

W Graph-based protocols are an alternative to two-phase locking

B Impose a partial ordering — on the set D ={d,, d, ,..., d;} of all data
items.

If d;— d; then any transaction accessing both d;and d; must
access d; before accessing d;.

Implies that the set D may now be viewed as a directed acyclic
graph, called a database graph.

W The tree-protocol is a simple kind of graph protocol.

©8425 - Fall 2013 - Boris Glavic 1017 @Silberschatz, Korth and Sudarshan

@Silberschatz, Korth and Sudarshan

Lock Table

17 123

H W Black rectangles indicate granted locks,
—]] white ones indicate waiting requests
| ™ ™o B Lock table also records the type of lock
L granted or requested

B New request is added to the end of the
— 1912 queue of requests for the data item, and
| granted if it is compatible with all earlier

locks
.| = B Unlock requests result in the request
L being deleted, and later requests are
— checked to see if they can now be
— 1 granted
| i W If transaction aborts, all waiting or
] granted requests of the transaction are
] ™o deleted
— lock manager may keep a list of
— " locks held by each transaction, to
B W e implement this efficiently
[] waiting
T8
©S425 - Fall 2013 - Boris Glavic 10.16 ©Silberschatz, Korth and Sudarshan

Tree Protocol

1. Only exclusive locks are allowed.

2. The first lock by T; may be on any data item. Subsequently, a data Q
can be locked by T;only if the parent of Qis currently locked by T

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by T; cannot
subsequently be relocked by T;

©8425 - Fall 2013 - Boris Glavic 10.18 @Silberschatz, Korth and Sudarshan

Graph-Based Protocols (Cont.)

B The tree protocol ensures conflict serializability as well as freedom from
deadlock.

m Unlocking may occur earlier in the tree-locking protocol than in the two-
phase locking protocol.

shorter waiting times, and increase in concurrency
protocol is deadlock-free, no rollbacks are required
B Drawbacks
Protocol does not guarantee recoverability or cascade freedom
» Need to introduce commit dependencies to ensure recoverability
Transactions may have to lock data items that they do not access.
» increased locking overhead, and additional waiting time
» potential decrease in concurrency

W Schedules not possible under two-phase locking are possible under tree
protocol, and vice versa.

©8425 - Fall 2013 - Boris Glavic 10.19 @Silberschatz, Korth and Sudarshan

N- Deadlock Handling
S—
W Consider the following two transactions:
T,: write (X) T,: write(Y)
write(Y) write(X)
B Schedule with deadlock

7, | %
lock-X on A
write (A)

Tock-X on B

write (B)

wait for lock-X on A
wail for lock-X on B

CS425 - Fall 2013 - Boris Glavic 10.20 @Silberschatz, Korth and Sudarshan

Deadlock Handling

W System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.
W Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :
Require that each transaction locks all its data items before it
begins execution (predeclaration).
Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

©8425 - Fall 2013 - Boris Glavic 1021 @Silberschatz, Korth and Sudarshan

@ More Deadlock Prevention Strategies

W Following schemes use transaction timestamps for the sake of deadlock
prevention alone.

W wait-die scheme — non-preemptive

older transaction may wait for younger one to release data item.
Younger transactions never wait for older ones; they are rolled back
instead.

a transaction may die several times before acquiring needed data
item
B wound-wait scheme — preemptive

older transaction wounds (forces rollback) of younger transaction
instead of waiting for it. Younger transactions may wait for older
ones.

may be fewer rollbacks than wait-die scheme.

©8425 - Fall 2013 - Boris Glavic 1022

@Silberschatz, Korth and Sudarshan

N Deadlock prevention (Cont.)

B Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older transactions
thus have precedence over newer ones, and starvation is hence
avoided.

B Timeout-Based Schemes:

a transaction waits for a lock only for a specified amount of time.
After that, the wait times out and the transaction is rolled back.
thus deadlocks are not possible

simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

©8425 - Fall 2013 - Boris Glavic 1023 @Silberschatz, Korth and Sudarshan

Deadlock Detection

Deadlocks can be described as a wait-for graph, which consists of a
pair G = (VB),
Vis a set of vertices (all the transactions in the system)

E'is a set of edges; each element is an ordered pair T, —T;.
B |f T;— Tjisin E, then there is a directed edge from T;to T}, implying

that T; is waiting for T} to release a data item.
B When T;requests a data item currently being held by T;, then the edge
T; T;is inserted in the wait-for graph. This edge is removed only when
Tjis no longer holding a data item needed by T;.
The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look
for cycles.

©8425 - Fall 2013 - Boris Glavic 1024 @Silberschatz, Korth and Sudarshan

82

e‘: - ®

©$425 - Fall 2013 - Boris Glavic 1025

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

@Silberschatz, Korth and Sudarshan

N- Deadlock Recovery
| S —
B When deadlock is detected :
Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum
cost.
Rollback -- determine how far to roll back transaction
» Total rollback: Abort the transaction and then restart it.
» More effective to roll back transaction only as far as necessary
to break deadlock.
Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid
starvation

CS425 - Fall 2013 - Boris Glavic 1026 @Silberschatz, Korth and Sudarshan

Multiple Granularity

W Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones

W Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

B When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.

B Granularity of locking (level in tree where locking is done):
fine granularity (lower in tree): high concurrency, high locking

overhead
coarse granularity (higher in tree): low locking overhead, low
concurrency

5425 - Fall 2013 - Boris Glavic 1027 @Silberschatz, Korth and Sudarshan

N

The levels, starting from the coarsest (top) level are
database
area
file
record

©8425 - Fall 2013 - Boris Glavic 1028

@Silberschatz, Korth and Sudarshan

N

©$425 - Fall 2013 - Boris Glavic 1029

Intention Lock Modes

M In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

intention-shared (1S): indicates explicit locking at a lower level of
the tree but only with shared locks.
intention-exclusive (IX): indicates explicit locking at a lower level
with exclusive or shared locks
shared and intention-exclusive (SIX): the subtree rooted by that
node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

W intention locks allow a higher level node to be locked in S or X mode

without having to check all descendent nodes.

@Silberschatz, Korth and Sudarshan

N2 Compatibility Matrix with Intention Lock Modes

B The compatibility matrix for all lock modes is:

1S IX S SIX X

IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

©8425 - Fall 2013 - Boris Glavic 1030 @Silberschatz, Korth and Sudarshan

NC Multiple Granularity Locking Scheme

B Transaction T;can lock a node Q, using the following rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first, and may be locked in any
mode.

A node Q can be locked by T;in S or IS mode only if the parent of Q
is currently locked by T;in either IX or IS mode.

A node Q can be locked by T;in X, SIX, or IX mode only if the parent
of Qis currently locked by T;in either IX or SIX mode.

T, can lock a node only if it has not previously unlocked any node
(that is, T;is two-phase).

T, can unlock a node Q only if none of the children of Q are currently
locked by T;.

B Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

W Lock granularity escalation: in case there are too many locks at a
particular level, switch to higher granularity S or X lock

©$425 - Fall 2013 - Boris Glavic 1031

@Silberschatz, Korth and Sudarshan

= Timestamp-Based Protocols (Cont.)

W The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

B Suppose a transaction T, issues a read(Q)

If TS(T) = W-timestamp(Q), then T, needs to read a value of Q
that was already overwritten.

= Hence, the read operation is rejected, and T; is rolled back.

If TS(T)= W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(T)).

©8425 - Fall 2013 - Boris Glavic 1033 @Silberschatz, Korth and Sudarshan

N Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

T T T T T
read (X)
read (V)
read (V)
write (V)
write (2)
read (Z)
read (Z)
abort
read (X)
read (W)
write (W)
abort
write (V)
write (2)

©8425 - Fall 2013 - Boris Glavic 1035 @Silberschatz, Korth and Sudarshan

A2

Timestamp-Based Protocols

W Each transaction is issued a timestamp when it enters the system. If an old
transaction T; has time-stamp TS(T)), a new transaction T is assigned time-
stamp TS(T)) such that TS(T) <TS(T).

B The protocol manages concurrent execution such that the time-stamps
determine the serializability order.

W In order to assure such behavior, the protocol maintains for each data Q two
timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.
R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

CS425 - Fall 2013 - Boris Glavic 1032 @Silberschatz, Korth and Sudarshan

- Timestamp-Based Protocols (Cont.)
B Suppose that transaction T;issues write(Q).

If TS(T) < R-timestamp(Q), then the value of Qthat T;is
producing was needed previously, and the system assumed that
that value would never be produced.

= Hence, the write operation is rejected, and T;is rolled back.

If TS(T) < W-timestamp(Q), then T; is attempting to write an
obsolete value of Q.

= Hence, this write operation is rejected, and T;is rolled back.

Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(T).

©8425 - Fall 2013 - Boris Glavic 1034 @Silberschatz, Korth and Sudarshan

ﬁ; Correctness of Timestamp-Ordering Protocol
[~—ror

B The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

transaction
with smaller
timestamp

transaction
with larger
timestamp

Thus, there will be no cycles in the precedence graph

W Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

W But the schedule may not be cascade-free, and may not even be
recoverable.

©8425 - Fall 2013 - Boris Glavic 1036 @Silberschatz, Korth and Sudarshan

Recoverability and Cascade Freedom

M Problem with timestamp-ordering protocol:
Suppose T; aborts, but 7; has read a data item written by T;

Then T, must abort; if T, had been allowed to commit earlier, the
schedule is not recoverable.

Further, any transaction that has read a data item written by 7, must
abort

This can lead to cascading rollback --- that is, a chain of rollbacks
H Solution 1:

A transaction is structured such that its writes are all performed at
the end of its processing

All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

A transaction that aborts is restarted with a new timestamp

W Solution 2: Limited form of locking: wait for data to be committed before
reading it

B Solution 3: Use commit dependencies to ensure recoverability

©$425 - Fall 2013 - Boris Glavic 10.37

@Silberschatz, Korth and Sudarshan

Validation-Based Protocol

B Execution of transaction T;is done in three phases.

1. Read and execution phase: Transaction T, writes only to
temporary local variables

2. Validation phase: Transaction T, performs a *"validation test"
to determine if local variables can be written without violating
serializability.

3. Write phase: If T;is validated, the updates are applied to the
database; otherwise, T is rolled back.

W The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases in
that order.

Assume for simplicity that the validation and write phase occur
together, atomically and serially
» l.e., only one transaction executes validation/write at a time.

W Also called as optimistic concurrency control since transaction

executes fully in the hope that all will go well during validation

©8425 - Fall 2013 - Boris Glavic 10.39 @Silberschatz, Korth and Sudarshan

y Validation Test for Transaction T;

| [f for all T;with TS (T) < TS (T) either one of the following condition
holds:
finish(T) < start(T)
start(T) < finish(T) < validation(T) and the set of data items
written by T; does not intersect with the set of data items read by
T.
s
then validation succeeds and T/ can be committed. Otherwise,
validation fails and T} is aborted.
W Justification: Either the first condition is satisfied, and there is no
overlapped execution, or the second condition is satisfied and
the writes of T; do not affect reads of T; since they occur after T;
has finished its reads.

the writes of T; do not affect reads of 7} since T, does not read
any item written by T,

©8425 - Fall 2013 - Boris Glavic 1041 @Silberschatz, Korth and Sudarshan

Thomas’ Write Rule

Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

When T, attempts to write data item Q, if TS(T) <W-timestamp(Q),
then T;is attempting to write an obsolete value of {Q}.

Rather than rolling back T; as the timestamp ordering protocol
would have done, this {write} operation can be ignored.

B Otherwise this protocol is the same as the timestamp ordering
protocol.

B Thomas' Write Rule allows greater potential concurrency.

Allows some view-serializable schedules that are not conflict-
serializable.

CS425 - Fall 2013 - Boris Glavic 1038 @Silberschatz, Korth and Sudarshan

@ Validation-Based Protocol (Cont.)

B Each transaction T, has 3 timestamps
Start(T;) : the time when T, started its execution
Validation(T)): the time when T, entered its validation phase
Finish(T)) : the time when T, finished its write phase

Serializability order is determined by timestamp given at validation
time, to increase concurrency.

Thus TS(T)) is given the value of Validation(T)).

W This protocol is useful and gives greater degree of concurrency if
probability of conflicts is low.

because the serializability order is not pre-decided, and
relatively few transactions will have to be rolled back.

©8425 - Fall 2013 - Boris Glavic 10.40 @Silberschatz, Korth and Sudarshan

N2 Schedule Produced by Validation

W Example of schedule produced using validation

read (B)
read (B)
B=8B 50
read (4)
A=A+50

read (4)

(validate)

display (A+B)
(validate)

write (B)
write (A)

©8425 - Fall 2013 - Boris Glavic 10.42 @Silberschatz, Korth and Sudarshan

Multiversion Schemes

W Multiversion schemes keep old versions of data item to increase
concurrency.

Multiversion Timestamp Ordering
Multiversion Two-Phase Locking
B Each successful write results in the creation of a new version of the
data item written.
W Use timestamps to label versions.
B When a read(Q) operation is issued, select an appropriate version of
Q based on the timestamp of the transaction, and return the value of
the selected version.

W reads never have to wait as an appropriate version is returned
immediately.

©8425 - Fall 2013 - Boris Glavic 10.43 @Silberschatz, Korth and Sudarshan

N° Multiversion Timestamp Ordering

B Each data item Q has a sequence of versions <Q;, Q,,...., Q,>. Each
version Q, contains three data fields:

Content -- the value of version Q.
W-timestamp(Q,) -- timestamp of the transaction that created
(wrote) version Q,
R-timestamp(Q,) -- largest timestamp of a transaction that
successfully read version Q
B when a transaction T, creates a new version Q, of Q, Q,'s W-
timestamp and R-timestamp are initialized to TS(T).

B R-timestamp of Qy is updated whenever a transaction T, reads Q,, and
TS(T) > R-timestamp(Qy).

CS425 - Fall 2013 - Boris Glavic 1044 @Silberschatz, Korth and Sudarshan

82

Multiversion Timestamp Ordering (Cont)

B Suppose that transaction T;issues a read(Q) or write(Q) operation. Let
Q, denote the version of Q whose write timestamp is the largest write
timestamp less than or equal to TS(T).

If transaction T;issues a read(Q), then the value returned is the
content of version Q,.

If transaction T;issues a write(Q)
1. if TS(T) <R-timestamp(Q,), then transaction T;is rolled back.
2. if TS(T)) = W-timestamp(Q,), the contents of Q, are overwritten
3. else a new version of Qis created.

H Observe that
Reads always succeed

A write by T;is rejected if some other transaction T;that (in the
serialization order defined by the timestamp values) should read
T;'s write, has already read a version created by a transaction older
than T,

W Protocol guarantees serializability

©8425 - Fall 2013 - Boris Glavic 1045 @Silberschatz, Korth and Sudarshan

Nz Multiversion Two-Phase Locking

| Differentiates between read-only transactions and update transactions

W Update transactions acquire read and write locks, and hold all locks up
to the end of the transaction. That is, update transactions follow rigorous
two-phase locking.

Each successful write results in the creation of a new version of the
data item written.

each version of a data item has a single timestamp whose value is
obtained from a counter ts-counter that is incremented during
commit processing.

B Read-only transactions are assigned a timestamp by reading the current
value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.

©8425 - Fall 2013 - Boris Glavic 10.46 @Silberschatz, Korth and Sudarshan

NZ Multiversion Two-Phase Locking (Cont.)

B When an update transaction wants to read a data item:
it obtains a shared lock on it, and reads the latest version.
B When it wants to write an item

it obtains X lock on; it then creates a new version of the item and
sets this version's timestamp to .

B When update transaction T; completes, commit processing occurs:
T, sets timestamp on the versions it has created to ts-counter + 1
T,increments ts-counter by 1

B Read-only transactions that start after T;increments ts-counter will see
the values updated by T,

B Read-only transactions that start before T;increments the
ts-counter will see the value before the updates by T,

B Only serializable schedules are produced.

©8425 - Fall 2013 - Boris Glavic 1047 @Silberschatz, Korth and Sudarshan

NE MVCC: Implementation Issues

W Creation of multiple versions increases storage overhead
Extra tuples
Extra space in each tuple for storing version information
W Versions can, however, be garbage collected

E.g. if Q has two versions Q5 and Q9, and the oldest active
transaction has timestamp > 9, than Q5 will never be required
again

©8425 - Fall 2013 - Boris Glavic 10.48 @Silberschatz, Korth and Sudarshan

82

Snapshot Isolation

M Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows

Poor performance results

Solution 1: Give logical “snapshot” of database state to read only
transactions, read-write transactions use normal locking

Multiversion 2-phase locking
Works well, but how does system know a transaction is read only?

Solution 2: Give snapshot of database state to every transaction,
updates alone use 2-phase locking to guard against concurrent
updates

Problem: variety of anomalies such as lost update can result
Partial solution: snapshot isolation level (next slide)
» Proposed by Berenson et al, SIGMOD 1995
» Variants implemented in many database systems
E.g. Oracle, PostgreSQL, SQL Server 2005

©8425 - Fall 2013 - Boris Glavic 10.49 @Silberschatz, Korth and Sudarshan

N Snapshot Isolation

W Atransaction T1 executing with Snapshot T T2 T3
Isolation

takes snapshot of committed data at WY :=1)
start Commit

always reads/modifies data in its own Start
snapshot R(X) > 0
updates of concurrent transactions are R(Y)> 1
not visible to T1

writes of T1 complete when it commits
First-committer-wins rule:

» Commits only if no other concurrent
transaction has already written data R(@2) >0
that T1 intends to write. RY) > 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible 7]
Own updates are visible]

Not first-committer of X]
Serialization error, T2 is rolled back

AN

CS425 - Fall 2013 - Boris Glavic 10.50 @Silberschatz, Korth and Sudarshan

Snapshot Read

B Concurrent updates invisible to snapshot read

Xo =100, Y =0

Ty deposits 50 in Y T, withdraws 50 from X
n (Xo. 100)
ry(Yo.0)
rz(Yo. 0)
r2(Xp.100)
Wa(X2.50)
w1(Y1.50)
71(Xo. 100) ety 72 notseery
11(Y4,50) can sso s o upctates)
12(Y0,0) wpdate by 7 notseer)

Xo =50, i =50 3

Snapshot Write: First Committer Wins

Xo =100
Ty deposits 50in X | T, withdraws 50 from X
n (Xo. 100)
12(Xo,100)
Wy(X2.50)
wy(Xy,150)
commity
COMMIty (serialzaton Eror 7 s roled back)
Xy =150

Variant: “First-updater-wins”
» Check for concurrent updates when write occurs by locking item
But lock should be held till all concurrent transactions have finished
» (Oracle uses this plus some extra features)
» Differs only in when abort occurs, otherwise equivalent

©8425 - Fall 2013 - Boris Glavic 1052 @Silberschatz, Korth and Sudarshan

Benefits of S

B Reading is never blocked,
and also doesn’ t block other txns activities
B Performance similar to Read Committed
Avoids the usual anomalies
No dirty read
No lost update
No non-repeatable read
Predicate based selects are repeatable (no phantoms)
M Problems with SI
Sl does not always give serializable executions

» Serializable: among two concurrent txns, one sees the effects
of the other

» In SI: neither sees the effects of the other
Result: Integrity constraints can be violated

©8425 - Fall 2013 - Boris Glavic 1053 @Silberschatz, Korth and Sudarshan

NE Snapshot Isolation

W E.g. of problem with SI
T1:x:=y
T2:y:=x
Initially x =3 andy = 17
» Serial execution: x =??,y=7??

» if both transactions start at the same time, with snapshot
isolation: x=7??,y=17?

B Called skew write
W Skew also occurs with inserts
E.g:
» Find max order number among all orders
» Create a new order with order number = previous max + 1

©8425 - Fall 2013 - Boris Glavic 1054 @Silberschatz, Korth and Sudarshan

N- Snapshot Isolation Anomalies
~——
B Sl breaks serializability when txns modify different items, each based on a
previous state of the item the other modified
Not very common in practice
» E.g., the TPC-C benchmark runs correctly under S|
» when txns conflict due to modifying different data, there is usually also
a shared item they both modify too (like a total quantity) so Sl will abort
one of them
But does occur
» Application developers should be careful about write skew
B Sl can also cause a read-only transaction anomaly, where read-only
transaction may see an inconsistent state even if updaters are serializable
We omit details

Using snapshots to verify primary/foreign key integrity can lead to
inconsistency
Integrity constraint checking usually done outside of snapshot

©8425 - Fall 2013 - Boris Glavic 1055 @Silberschatz, Korth and Sudarshan

Sl In Oracle and PostgreSQL

W Can sidestep Sl for specific queries by using select .. for update in Oracle
and PostgreSQL
E.g.,
1. select max(orderno) from orders for update
2. read value into local variable maxorder
3. insert into orders (maxorder+1, ...)
Select for update (SFU) treats all data read by the query as if it were
also updated, preventing concurrent updates
Does not always ensure serializability since phantom phenomena can
occur (coming up)

B In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks
when the transaction completes, even if other concurrent transactions are
active

Not quite same as SFU in Oracle, which keeps locks until all

concurrent transactions have completed

©8425 - Fall 2013 - Boris Glavic 1057 @Silberschatz, Korth and Sudarshan

N Sl In Oracle and PostgreSQL

B Warning: Sl used when isolation level is set to serializable, by Oracle, and
PostgreSQL versions prior to 9.1
PostgreSQL’ s implementation of Sl (versions prior to 9.1) described in
Section 26.4.1.3
Oracle implements “first updater wins” rule (variant of “first committer
wins”)
» concurrent writer check is done at time of write, not at commit time
» Allows transactions to be rolled back earlier
» Oracle and PostgreSQL < 9.1 do not support true serializable
execution
PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot
Isolation” (SSI)
» Which guarantees true serializabilty including handling predicate
reads (coming up)

NZ Insert and Delete Operations (Cont.)

B The transaction scanning the relation is reading information that indicates
what tuples the relation contains, while a transaction inserting a tuple
updates the same information.

The conflict should be detected, e.g. by locking the information.

H One solution:

Associate a data item with the relation, to represent the information
about what tuples the relation contains.

Transactions scanning the relation acquire a shared lock in the data
item,

Transactions inserting or deleting a tuple acquire an exclusive lock on
the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

W Above protocol provides very low concurrency for insertions/deletions.

Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

©8425 - Fall 2013 - Boris Glavic 1059 @Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic 1056 @Silberschatz, Korth and Sudarshan

Insert and Delete Operations

H If two-phase locking is used :

A delete operation may be performed only if the transaction
deleting the tuple has an exclusive lock on the tuple to be deleted.

A transaction that inserts a new tuple into the database is given an
X-mode lock on the tuple

W |Insertions and deletions can lead to the phantom phenomenon.
A transaction that scans a relation
» (e.g., find sum of balances of all accounts in Perryridge)
and a transaction that inserts a tuple in the relation
» (e.g., insert a new account at Perryridge)
(conceptually) conflict in spite of not accessing any tuple in
common.
If only tuple locks are used, non-serializable schedules can result
» E.g. the scan transaction does not see the new account, but
reads some other tuple written by the update transaction

©8425 - Fall 2013 - Boris Glavic 1058 @Silberschatz, Korth and Sudarshan

N Index Locking Protocol

M Index locking protocol:
Every relation must have at least one index.

A transaction can access tuples only after finding them through one or
more indices on the relation

A transaction T;that performs a lookup must lock all the index leaf
nodes that it accesses, in S-mode

» Even if the leaf node does not contain any tuple satisfying the index
lookup (e.g. for a range query, no tuple in a leaf is in the range)

A transaction T;that inserts, updates or deletes a tuple £ in a relation r
» must update all indices to r

» must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

The rules of the two-phase locking protocol must be observed
® Guarantees that phantom phenomenon won’ t occur

©8425 - Fall 2013 - Boris Glavic 10.60 @Silberschatz, Korth and Sudarshan

10

N- Next-Key Locking

[N —

B Index-locking protocol to prevent phantoms required locking entire leaf
Can result in poor concurrency if there are many inserts

W Alternative: for an index lookup
Lock all values that satisfy index lookup (match lookup value, or
fall in lookup range)
Also lock next key value in index
Lock mode: S for lookups, X for insert/delete/update

B Ensures that range queries will conflict with inserts/deletes/updates
Regardless of which happens first, as long as both are concurrent

©8425 - Fall 2013 - Boris Glavic 1061 @Silberschatz, Korth and Sudarshan

N© Concurrency in Index Structures (Cont.)
——
® Example of index concurrency protocol:
B Use crabbing instead of two-phase locking on the nodes of the B*-tree, as
follows. During search/insertion/deletion:
First lock the root node in shared mode.
After locking all required children of a node in shared mode, release the lock
on the node.
During insertion/deletion, upgrade leaf node locks to exclusive mode.
When splitting or coalescing requires changes to a parent, lock the parent in
exclusive mode.
B Above protocol can cause excessive deadlocks
Searches coming down the tree deadlock with updates going up the tree
Can abort and restart search, without affecting transaction
W Better protocols are available; see Section 16.9 for one such protocol, the B-link
tree protocol
Intuition: release lock on parent before acquiring lock on child
» And deal with changes that may have happened between lock release
and acquire

N- Concurrency in Index Structures

W Indices are unlike other database items in that their only job is to help in
accessing data.
B Index-structures are typically accessed very often, much more than
other database items.
Treating index-structures like other database items, e.g. by 2-phase
locking of index nodes can lead to low concurrency.
W There are several index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.
It is acceptable to have nonserializable concurrent access to an
index as long as the accuracy of the index is maintained.
» In particular, the exact values read in an internal node of a
B+-tree are irrelevant so long as we land up in the correct leaf
node.

CS425 - Fall 2013 - Boris Glavic 1062 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 1063 @Silberschatz, Korth and Sudarshan

y Weak Levels of Consistency in SQL

B SQL allows non-serializable executions
Serializable: is the default

Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained)

» However, the phantom phenomenon need not be prevented

T1 may see some records inserted by T2, but may not see
others inserted by T2

Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

Read uncommitted: allows even uncommitted data to be read
B In many database systems, read committed is the default consistency
level
has to be explicitly changed to serializable when required
» set isolation level serializable

©8425 - Fall 2013 - Boris Glavic 1065 @Silberschatz, Korth and Sudarshan

Weak Levels of Consistency

S 2

B Degree-two consistency: differs from two-phase locking in that S-locks
may be released at any time, and locks may be acquired at any time

X-locks must be held till end of transaction

Serializability is not guaranteed, programmer must ensure that no
erroneous database state will occur]

B Cursor stability:

For reads, each tuple is locked, read, and lock is immediately
released

X-locks are held till end of transaction
Special case of degree-two consistency

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 1064

A2

Transactions across User Interaction

B Many applications need transaction support across user interactions
Can’t use locking
Don’ t want to reserve database connection per user
m Application level concurrency control
Each tuple has a version number
Transaction notes version number when reading tuple

» select r.balance, r.version into :A, :version
from r where acctld =23

When writing tuple, check that current version number is same as the
version when tuple was read

» update r set r.balance = r.balance + :deposit
where acctld = 23 and r.version = :version

Equivalent to optimistic concurrency control without validating read set
Used internally in Hibernate ORM system, and manually in many applications
Version numbering can also be used to support first committer wins check of
snapshot isolation

Unlike SI, reads are not guaranteed to be from a single snapshot

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 1066

11

End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot
Isolation examples

modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See for iti on re-use

Figure 15.04

w it concurrency-control manager
lockx (B)
grant-x (B, Ty)
read (B)
B:=B-50
write (B)
unlock (B)
lock-s (4)
grant-s (A, T,)
read (A)
unlock (A)
lock-s (B)
grant-s (B, T,)
read (B)
unlock (B)
display (A + B)
lock-x (4)
grant-x (4, T,)
read (4)
A=A+50
write (4)
unlock (A)
Figure 15.08
lock-x (A)
read (A)
lock-s (B)
read (B)
write (A)
unlock (A)
lock-x (A)
read (A)
write (A)
unlock (A)
lock-s (A)
read (A)

Figure 15.01

true false

X | false | false

CS425 - Fall 2013 - Boris Glavic 1068

@Silberschatz, Korth and Sudarshan

Figure 15.07

lock-x (B)

read (B)

B=B-50

write (B)
Tock-s (4)
read (A)
lock-s (B)

lock-x (4)

©S425 — Fall 2013 - Boris Glavic 1070

@Silberschatz, Korth and Sudarshan

Figure 15.09

lock=s (a;)

lock-s (a,)
lock=s (a;)

lock-s (a,)
lock-s (a;)
lock-s (a,)

unlock-s (a;)

unlocks (a;)
lock-s (a,)

upgrade (a;)

©S425 - Fall 2013 - Boris Glavic 1072

@Silberschatz, Korth and Sudarshan

12

425 - Fall 2013 - Boris Glavic

Figure 15.10

; @ Em

T23 T T8 T2

L 1912

. granted
[] waiting

e
™3
14
] i O
T 123
H 144
44?
=

1073

@Silberschatz, Korth and Sudarshan

8425 - Fall 2013 - Boris Glavic

Figure 15.12

Tu T T Ty
lock-x (B)
lock-x (D)
Tock-x (H)
unlock (D)
lock-x (E)
lock-x (D)
unlock (B)
unlock (E)
lock-x (B)
lock-x (E)
unlock (H)
lock-x (G)
unlock (D)
lock-x (D)
Tock-x (H)
unlock (D)
unlock (H)
unlock (E)
unlock (B)
unlock (G)
1075

@Silberschatz, Korth and Sudarshan

425 - Fall 2013 - Boris Glavic

Figure 15.14

1077

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 15.11

()
006
& @
©)
0)

1074

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 15.13

1076

@Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic

Figure 15.15

1078

@Silberschatz, Korth and Sudarshan

13

Figure 15.16

IS IX S SIX X

IS true true true true false
X true true false false false
S true false true false false
SIX | true false false false false
X false false false false false

8425 - Fall 2013 - Boris Glavic

Figure 15.18

read (Q)

write (Q)

1081

@Silberschatz, Korth and Sudarshan

425 - Fall 2013 - Boris Glavic

Figure 15.20

T Ty

lock-s (Q)

read (Q)

unlock (Q)
lock-x (Q)
read (Q)
write (Q)
unlock (Q)

lock-s (Q)

read (Q)

unlock (Q)

1083

@Silberschatz, Korth and Sudarshan

CS425 - Fall 2013 - Boris Glavic

Figure 15.17

T T
read (B)
read (B)
= B-50
write (B)
read (4)
read (4)
display (A + B)
A=A+50
write (4)

display (4 + B)

10.80

@Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic

Figure 15.19

read (B)
read (B)
B=B 30
read (4)
A=A+50

read (4)

(oalidate)

display (4 + B)
(validate)
write (B)
wite (4)

1082

@Silberschatz, Korth and Sudarshan

Figure 15.21

T -

(e]

[Toec ens]]

©S425 - Fall 2013 - Boris Glavic

[T Biology | |Comp.Sci J——[[Etec. Eng] | Finance [} [History [|

[F—>{T pusic [] Physies |

1084

@Silberschatz, Korth and Sudarshan

14

Figure 15.22

e | e N vy

1]
m&mw Cremisy |- [Comp-54. Tetec. g | Fimance 1T eitory [T T Music [T Prysics

425 - Fall 2013 - Boris Glavic

10.85 @Silberschatz, Korth and Sudarshan

Figure 15.23

true false false

false false false

false false true

CS425 - Fall 2013 - Boris Glavic

10.86 @Silberschatz, Korth and Sudarshan

Figure in-15.1

read (Q)
write (Q)

8425 - Fall 2013 - Boris Glavic

write (Q)
write (Q)

1087 @Silberschatz, Korth and Sudarshan

15

Chapter 11: Indexing and Storage

Modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Memory Hierarchy

Modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

N Storage Hierarchy

Persistent

A
storage T ahe

Il AV
‘ main memory Q
LA i
=
\ flash memory \j

Speed

(/2] Il \H7
‘ magnetic disk Q

o
‘ optical disk Q
I

\ magnetic tapes |

8425 - Fall 2013 - Boris Glavic ns @Silberschatz, Korth and Sudarshan

NC Chapter 11: Indexing and Storage

B DBMS Storage
Memory hierarchy
File Organization
Buffering

B Indexing
Basic Concepts
B*-Trees
Static Hashing
Index Definition in SQL
Multiple-Key Access

CS425 - Fall 2013 - Boris Glavic 1.2 @Silberschatz, Korth and Sudarshan

N DBMS Storage

| —

B Modern Computers have different types of memory
Cache, Main Memory, Harddisk, SSD, ...

B Memory types have different characteristics in terms of
Persistent vs. volatile
Speed (random vs. sequential access)
Size
Price — this usually determines size

W Database systems are designed to be use these different memory
types effectively

Need for persistent storage: the state of the database needs to be
written to persistent storage

» guarantee database content is not lost when the computer is
shutdown

Moving data between different types of memory

» Want to use fast memory to speed-up operations

» Need slower memory for the size
a

©8425 - Fall 2013 - Boris Glavic 1

@Silberschatz, Korth and Sudarshan

NE Main Memory vs. Disk

B Why do we not only use main memory
What if database does not fit into main memory?
Main memory is volatile

B Main memory vs. disk

Given available main memory when do we keep which part of the
database in main memory

» Buffer manager: Component of DBMS that decides when to
move data between disk and main memory

How do we ensure transaction property durability

» Buffer manager needs to make sure data written by committed
transactions is written to disk to ensure durability

©8425 - Fall 2013 - Boris Glavic 16 @Silberschatz, Korth and Sudarshan

N Magnetic Hard Disk Mechanism

| arm assembly

rotation
NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

5425 — Fall 2013 - Boris Glavic 17 @Silberschatz, Korth and Sudarshan

Random vs. Sequential Access

W Transfer of data from disk has a minimal size = 1 block
Reading 1 byte is as fast as reading one block (e.g., 4KB)
B Random Access
Read data from anywhere on the disk
Need to get to the right track (seek time)

Need to wait until the right sector is under the arm (on avg %2 time
for one rotation) (rotational delay)

Then can transfer data at ~ transfer rate
B Sequential Access
Read data that is on the current track + sector
can transfer data at ~ transfer rate
B Reading large number of small pieces of data randomly is very slow
compared to sequential access
Thus, try layout data on disk in a way that enables sequential
access

8425 - Fall 2013 - Boris Glavic 19 @Silberschatz, Korth and Sudarshan

& Performance Measures of Disks

when data transfer begins. Consists of:
Seek time — time it takes to reposition the arm over the correct track.
» Average seek time is 1/2 the worst case seek time.

Would be 1/3 if all tracks had the same number of sectors, and we
ignore the time to start and stop arm movement

» 4 to 10 milliseconds on typical disks

Rotational latency — time it takes for the sector to be accessed to appear
under the head.

» Average latency is 1/2 of the worst case latency.
» 4to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

] %atg-hl'(ansfer rate — the rate at which data can be retrieved from or stored to
the dis

25 to 100 MB per second max rate, lower for inner tracks
Multiple disks may share a controller, so rate that controller can handle is
also important

» E.g. SATA: 150 MB/sec, SATA-Il 3Gb (300 MB/sec)

» Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)

» Fiber Channel (FC2Gb or 4Gb): 256 to 512 MB/s

B Access time — the time it takes from wfhen aread or write request is issued to

CS425 - Fall 2013 - Boris Glavic 1.8 @Silberschatz, Korth and Sudarshan

N File Organization

B The database is stored as a collection of files. Each file stores
records (tuples from a table). A record is a sequence of fields
(the attributes of a tuple).

B Reading one record of a time from disk would be very slow
(random access)

Organize our database files in pages (size of block or larger)
Read/write data in units of pages
One page will usually contain several records
B One approach:
assume record size is fixed
each file has records of one particular type only
different files are used for different relations

This case is easiest to implement; will consider variable length
records later.

8425 - Fall 2013 - Boris Glavic 11 @Silberschatz, Korth and Sudarshan

File Organization

Modified from:

Database System Concepts, 6™ Ed

©Silberschatz, Korth and Sudarshan
ee for conditions on re-use

NE Fixed-Length Records
W Simple approach:

Store record i starting from byte n * (i — 1), where nis the size of
each record. Put maximal P / n records on each page.

Record access is simple but records may cross blocks
» Modification: do not allow records to cross block boundaries

record 0 10101 Srinivasan | Comp. Sci. | 65000

| Deletion of record i: record1 | 12121 | Wu Finance 90000
alternatives: record2 | 15151 | Mozart | Music 40000

) record 3 [22222 | Finstein | Physics 95000

MOVe records i+ 1, ..., M [ecorgs | 52345 | Elsaid | History | 60000
toi,...,n-1 record 5 | 33456_| Gold Physics 87000

move record n to i record 6 | 45565 | Katz Comp. Sci. | 75000

record 7 58583 History 62000
do not move records, but |record8 | 76543 Finance 80000
link all free records on a |record9 [76766 | Crick Biology 72000
free list record 10| 83821 Brandt Comp. Sci. | 92000
record 11| 98345 Kim Elec. Eng. 80000

©8425 - Fall 2013 - Boris Glavic 1112 @Silberschatz, Korth and Sudarshan

@ Free Lists

B Store the address of the first deleted record in the file header.

B Use this first record to store the address of the second deleted record,
and so on

W Can think of these stored addresses as pointers since they “point” to
the location of a record.

header
Tecord 0 | 10101 | Srinivasan | Comp. Sci. | 65000
record 1 4
record 2 [15151 | Mozart | Music 40000
Tecord 3 | 22222 | Finstem | Physics | 05000
record 4 3
record 5 | 33456 | Gold Physics 7000
ecord® p
record7 [58583 | Califieri | History 62000 4
record 8 | 76543 | Singh Finance | 80000
Tecord 9| 76766 | Crick Biology 72000
record 10 | 83821 | Brandt Comp. Sci. | 92000
record 11 [98345 | Kim Elec. Eng. | 80000
5425 - Fall 2013 - Borls Glavic [IEE Silberschatz, Korth and Sudarshan

A2 Variable-Length Records

W Variable-length records arise in database systems in several ways:
Storage of multiple record types in a file.

Record types that allow variable lengths for one or more fields such as
strings (varchar)

Record types that allow repeating fields (used in some older data
models).

B Attributes are stored in order

B Variable length attributes represented by fixed size (offset, length), with
actual data stored after all fixed length attributes

B Null values represented by null-value bitmap

Null bitmap (stored in 1 byte)
0000,

[21,5] 26,10] 36,10] 65000 | | 10101]srinivasan| Comp. Sci.
Byts0 4 8 12 2021 2 36 35

CS425 - Fall 2013 - Boris Glavic 114 @Silberschatz, Korth and Sudarshan

N Variable-Length Records: Slotted Page Structure

Block Header Records

Size # Entries
- Free§
Location \ Aol Tee space { ’

End of Free Space
B Slotted page header contains:
number of record entries
end of free space in the block
location and size of each record

B Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.

W Pointers should not point directly to record — instead they should
point to the entry for the record in header.

©8425 - Fall 2013 - Boris Glavic 115 @Silberschatz, Korth and Sudarshan

Organization of Records in Files

B Heap — a record can be placed anywhere in the file where there
is space

Deletion efficient
Insertion efficient
Search is expensive
» Example: Get instructor with name Glavic
Have to search through all instructors

W Sequential — store records in sequential order, based on the
value of some search key of each record

Deletion expensive and/or waste of space
Insertion expensive and/or waste of space
Search is efficient (e.g., binary search)

» As long as the search is on the search key we are
ordering on

©8425 - Fall 2013 - Boris Glavic 1116 @Silberschatz, Korth and Sudarshan

Buffering

Modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

NE Buffer Manager

W Buffer Manager

Responsible for loading pages from disk and writing modified
pages back to disk

B Handling blocks

If the block is already in the buffer, the buffer manager
returns the address of the block in main memory

If the block is not in the buffer, the buffer manager
1. Allocates space in the buffer for the block

Replacing (throwing out) some other block, if required,
to make space for the new block.
Replaced block written back to disk only if it was
modified since the most recent time that it was written
to/fetched from the disk.
2. Reads the block from the disk to the buffer, and returns
the address of the block in main memory to requester.

©S425 - Fall 2013 - Boris Glavic 1118

@Silberschatz, Korth and Sudarshan

Buffer-Replacement Policies

82

B Most operating systems replace the block least recently used
(LRU strategy)

W Idea behind LRU — use past pattern of block references as a
predictor of future references

B Queries have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references

LRU can be a bad strategy for certain access patterns involving
repeated scans of data

» For example: when computing the join of 2 relations r and s
by a nested loops
for each tuple trof rdo
for each tuple ts of s do
if the tuples trand ts match ...

Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

©8425 - Fall 2013 - Boris Glavic 1119 @Silberschatz, Korth and Sudarshan

NC Buffer-Replacement Policies (Cont.)

B Pinned block — memory block that is not allowed to be written
back to disk. E.g., an operation still needs this block.
B Toss-immediate strategy — frees the space occupied by a block
as soon as the final tuple of that block has been processed
B Most recently used (MRU) strategy — system must pin the
block currently being processed. After the final tuple of that block
has been processed, the block is unpinned, and it becomes the
most recently used block.
W Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation
E.g., the data dictionary is frequently accessed. Heuristic:
keep data-dictionary blocks in main memory buffer
B Buffer managers also support forced output of blocks for the
purpose of recovery (more in Chapter 16 in the textbook)

Indexing and Hashing

Modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

N Basic Concepts

| S —

M Indexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

B Search Key - attribute or set of attributes used to look up records in a
file.

B An index file consists of records (called index entries) of the form

B Index files are typically much smaller than the original file
B Two basic kinds of indices:
Ordered indices: search keys are stored in some sorted order

Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

y Index Evaluation Metrics

B Access types supported efficiently. E.g.,
records with a specified value in the attribute

or records with an attribute value falling in a specified range of
values.

Access time
Insertion time
Deletion time
Space overhead

©8425 - Fall 2013 - Boris Glavic 11.23 @Silberschatz, Korth and Sudarshan

Ordered Indices

® In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

B Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called clustering index

The search key of a primary index is usually but not necessarily the
primary key.
B Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

B Index-sequential file: ordered sequential file with a primary index.

©8425 - Fall 2013 - Boris Glavic 1124 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 1120 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 1122 @Silberschatz, Korth and Sudarshan

Secondary Indices Example

40000 [4 10101_|Srinivasan | Comp. ci. [65000 [>
60000 12121 [Wu Finance | 90000 |
62000 | 15151 | Mozart | Music 40000 | |
65000 — 22222 |[Einstein | Physics 95000 | i<
72000 { 32343 |ElSaid | History 0000 |
:{’)gg:; = 33456 | Gold Physics | 87000 :g
7000 1 45565 _|Katz Comp. 5G| 75000 |t
50000 | 1 58583 [Califiei_| Fistory | 62000 | =
92000 76543 | Singh Finance | 80000 | |
95000 | 4 76766 | Crick Biology | 72000 |
83821 [Brandt | Comp. Sci. | 92000 | |
98345_|Kim Elec. Eng. | 50000 | <
L

Secondary index on salary field of instructor

B Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

B Secondary indices have to be dense

©8425 - Fall 2013 - Boris Glavic 11.25 @Silberschatz, Korth and Sudarshan

Multilevel Index

| [f primary index does not fit in memory, access becomes
expensive.

W Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.

outer index — a sparse index of primary index
inner index — the primary index file

W [f even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

B Indices at all levels must be updated on insertion or deletion
from the file.

©8425 - Fall 2013 - Boris Glavic 127 @Silberschatz, Korth and Sudarshan

N- Primary and Secondary Indices
W Indices offer substantial benefits when searching for records.

W BUT: Updating indices imposes overhead on database
modification --when a file is modified, every index on the file
must be updated,

B Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access

©8425 - Fall 2013 - Boris Glavic 1126 @Silberschatz, Korth and Sudarshan

Multilevel Index (Cont.)

index data
—N\block block 0
° index — data
block 1 lock 1
outer index .

inner index

©8425 - Fall 2013 - Boris Glavic 1128 @Silberschatz, Korth and Sudarshan

N Index Update: Deletion

[10101 T4 10101 _[Srinivasan| Comp. Sci.
32385 | 12121 [Wu Finance

[76766 |\ 15151 |Mozart | Music
22222 |Einstein | Physics
32313 |ElSaid__| History

W |f deleted record was the

. . N . 33456 |Gold Physics
only record in the file with its 15565 [Katz ComprSal
particular search-key value, 58583 gam;‘cri History

B 76543 |Singl Finance
the searqh-key is deleted = Bology
from the index also. 83821 |Brandt | Comp. Sci.

8345 |Kim Elec. Eng.

B Single-level index entry deletion: a
Dense indices — deletion of search-key is similar to file record
deletion.

Sparse indices —

» if an entry for the search key exists in the index, it is
deleted by replacing the entry in the index with the next
search-key value in the file (in search-key order).

» If the next search-key value already has an index entry, the
entry is deleted instead of being replaced.

©$425 - Fall 2013 - Boris Glavic 1.2

@Silberschatz, Korth and Sudarshan

A2

Index Update: Insertion

B Single-level index insertion:
Perform a lookup using the search-key value appearing in
the record to be inserted.
Dense indices — if the search-key value does not appear in
the index, insert it.
Sparse indices — if index stores an entry for each block of
the file, no change needs to be made to the index unless a
new block is created.

» If a new block is created, the first search-key value
appearing in the new block is inserted into the index.
B Multilevel insertion and deletion: algorithms are simple
extensions of the single-level algorithms

©8425 - Fall 2013 - Boris Glavic 1130 @Silberschatz, Korth and Sudarshan

N Secondary Indices

B Frequently, one wants to find all the records whose values in
a certain field (which is not the search-key of the primary
index) satisfy some condition.

Example 1: In the instructor relation stored sequentially by
ID, we may want to find all instructors in a particular
department
Example 2: as above, but where we want to find all
instructors with a specified salary or with salary in a
specified range of values

B We can have a secondary index with an index record for

each search-key value

5425 — Fall 2013 - Boris Glavic 11.31 @Silberschatz, Korth and Sudarshan

& B*-Tree Index

B+-tree indices are an alternative to indexed-sequential files.

B Disadvantage of indexed-sequential files

performance degrades as file grows, since many overflow
blocks get created.

Periodic reorganization of entire file is required.
B Advantage of B*-tree index files:

automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

Reorganization of entire file is not required to maintain
performance.

B (Minor) disadvantage of B*-trees:

extra insertion and deletion overhead, space overhead.
B Advantages of B+-trees outweigh disadvantages

B+*-trees are used extensively

CS425 - Fall 2013 - Boris Glavic 1132 @Silberschatz, Korth and Sudarshan

Root node

e | Internal nodes
Leaf nodes-;
([oranat] [Catien] [Crick o [Eimstein] [ETSaia] | [Gold [Ratz_ [Kim[Jo{ [Mozar[| Singh [[J{[Brinwassn] [Wa][] o~

Srinivasan | Comp. 5ci. |_65000

u Finance 90000

lozart lusic 40000

Einstein__| Physics 95000

El Said History 80000

Gold ysics 87000

Katz Comp. 5¢i. | 75000

Califieri History 60000

Singh Finance 80000

Crick Biology 72000

Brandt Comp. 5ci. | 92000

Kim Elec. Eng, 80000

©8425 - Fall 2013 - Boris Glavic 11.33 @Silberschatz, Korth and Sudarshan

S 2

A Btree is a rooted tree satisfying the following properties:

B*-Tree Index Files (Cont.)

B All paths from root to leaf are of the same length

B Each node that is not a root or a leaf has between [n/2] and
n children.

B A leaf node has between [(n—1)/2] and n—1 values
B Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n—1) values.

©8425 - Fall 2013 - Boris Glavic 1134 @Silberschatz, Korth and Sudarshan

y B+Tree Node Structure

B Typical node
EREREN

| Py | K1 | Py ‘

K; are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

B The search-keys in a node are ordered
Ki<K,<K<...<K,4
(Initially assume no duplicate keys, address duplicates later)

8425 - Fall 2013 - Boris Glavic 11.35 @Silberschatz, Korth and Sudarshan

Leaf Nodes in B+-Trees

A2

Properties of a leaf node:

W Fori=1,2,..., n-1, pointer P;points to a file record with
search-key value K,

W If L, L;are leaf nodes and i<, L/ s search-key values are less
than or equal to L/’ s search-key values

B P, points to next leaf node in search-key order
leaf node

Brandt || Califieri | | Crick Pointer to next leaf node

10101 [Srinivasan| Comp. Sci.| 65000
12121 [Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 80000
33456 | Gold Physics' 87000
45565 | Katz Comp. Sci.| 75000

58583 | Califieri History 60000
76543 |Singh | Finance | 80000
76766 | Crick Biology | 72000
83821 | Brandt | Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000

©8425 - Fall 2013 - Boris Glavic 1136 @Silberschatz, Korth and Sudarshan

@ Non-Leaf Nodes in B+-Trees

B Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:

All the search-keys in the subtree to which P, points are
less than K
For 2 < i< n—1, all the search-keys in the subtree to which
P; points have values greater than or equal to K., and less
than K;
All the search-keys in the subtree to which P, points have
values greater than or equal to K, ;

(A TR B = [R [P

©8425 - Fall 2013 - Boris Glavic 11.37 @Silberschatz, Korth and Sudarshan

N Example of B*-tree

[ovanat] [coen] [crc] [Emtem [T4 [Evsaa] | Goa [] sz [i [[4] [tocar [siga] [simvasan Wl [T}

Bt-tree for instructor file (n = 6)

B Leaf nodes must have between 3 and 5 values
([(n—1)/2] and n -1, with n = 6).

B Non-leaf nodes other than root must have between 3
and 6 children ([(n/2] and n with n =6).

B Root must have at least 2 children.

©8425 - Fall 2013 - Boris Glavic 1138 @Silberschatz, Korth and Sudarshan

Observations about B*-trees

B Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

B The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

B The B*-tree contains a relatively small number of levels
» Level below root has at least 2* [n/2] values
» Next level has at least 2* [n/2] * [n/2] values
» .. etc.
If there are K search-key values in the file, the tree height is
no more than [logy,» (K)1
thus searches can be conducted efficiently.
W Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time
(as we shall see).

©8425 - Fall 2013 - Boris Glavic 11.39 @Silberschatz, Korth and Sudarshan

y Handling Duplicates

W With duplicate search keys
In both leaf and internal nodes,
» we cannot guarantee that K, < K< Kz<. . .< K,
» but can guarantee Ky = K< Ky=< .. .= K
Search-keys in the subtree to which P, points
» are = K|, but not necessarily < K;

» To see why, suppose same search key value V is
present in two leaf node L; and L;,;. Then in parent node
K; must be equal to V

@Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 1.41

Queries on B*-Trees
N —

B Find record with search-key value V.
C=root
While C is not a leaf node {
1. Letibe least value s.t. V<K,
2. If no such exists, set C = last non-null pointer in C
3. Else{if (V=K;)SetC =P, else set C= P}
}
Let jbe least value s.t. K;= V
If there is such a value i, follow pointer P; to the desired record.
Else no record with search-key value k exists.

[JCatiten] [Eimstein] [Gord] [Ernivasar] [T 1]

[Cattbert [Cack] [T} [Eimstein] [ersaa] |] TGota] [<ate] [Kim | [Mozar [singh] | -] [Srimvasan[[wel | T
N Handling Duplicates
[~—ror

B We modify find procedure as follows
traverse P; even if V= K;

As soon as we reach a leaf node C check if C has
only search key values less than V

»if so set C = right sibling of C before checking
whether C contains V

W Procedure printAll

uses modified find procedure to find first
occurrence of V

Traverse through consecutive leaves to find all
occurrences of V

** Errata note: modified find procedure missing in first printing of 6!" edition

©8425 - Fall 2013 - Boris Glavic 1142 @Silberschatz, Korth and Sudarshan

N Queries on B+Trees (Cont.)

W If there are K search-key values in the file, the height of the tree is no
more than [log;yz(K)]-

B A node is generally the same size as a disk block, typically 4
kilobytes

and nis typically around 100 (40 bytes per index entry).
B With 1 million search key values and n=100
at most /ogs,(1,000,000) = 4 nodes are accessed in a lookup.
B Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup

above difference is significant since every node access may need
a disk I/0, costing around 20 milliseconds

©8425 - Fall 2013 - Boris Glavic 11.43 @Silberschatz, Korth and Sudarshan

N. Updates on B*-Trees: Insertion (Cont.)

W Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one
being inserted) in sorted order. Place the first [n/2] in the original
node, and the rest in a new node.

let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

If the parent is full, split it and propagate the split further up.
W Splitting of nodes proceeds upwards till a node that is not full is found.

In the worst case the root node may be split increasing the height
of the tree by 1.

IilAdams\l\ Brandt/[] H—#il Califieri lil Crick [[+—

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

©8425 - Fall 2013 - Boris Glavic 1145 @Silberschatz, Korth and Sudarshan

& Updates on B*-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node
Add record to the file
If necessary add a pointer to the bucket.
3. If the search-key value is not present, then
add the record to the main file (and create a bucket if
necessary)
If there is room in the leaf node, insert (key-value, pointer)
pair in the leaf node
Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.

©8425 - Fall 2013 - Boris Glavic 1144 @Silberschatz, Korth and Sudarshan

B+*-Tree Insertion

oz Root node

~~ Internal nodes

Leaf nodes-,

e) e M e R ez B e e

([Eenl sl

D e e S e

B*-Tree before and after insertion of “Adams”

©8425 - Fall 2013 - Boris Glavic 1146 @Silberschatz, Korth and Sudarshan

B*-Tree Insertion

(e Nean [TT]

| e e o O < e B 1 NEX

0 o . e e e e B e e ey 0
B+-Tree before and after insertion of “Lamport”
5425 - Fall 2013 - Borls Glavie 147 Silberschatz, Korth and Sudarshan

N

Insertion in B+-Trees (Cont.)

W Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N

Copy N to an in-memory area M with space for n+1 pointers and n
keys

Insert (k,p) into M

Copy Py,Ky, .y K 1P 2y from M back into node N

Copy Prooret, Kz Kn,Pras from Minto newly allocated node
N

Insert (K ,2;,N") into parent N
B Read pseudocode in book!

Adams, Brandt) Califieriy Crick

©S425 - Fall 2013 - Boris Glavic 1148

Adams Brandt,

@Silberschatz, Korth and Sudarshan

N Examples of B+-Tree Deletion

[] o) Bl T

e o e e e e e S G

Before and after deleting “Srinivasan”

[{lcaen] [einsen] [T ([vozan[[T T]

[T AdamTToranat T T} Tcamen] [crex] | T3] Temstem] ersad | T+] [Gora] [Kate] [<im [3+] [Ntozart] [simgb] [wal|
W Deleting “Srinivasan” causes merging of under-full leaves

5425 — Fall 2013 - Boris Glavic 11.49 @Silberschatz, Korth and Sudarshan

NZ Examples of B+-Tree Deletion (Cont.)

e e e S e e 2 D e R A e |

Deletion of “Singh” and “Wu” from result of previous example

B Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

W Search-key value in the parent changes as a result

CS425 - Fall 2013 - Boris Glavic 1150 @Silberschatz, Korth and Sudarshan

Example of B+-tree Deletion (Cont.)
([caa [T T T]

[Taaamel et T Fof Tcmren [cral T | Tt [osad T -] TGoaTTRa T | Tk [Ticzanl T 11

[t]]

[TAdams] [Branat] | [}+{ [catifieri[[crick [[[} [Einstein] [Ersaid[] [}+{ [Katz] [Kim] [Mozar(|

Before and after deletion of “Gold” from earlier example

B Node with Gold and Katz became underfull, and was merged with its sibling
W Parent node becomes underfull, and is merged with its sibling
Value separating two nodes (at the parent) is pulled down when merging

B Root node then has only one child, and is deleted
5425 - Fall 2013 - Boris Glavic 1151

@Silberschatz, Korth and Sudarshan

N Updates on B*-Trees: Deletion

B Find the record to be deleted, and remove it from the main file and
from the bucket (if present)

B Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty

W If the node has too few entries due to the removal, and the entries in
the node and a sibling fit into a single node, then merge siblings:

Insert all the search-key values in the two nodes into a single node
(the one on the left), and delete the other node.

Delete the pair (K4, P), where P; is the pointer to the deleted
node, from its parent, recursively using the above procedure.

©8425 - Fall 2013 - Boris Glavic 1152

@Silberschatz, Korth and Sudarshan

N Updates on B*-Trees: Deletion

B Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:

Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.
Update the corresponding search-key value in the parent of the
node.
B The node deletions may cascade upwards till a node which has [n/2]
or more pointers is found.

H If the root node has only one pointer after deletion, it is deleted and
the sole child becomes the root.

8425 - Fall 2013 - Boris Glavic 11.53 @Silberschatz, Korth and Sudarshan

A Non-Unique Search Keys

B Alternatives to scheme described earlier
Buckets on separate block (bad idea)
List of tuple pointers with each key
» Extra code to handle long lists

» Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)

» Low space overhead, no extra cost for queries
Make search key unique by adding a record-identifier

» Extra storage overhead for keys

» Simpler code for insertion/deletion

» Widely used

©8425 - Fall 2013 - Boris Glavic 1154 @Silberschatz, Korth and Sudarshan

N B+-Tree File Organization

B Index file degradation problem is solved by using B*-Tree indices.
B Data file degradation problem is solved by using B*-Tree File
Organization.

B The leaf nodes in a B*-tree file organization store records, instead of
pointers.
B Leaf nodes are still required to be half full
Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node.

W Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B*-tree index.

5425 — Fall 2013 - Boris Glavic 11.55 @Silberschatz, Korth and Sudarshan

Hashing

Modified from:

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

& B*-Tree File Organization (Cont.)

[aales) [[Plen] o9 [EAP{EN] (G [Ha)

o] 08 [[l

Lo [T ma[mNs)[®o]]

Example of B+-tree File Organization
B Good space utilization important since records use more space than
pointers.

B To improve space utilization, involve more sibling nodes in redistribution
during splits and merges
Involving 2 siblings in redistribution (to avoid split / merge where
possible) results in each node having at least |2n/3] entries

CS425 - Fall 2013 - Boris Glavic 1156 @Silberschatz, Korth and Sudarshan

Static Hashing

B A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

B In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.

B Hash function his a function from the set of all search-key values K
to the set of all bucket addresses B.

W Hash function is used to locate records for access, insertion as well
as deletion.

B Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to
locate a record.

©8425 - Fall 2013 - Boris Glavic 1158 @Silberschatz, Korth and Sudarshan

N Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key
(See figure in next slide.)

W There are 10 buckets,

B The binary representation of the th character is assumed to be the
integer i.

B The hash function returns the sum of the binary representations of
the characters modulo 10

E.g. h(Music) = 1 h(History) = 2
h(Physics) = 3 h(Elec. Eng.) =3

8425 - Fall 2013 - Boris Glavic 11.59 @Silberschatz, Korth and Sudarshan

N© Example of Hash File Organization
- 12 W Fnance oo
76543 Singh__| Finance _[80000)

bucket 1 bucket 5
15151] Mozart | Music |40000 76766 Crick Biology |72000)
bucket 2 bucket 6
32343| El Said _| History |80000] 10101 ‘omp. Sci.|65000|
58583 Califieri | History [60000] 45565 | Kat: [Comp. Scil75000

83821|Brandt _|Comp. 5ci}92000|

bucket 3 ucket 7
2222[Einstein_| Physics_[95000)
33456[Gold__[Physics _[87000
@'Kim Elec. Eng [80000

I

Hash file organization of instructor file, using dept_name as key
(see previous slide for details).

©8425 - Fall 2013 - Boris Glavic 1160 @Silberschatz, Korth and Sudarshan

10

©$425 - Fall 2013 - Boris Glavic 11.61

Hash Functions

Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key
values in the file.

An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.
Typical hash functions perform computation on the internal binary
representation of the search-key.
For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

@Silberschatz, Korth and Sudarshan

N Handling of Bucket Overflows

B Bucket overflow can occur because of
Insufficient buckets

Skew in distribution of records. This can occur due to two
reasons:

» multiple records have same search-key value
» chosen hash function produces non-uniform distribution of key
values
B Although the probability of bucket overflow can be reduced, it cannot
be eliminated; it is handled by using overflow buckets.

©8425 - Fall 2013 - Boris Glavic 1162 @Silberschatz, Korth and Sudarshan

82

Handling of Bucket Overflows (Cont.)

m Overflow chaining — the overflow buckets of a given bucket are
chained together in a linked list.

B Above scheme is called closed hashing.

An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

bucket 0
bucket 1 — —
overflow buckets for bucket 1
bucket 2
bucket 3
©8425 - Fall 2013 - Boris Glavic 1163 @Silberschatz, Korth and Sudarshan

N

©$425 - Fall 2013 - Boris Glavic 11.65

Example of Hash Index

bucket 0

76766 | Crick Biology 72000
01| Srinivasan | Comp. 5ci. | 65000
565_| Katz Comp. Sci._| 75000
821 | Brandt | Comp.Sci. | 92000
315_| Kim Elec Eng. | 80000
21 | Wu Finance 90000

76513 | Singh Finance 50000

32313 | ElSaid | History 60000

58583 | Califieri | History 62000

15151 | Mozart | Music 40000

22020 | Einstein__| Physics 95000

33165 | Gold Physics 87000

hash index on instructor, on attribute /D

@Silberschatz, Korth and Sudarshan

Hash Indices

B Hashing can be used not only for file organization, but also for index-
structure creation.

B A hash index organizes the search keys, with their associated record
pointers, into a hash file structure.

W Strictly speaking, hash indices are always secondary indices
if the file itself is organized using hashing, a separate primary
hash index on it using the same search-key is unnecessary.
However, we use the term hash index to refer to both secondary
index structures and hash organized files.

©8425 - Fall 2013 - Boris Glavic 11.64 @Silberschatz, Korth and Sudarshan

NE Deficiencies of Static Hashing

B In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time.

If initial number of buckets is too small, and file grows, performance
will degrade due to too much overflows.

If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).

If database shrinks, again space will be wasted.
M One solution: periodic re-organization of the file with a new hash
function
Expensive, disrupts normal operations
W Better solution: allow the number of buckets to be modified dynamically.

©8425 - Fall 2013 - Boris Glavic 1166 @Silberschatz, Korth and Sudarshan

11

E Index Definition in SQL

B Create an index

create index <index-name> on <relation-name>
(<attribute-list>)

E.g.: create index b-index on branch(branch_name)

W Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate key.

Not really required if SQL unique integrity constraint is supported
B To drop an index
drop index <index-name>

B Most database systems allow specification of type of index, and
clustering.

©8425 - Fall 2013 - Boris Glavic 11.67 @Silberschatz, Korth and Sudarshan

End of Chapter

Modified from:

Database System Concepts, 6" Ed

©Silberschatz, Korth and Sudarshan
for conditions on re-use

Figure 11.01

10101 |Srinivasan | Comp. Sci. | 65000
12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 |Einstein Physics 95000 gl
32343 |El Said History 60000
33456 |Gold Physics 87000

|

|

|

JVVVVVVVVVVV

45565 |Katz Comp. Sci. | 75000

58583 |Califieri History 62000 4
76543 |Singh Finance 80000 <
76766 |Crick Biology 72000 -
83821 |Brandt Comp. Sci. | 92000 .
98345 |Kim Elec. Eng. | 80000 |

Figure 11.15

[JEtec.Eng] | I} [usic T 1

[[Siotony [[oremisg]}——| e Eng] [Finamee [} [Fion [[[3—+[[vasie [[oy]]

©8425 - Fall 2013 - Boris Glavic 1170 @Silberschatz, Korth and Sudarshan

N Partitioned Hashing

W Hash values are split into segments that depend on each
attribute of the search-key.

(A, Ay, ..., A)for n attribute search-key

W Example: n =2, for customer, search-key being
(customer-street, customer-city)

search-key value hash value
(Main, Harrison) 101 111
(Main, Brooklyn) 101 001
(Park, Palo Alto) 010010
(Spring, Brooklyn) 001 001
(Alma, Palo Alto) 110010

W To answer equality query on single attribute, need to look up
multiple buckets. Similar in effect to grid files.

©8425 - Fall 2013 - Boris Glavic "7 @Silberschatz, Korth and Sudarshan

Grid Files

W Structure used to speed the processing of general multiple search-
key queries involving one or more comparison operators.

W The grid file has a single grid array and one linear scale for each
search-key attribute. The grid array has number of dimensions
equal to number of search-key attributes.

B Multiple cells of grid array can point to same bucket

B To find the bucket for a search-key value, locate the row and column
of its cell using the linear scales and follow pointer

©8425 - Fall 2013 - Boris Glavic 172 @Silberschatz, Korth and Sudarshan

12

N Example Grid File for account

1 | HH

li [Townsend ! i

b [Porryridge | 5 i i

P [Mianus !
1 [Central F
I |
[Linear scale for i
branch_nate 1 1

olf HA

GridAray 0 1 2 3 4 5 6
[T 2k [sk [10k [50k [100K | Buckets
1 2 3 4 5 6
Linear scale for balance
5425 - Fall 2013 - Boris Glavic 173 @Silberschatz, Korth and Sudarshan

& Queries on a Grid File

M A grid file on two attributes A and B can handle queries of all following
forms with reasonable efficiency
(ay=sAsay)
(by=Bsb,)
(ay=Asa, A by=Bsb,),.
B E.g,toanswer(a,sAsa, A b, < Bs=b,), use linear scales to find

corresponding candidate grid array cells, and look up all the buckets
pointed to from those cells.

©8425 - Fall 2013 - Boris Glavic 1174 @Silberschatz, Korth and Sudarshan

Grid Files (Cont.)

W During insertion, if a bucket becomes full, new bucket can be created
if more than one cell points to it.

Idea similar to extendable hashing, but on multiple dimensions

If only one cell points to it, either an overflow bucket must be
created or the grid size must be increased

W Linear scales must be chosen to uniformly distribute records across
cells.

Otherwise there will be too many overflow buckets.
B Periodic re-organization to increase grid size will help.
But reorganization can be very expensive.
B Space overhead of grid array can be high.

R-trees (Chapter 23) are an alternative

©8425 - Fall 2013 - Boris Glavic 175 @Silberschatz, Korth and Sudarshan

13

