

Chapter 10 : Concurrency Control

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

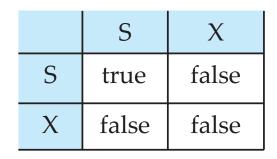
Chapter 10: Concurrency Control

Lock-Based Protocols

- Timestamp-Based Protocols
- Validation-Based Protocols
- Multiple Granularity
- Multiversion Schemes
- Insert and Delete Operations
- Concurrency in Index Structures

Intuition of Lock-based Protocols

- Transactions have to acquire locks on data items before accessing them
- If a lock is hold by one transaction on a data item this restricts the ability of other transactions to acquire locks for that data item
- By locking a data item we want to ensure that no access to that data item is possible that would lead to non-serializable schedules
- The trick is to design a lock model and protocol that guarantees that
- Lock-based concurrency protocols are a form of pessimistic concurrency control mechanism
 - We avoid ever getting into a state that can lead to a non-serializable schedule
- Alternative concurrency control mechanism do not avoid conflicts, but determine later on (at commit time) whether committing a transaction would cause a non-serializable schedule to be generated
 - Optimistic concurrency control mechanism


Lock-Based Protocols

- A lock is a mechanism to control concurrent access to a data itemData items can be locked in two modes :
 - 1. *exclusive (X) mode*. Data item can be both read as well as written. X-lock is requested using **lock-X** instruction.
- 2. *shared (S) mode*. Data item can only be read. S-lock is requested using **lock-S** instruction.
- Lock requests are made to concurrency-control manager.
 - Transaction do not access data items before having acquired a lock on that data item
 - Transactions release their locks on a data item only after they have accessed a data item

Lock-Based Protocols (Cont.)

Lock-compatibility matrix

- A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions
- Any number of transactions can hold shared locks on an item,
 - but if any transaction holds an exclusive lock on the item no other transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.

Lock-Based Protocols (Cont.)

Example of a transaction performing locking:

*T*₂: lock-S(*A*); read (*A*); unlock(*A*); lock-S(*B*); read (*B*); unlock(*B*); display(*A*+*B*)

- Locking as above is not sufficient to guarantee serializability if A and B get updated in-between the read of A and B, the displayed sum would be wrong.
- A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking protocols restrict the set of possible schedules.

Pitfalls of Lock-Based Protocols

Consider the partial schedule

T_{3}	T_4
lock-x (B)	
read (B)	
B := B - 50	
write (<i>B</i>)	lock-s (A)
	read (A)
	lock-s (B)
lock-x (A)	

- Neither T_3 nor T_4 can make progress executing **lock-S**(*B*) causes T_4 to wait for T_3 to release its lock on *B*, while executing **lock-X**(*A*) causes T_3 to wait for T_4 to release its lock on *A*.
- Such a situation is called a **deadlock**.
 - To handle a deadlock one of T_3 or T_4 must be rolled back and its locks released.

Pitfalls of Lock-Based Protocols (Cont.)

- The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.
- Starvation is also possible if the concurrency control manager is badly designed. For example:
 - A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
 - The same transaction is repeatedly rolled back due to deadlocks.
 - Concurrency control managers can be designed to prevent starvation.

The Two-Phase Locking Protocol

- This is a protocol which ensures conflict-serializable schedules.
- Phase 1: Growing Phase
 - transaction may obtain locks
 - transaction may not release locks
- Phase 2: Shrinking Phase
 - transaction may release locks
 - transaction may not obtain locks
- The protocol assures serializability. It can be proved that the transactions can be serialized in the order of their lock points (i.e. the point where a transaction acquired its final lock).

The Two-Phase Locking Protocol (Cont.)

- Two-phase locking *does not* ensure freedom from deadlocks
- Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.
- Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this protocol transactions can be serialized in the order in which they commit.

The Two-Phase Locking Protocol (Cont.)

- There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.
- However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for conflict serializability in the following sense:
 - Given a transaction T_i that does not follow two-phase locking, we can find a transaction T_j that uses two-phase locking, and a schedule for T_i and T_j that is not conflict serializable.

Lock Conversions

- Two-phase locking with lock conversions:
- First Phase:
 - can acquire a lock-S on item
 - can acquire a lock-X on item
 - can convert a lock-S to a lock-X (upgrade)
- Second Phase:
 - can release a lock-S
 - can release a lock-X
 - can convert a lock-X to a lock-S (downgrade)
- This protocol assures serializability. But still relies on the programmer to insert the various locking instructions.

Automatic Acquisition of Locks

- A transaction T_i issues the standard read/write instruction, without explicit locking calls.
- The operation **read**(*D*) is processed as:

if T_i has a lock on D
then
read(D)
else begin

```
if necessary wait until no other
transaction has a lock-X on D
grant T_i a lock-S on D;
read(D)
end
```


Automatic Acquisition of Locks (Cont.)

write(D) is processed as:

if T_i has a lock-X on D

then

write(D)

else begin

```
if necessary wait until no other trans. has any lock on D,
```

if T_i has a **lock-S** on D

then

upgrade lock on D to lock-X

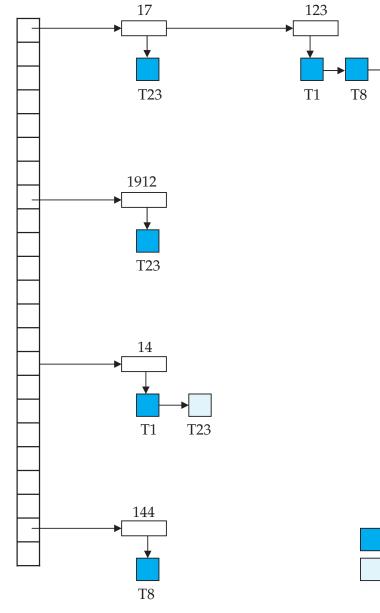
else

```
grant T_i a lock-X on D
```

write(D)

end;

All locks are released after commit or abort


Implementation of Locking

- A lock manager can be implemented as a separate process to which transactions send lock and unlock requests
- The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to roll back, in case of a deadlock)
- The requesting transaction waits until its request is answered
- The lock manager maintains a data-structure called a lock table to record granted locks and pending requests
- The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being locked

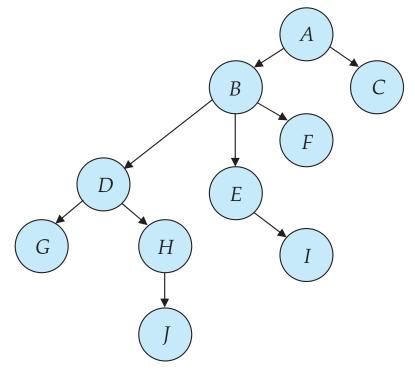
Lock Table

T2

- Black rectangles indicate granted locks, white ones indicate waiting requests
- Lock table also records the type of lock granted or requested
- New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all earlier locks
- Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted
- If transaction aborts, all waiting or granted requests of the transaction are deleted
 - lock manager may keep a list of locks held by each transaction, to implement this efficiently

granted

waiting



Graph-Based Protocols

- Graph-based protocols are an alternative to two-phase locking
 Impose a partial ordering → on the set D = {d₁, d₂,..., d_h} of all data items.
 - If $d_i \rightarrow d_j$ then any transaction accessing both d_i and d_j must access d_i before accessing d_j .
 - Implies that the set D may now be viewed as a directed acyclic graph, called a *database graph*.
 - The *tree-protocol* is a simple kind of graph protocol.

Tree Protocol

- 1. Only exclusive locks are allowed.
- 2. The first lock by T_i may be on any data item. Subsequently, a data Q can be locked by T_i only if the parent of Q is currently locked by T_i .
- 3. Data items may be unlocked at any time.
- 4. A data item that has been locked and unlocked by T_i cannot subsequently be relocked by T_i

Graph-Based Protocols (Cont.)

- The tree protocol ensures conflict serializability as well as freedom from deadlock.
- Unlocking may occur earlier in the tree-locking protocol than in the twophase locking protocol.
 - shorter waiting times, and increase in concurrency
 - protocol is deadlock-free, no rollbacks are required
- Drawbacks
 - Protocol does not guarantee recoverability or cascade freedom
 - Need to introduce commit dependencies to ensure recoverability
 - Transactions may have to lock data items that they do not access.
 - increased locking overhead, and additional waiting time
 - potential decrease in concurrency
- Schedules not possible under two-phase locking are possible under tree protocol, and vice versa.

Deadlock Handling

Consider the following two transactions: T_1 :write (X) T_2 :write(Y)write(Y)write(X)write(X)

Schedule with deadlock

T_1	T_2
lock-X on A write (A)	
	lock-X on B write (B) wait for lock-X on A
wait for lock-X on B	

Deadlock Handling

- System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for another transaction in the set.
- Deadlock prevention protocols ensure that the system will never enter into a deadlock state. Some prevention strategies :
 - Require that each transaction locks all its data items before it begins execution (predeclaration).
 - Impose partial ordering of all data items and require that a transaction can lock data items only in the order specified by the partial order (graph-based protocol).

More Deadlock Prevention Strategies

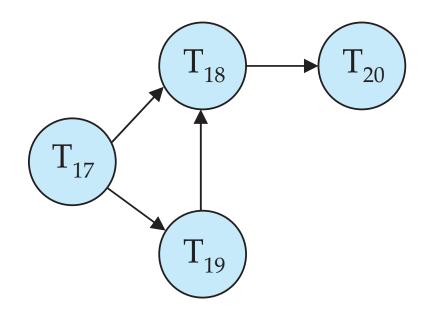
- Following schemes use transaction timestamps for the sake of deadlock prevention alone.
- wait-die scheme non-preemptive
 - older transaction may wait for younger one to release data item.
 Younger transactions never wait for older ones; they are rolled back instead.
 - a transaction may die several times before acquiring needed data item
 - wound-wait scheme preemptive
 - older transaction *wounds* (forces rollback) of younger transaction instead of waiting for it. Younger transactions may wait for older ones.
 - may be fewer rollbacks than wait-die scheme.

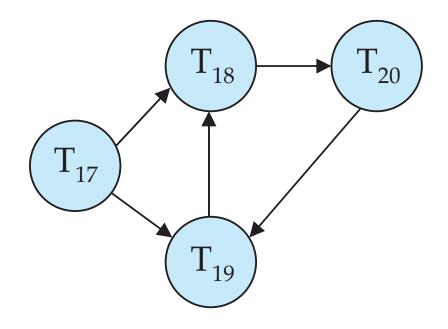
Deadlock prevention (Cont.)

Both in *wait-die* and in *wound-wait* schemes, a rolled back transactions is restarted with its original timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided.

Timeout-Based Schemes:

- a transaction waits for a lock only for a specified amount of time.
 After that, the wait times out and the transaction is rolled back.
- thus deadlocks are not possible
- simple to implement; but starvation is possible. Also difficult to determine good value of the timeout interval.




Deadlock Detection

- Deadlocks can be described as a *wait-for graph*, which consists of a pair G = (V, E),
 - *V* is a set of vertices (all the transactions in the system)
 - *E* is a set of edges; each element is an ordered pair $T_i \rightarrow T_j$.
- If $T_i \rightarrow T_j$ is in *E*, then there is a directed edge from T_i to T_j , implying that T_i is waiting for T_j to release a data item.
- When T_i requests a data item currently being held by T_j , then the edge T_i , T_j is inserted in the wait-for graph. This edge is removed only when T_j is no longer holding a data item needed by T_j .
- The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-detection algorithm periodically to look for cycles.

Deadlock Detection (Cont.)

Wait-for graph without a cycle

Wait-for graph with a cycle

Deadlock Recovery

When deadlock is detected :

- Some transaction will have to rolled back (made a victim) to break deadlock. Select that transaction as victim that will incur minimum cost.
- Rollback -- determine how far to roll back transaction
 - Total rollback: Abort the transaction and then restart it.
 - More effective to roll back transaction only as far as necessary to break deadlock.
- Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks in the cost factor to avoid starvation

Multiple Granularity

- Allow data items to be of various sizes and define a hierarchy of data granularities, where the small granularities are nested within larger ones
- Can be represented graphically as a tree (but don't confuse with treelocking protocol)
- When a transaction locks a node in the tree *explicitly*, it *implicitly* locks all the node's descendents in the same mode.
- Granularity of locking (level in tree where locking is done):
 - fine granularity (lower in tree): high concurrency, high locking overhead
 - coarse granularity (higher in tree): low locking overhead, low concurrency

Example of Granularity Hierarchy DB A_2 A_1 F_c F_{b} Fa r_cm r_{an} r_{a2} r_{b_k} r_{a_1} r_{b_1} r_{c_1} The levels, starting from the coarsest (top) level are

- database
- e area
- file
- record

Intention Lock Modes

In addition to S and X lock modes, there are three additional lock modes with multiple granularity:

- intention-shared (IS): indicates explicit locking at a lower level of the tree but only with shared locks.
- intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks
- shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in shared mode and explicit locking is being done at a lower level with exclusive-mode locks.
- Intention locks allow a higher level node to be locked in S or X mode without having to check all descendent nodes.

The compatibility matrix for all lock modes is:

	IS	IX	S	SIX	Х
IS	true	true	true	true	false
IX	true	true	false	false	false
S	true	false	true	false	false
SIX	true	false	false	false	false
Х	false	false	false	false	false

Multiple Granularity Locking Scheme

Transaction T_i can lock a node Q, using the following rules:

- 1. The lock compatibility matrix must be observed.
- 2. The root of the tree must be locked first, and may be locked in any mode.
- 3. A node Q can be locked by T_i in S or IS mode only if the parent of Q is currently locked by T_i in either IX or IS mode.
- 4. A node Q can be locked by T_i in X, SIX, or IX mode only if the parent of Q is currently locked by T_i in either IX or SIX mode.
- 5. T_i can lock a node only if it has not previously unlocked any node (that is, T_i is two-phase).
- 6. T_i can unlock a node Q only if none of the children of Q are currently locked by T_i .
- Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order.
- Lock granularity escalation: in case there are too many locks at a particular level, switch to higher granularity S or X lock

Timestamp-Based Protocols

- Each transaction is issued a timestamp when it enters the system. If an old transaction T_i has time-stamp $TS(T_i)$, a new transaction T_j is assigned time-stamp $TS(T_j)$ such that $TS(T_i) < TS(T_j)$.
- The protocol manages concurrent execution such that the time-stamps determine the serializability order.
- In order to assure such behavior, the protocol maintains for each data Q two timestamp values:
 - W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
 - R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

Timestamp-Based Protocols (Cont.)

- The timestamp ordering protocol ensures that any conflicting **read** and **write** operations are executed in timestamp order.
- Suppose a transaction T_i issues a **read**(*Q*)
 - 1. If $TS(T_i) \le W$ -timestamp(*Q*), then T_i needs to read a value of *Q* that was already overwritten.
 - Hence, the **read** operation is rejected, and T_i is rolled back.
 - 2. If $TS(T_i) \ge W$ -timestamp(Q), then the **read** operation is executed, and R-timestamp(Q) is set to **max**(R-timestamp(Q), $TS(T_i)$).

Timestamp-Based Protocols (Cont.)

Suppose that transaction T_i issues write(Q).

- 1. If $TS(T_i) < R$ -timestamp(Q), then the value of Q that T_i is producing was needed previously, and the system assumed that that value would never be produced.
 - Hence, the write operation is rejected, and T_i is rolled back.
- 2. If $TS(T_i) < W$ -timestamp(Q), then T_i is attempting to write an obsolete value of Q.

Hence, this write operation is rejected, and T_i is rolled back.

3. Otherwise, the **write** operation is executed, and W-timestamp(Q) is set to TS(T_i).

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

T_1	T_2	T_3	T_4	T_5
read (Y)	read (Y)	write (Y) write (Z)		read (X)
read (X)	read (Z) abort	write (W)	read (W)	read (Z)
		abort		write (Y) write (Z)

Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

- Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
- But the schedule may not be cascade-free, and may not even be recoverable.

Recoverability and Cascade Freedom

Problem with timestamp-ordering protocol:

- Suppose T_i aborts, but T_j has read a data item written by T_i
- Then T_j must abort; if T_j had been allowed to commit earlier, the schedule is not recoverable.
- Further, any transaction that has read a data item written by T_j must abort
- This can lead to cascading rollback --- that is, a chain of rollbacks
- Solution 1:
 - A transaction is structured such that its writes are all performed at the end of its processing
 - All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written
 - A transaction that aborts is restarted with a new timestamp
- Solution 2: Limited form of locking: wait for data to be committed before reading it
 - Solution 3: Use commit dependencies to ensure recoverability

Thomas' Write Rule

- Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
- When T_i attempts to write data item Q, if $TS(T_i) < W$ -timestamp(Q), then T_i is attempting to write an obsolete value of $\{Q\}$.
 - Rather than rolling back T_i as the timestamp ordering protocol would have done, this {**write**} operation can be ignored.
- Otherwise this protocol is the same as the timestamp ordering protocol.
- Thomas' Write Rule allows greater potential concurrency.
 - Allows some view-serializable schedules that are not conflictserializable.

Validation-Based Protocol

- Execution of transaction T_i is done in three phases.
- **1. Read and execution phase**: Transaction T_i writes only to temporary local variables
- **2. Validation phase**: Transaction T_i performs a ``validation test" to determine if local variables can be written without violating serializability.
- **3.** Write phase: If T_i is validated, the updates are applied to the database; otherwise, T_i is rolled back.
- The three phases of concurrently executing transactions can be interleaved, but each transaction must go through the three phases in that order.
 - Assume for simplicity that the validation and write phase occur together, atomically and serially
 - I.e., only one transaction executes validation/write at a time.
 - Also called as **optimistic concurrency control** since transaction executes fully in the hope that all will go well during validation

Validation-Based Protocol (Cont.)

Each transaction T_i has 3 timestamps

- Start(T_i) : the time when T_i started its execution
- Validation(T_i): the time when T_i entered its validation phase
- Finish(T_i) : the time when T_i finished its write phase
- Serializability order is determined by timestamp given at validation time, to increase concurrency.
 - Thus $TS(T_i)$ is given the value of Validation (T_i) .
 - This protocol is useful and gives greater degree of concurrency if probability of conflicts is low.
 - because the serializability order is not pre-decided, and
 - relatively few transactions will have to be rolled back.

Validation Test for Transaction T_j

- If for all T_i with TS $(T_i) < TS(T_j)$ either one of the following condition holds:
 - finish $(T_i) <$ start (T_j)
 - **start**(T_j) < **finish**(T_j) < **validation**(T_j) and the set of data items written by T_j does not intersect with the set of data items read by T_j .

then validation succeeds and T_j can be committed. Otherwise, validation fails and T_j is aborted.

- *Justification*: Either the first condition is satisfied, and there is no overlapped execution, or the second condition is satisfied and
 - the writes of T_j do not affect reads of T_i since they occur after T_i has finished its reads.
 - the writes of T_i do not affect reads of T_j since T_j does not read any item written by T_i .

Schedule Produced by Validation

Example of schedule produced using validation

T_{25}	T_{26}
read (B)	
	read (B)
	B := B 50
	read (A)
	A := A + 50
read (A)	
(validate)	
display $(A + B)$	
1	< validate >
	write (<i>B</i>)
	write (A)

Multiversion Schemes

Multiversion schemes keep old versions of data item to increase concurrency.

- Multiversion Timestamp Ordering
- Multiversion Two-Phase Locking
- Each successful write results in the creation of a new version of the data item written.
- Use timestamps to label versions.
- When a read(Q) operation is issued, select an appropriate version of Q based on the timestamp of the transaction, and return the value of the selected version.
- reads never have to wait as an appropriate version is returned immediately.

Multiversion Timestamp Ordering

- Each data item *Q* has a sequence of versions $\langle Q_1, Q_2, ..., Q_m \rangle$. Each version Q_k contains three data fields:
 - **Content** -- the value of version Q_k .
 - W-timestamp(Q_k) -- timestamp of the transaction that created (wrote) version Q_k
 - R-timestamp(Q_k) -- largest timestamp of a transaction that successfully read version Q_k
- when a transaction T_i creates a new version Q_k of Q, Q_k 's W-timestamp and R-timestamp are initialized to $TS(T_i)$.
- R-timestamp of Q_k is updated whenever a transaction T_j reads Q_k , and $TS(T_j) > R$ -timestamp (Q_k) .

Multiversion Timestamp Ordering (Cont)

- Suppose that transaction T_i issues a **read**(Q) or **write**(Q) operation. Let Q_k denote the version of Q whose write timestamp is the largest write timestamp less than or equal to TS(T_i).
 - 1. If transaction T_i issues a **read**(Q), then the value returned is the content of version Q_k .
 - 2. If transaction T_i issues a write(Q)
 - 1. if $TS(T_i) < R$ -timestamp(Q_k), then transaction T_i is rolled back.
 - 2. if TS(T_i) = W-timestamp(Q_k), the contents of Q_k are overwritten
 - 3. else a new version of *Q* is created.
- Observe that
 - Reads always succeed
 - A write by T_i is rejected if some other transaction T_j that (in the serialization order defined by the timestamp values) should read T_i's write, has already read a version created by a transaction older than T_i.
- Protocol guarantees serializability

Multiversion Two-Phase Locking

- Differentiates between read-only transactions and update transactions
- *Update transactions* acquire read and write locks, and hold all locks up to the end of the transaction. That is, update transactions follow rigorous two-phase locking.
 - Each successful write results in the creation of a new version of the data item written.
 - each version of a data item has a single timestamp whose value is obtained from a counter ts-counter that is incremented during commit processing.
- Read-only transactions are assigned a timestamp by reading the current value of ts-counter before they start execution; they follow the multiversion timestamp-ordering protocol for performing reads.

Multiversion Two-Phase Locking (Cont.)

- When an update transaction wants to read a data item:
 - it obtains a shared lock on it, and reads the latest version.
- When it wants to write an item
 - It obtains X lock on; it then creates a new version of the item and sets this version's timestamp to ∞.
- When update transaction T_i completes, commit processing occurs:
 - T_i sets timestamp on the versions it has created to **ts-counter** + 1
 - *T_i* increments **ts-counter** by 1
- Read-only transactions that start after T_i increments **ts-counter** will see the values updated by T_i .
- Read-only transactions that start before T_i increments the **ts-counter** will see the value before the updates by T_i .
- Only serializable schedules are produced.

MVCC: Implementation Issues

Creation of multiple versions increases storage overhead

- Extra tuples
- Extra space in each tuple for storing version information

Versions can, however, be garbage collected

 E.g. if Q has two versions Q5 and Q9, and the oldest active transaction has timestamp > 9, than Q5 will never be required again

Snapshot Isolation

- Motivation: Decision support queries that read large amounts of data have concurrency conflicts with OLTP transactions that update a few rows
 - Poor performance results
- Solution 1: Give logical "snapshot" of database state to read only transactions, read-write transactions use normal locking
 - Multiversion 2-phase locking
 - Works well, but how does system know a transaction is read only?
- Solution 2: Give snapshot of database state to every transaction, updates alone use 2-phase locking to guard against concurrent updates
 - Problem: variety of anomalies such as lost update can result
 - Partial solution: snapshot isolation level (next slide)
 - Proposed by Berenson et al, SIGMOD 1995
 - Variants implemented in many database systems
 - E.g. Oracle, PostgreSQL, SQL Server 2005

Snapshot Isolation

- A transaction T1 executing with Snapshot Isolation
 - takes snapshot of committed data at start
 - always reads/modifies data in its own snapshot
 - updates of concurrent transactions are not visible to T1
 - writes of T1 complete when it commits
 - First-committer-wins rule:
 - Commits only if no other concurrent transaction has already written data that T1 intends to write.

Concurrent updates not visible Own updates are visible Not first-committer of X Serialization error, T2 is rolled back

T1	T2	Т3
W(Y := 1)		
Commit		
	Start	
	$R(X) \rightarrow 0$	
	R(Y)→ 1	
		W(X:=2)
		W(Z:=3)
		Commit
	$R(Z) \rightarrow 0$	
	R(Y) → 1	
	W(X:=3)	
	Commit-Req	
	Abort	

Snapshot Read

Concurrent updates invisible to snapshot read

 $X_0 = 100, Y_0 = 0$

T ₁ deposits 50 in Y	T_2 withdraws 50 from X
$r_1(X_0, 100)$	
$r_1(X_0, 100)$ $r_1(Y_0, 0)$	
	$r_2(Y_0, 0)$ $r_2(X_0, 100)$ $w_2(X_2, 50)$
	$r_2(X_0, 100)$
	$w_2(X_2,50)$
$w_1(Y_1, 50)$	
$r_1(X_0, 100)$ (update by T_2 not seen)	
$r_1(Y_1,50)$ (can see its own updates)	
	$r_2(Y_0,0)$ (update by $ au_1$ not seen)
0, Y ₁ = 50	

 X_2

1

Snapshot Write: First Committer Wins

*X*₀ = 100

T ₁ deposits 50 in X	T_2 withdraws 50 from X
$r_1(X_0, 100)$	$r_2(X_0, 100)$ $w_2(X_2, 50)$
$w_1(X_1, 150)$ commit ₁	
	$COMMIt_2$ (Serialization Error T_2 is rolled back)

 $X_1 = 150$

- Variant: "First-updater-wins"
 - Check for concurrent updates when write occurs by locking item
 - But lock should be held till all concurrent transactions have finished
 - (Oracle uses this plus some extra features)
 - Differs only in when abort occurs, otherwise equivalent

CS425 - Fall 2013 - Boris Glavic

Benefits of SI

- Reading is never blocked,
 - and also doesn't block other txns activities
- Performance similar to Read Committed
- Avoids the usual anomalies
 - No dirty read
 - No lost update
 - No non-repeatable read
 - Predicate based selects are repeatable (no phantoms)
- Problems with SI
 - SI does not always give serializable executions
 - Serializable: among two concurrent txns, one sees the effects of the other
 - In SI: neither sees the effects of the other
 - Result: Integrity constraints can be violated

Snapshot Isolation

E.g. of problem with SI

- T1: x:=y
- T2: y:= x
- Initially x = 3 and y = 17
 - Serial execution: x = ??, y = ??
 - if both transactions start at the same time, with snapshot isolation: x = ??, y = ??
- Called skew write
- Skew also occurs with inserts
 - E.g:
 - Find max order number among all orders
 - Create a new order with order number = previous max + 1

Snapshot Isolation Anomalies

SI breaks serializability when txns modify *different* items, each based on a previous state of the item the other modified

- Not very common in practice
 - E.g., the TPC-C benchmark runs correctly under SI
 - when txns conflict due to modifying different data, there is usually also a shared item they both modify too (like a total quantity) so SI will abort one of them
- But does occur
 - Application developers should be careful about write skew
- SI can also cause a read-only transaction anomaly, where read-only transaction may see an inconsistent state even if updaters are serializable
 - We omit details
- Using snapshots to verify primary/foreign key integrity can lead to inconsistency
 - Integrity constraint checking usually done outside of snapshot

SI In Oracle and PostgreSQL

- Warning: SI used when isolation level is set to serializable, by Oracle, and PostgreSQL versions prior to 9.1
 - PostgreSQL's implementation of SI (versions prior to 9.1) described in Section 26.4.1.3
 - Oracle implements "first updater wins" rule (variant of "first committer wins")
 - concurrent writer check is done at time of write, not at commit time
 - Allows transactions to be rolled back earlier
 - Oracle and PostgreSQL < 9.1 do not support true serializable execution
 - PostgreSQL 9.1 introduced new protocol called "Serializable Snapshot Isolation" (SSI)
 - Which guarantees true serializability including handling predicate reads (coming up)

SI In Oracle and PostgreSQL

- Can sidestep SI for specific queries by using select .. for update in Oracle and PostgreSQL
 - E.g.,
 - 1. select max(orderno) from orders for update
 - 2. read value into local variable maxorder
 - 3. insert into orders (maxorder+1, ...)
 - Select for update (SFU) treats all data read by the query as if it were also updated, preventing concurrent updates
 - Does not always ensure serializability since phantom phenomena can occur (coming up)
- In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks when the transaction completes, even if other concurrent transactions are active
 - Not quite same as SFU in Oracle, which keeps locks until all
 - concurrent transactions have completed

Insert and Delete Operations

- If two-phase locking is used :
 - A delete operation may be performed only if the transaction deleting the tuple has an exclusive lock on the tuple to be deleted.
 - A transaction that inserts a new tuple into the database is given an X-mode lock on the tuple

Insertions and deletions can lead to the phantom phenomenon.

- A transaction that scans a relation
 - (e.g., find sum of balances of all accounts in Perryridge)
 and a transaction that inserts a tuple in the relation
 - (e.g., insert a new account at Perryridge)
 - (conceptually) conflict in spite of not accessing any tuple in common.
- If only tuple locks are used, non-serializable schedules can result
 - E.g. the scan transaction does not see the new account, but reads some other tuple written by the update transaction

Insert and Delete Operations (Cont.)

- The transaction scanning the relation is reading information that indicates what tuples the relation contains, while a transaction inserting a tuple updates the same information.
 - The conflict should be detected, e.g. by locking the information.
- One solution:
 - Associate a data item with the relation, to represent the information about what tuples the relation contains.
 - Transactions scanning the relation acquire a shared lock in the data item,
 - Transactions inserting or deleting a tuple acquire an exclusive lock on the data item. (Note: locks on the data item do not conflict with locks on individual tuples.)
- Above protocol provides very low concurrency for insertions/deletions.
- Index locking protocols provide higher concurrency while preventing the phantom phenomenon, by requiring locks on certain index buckets.

Index Locking Protocol

Index locking protocol:

- Every relation must have at least one index.
- A transaction can access tuples only after finding them through one or more indices on the relation
- A transaction T_i that performs a lookup must lock all the index leaf nodes that it accesses, in S-mode
 - Even if the leaf node does not contain any tuple satisfying the index lookup (e.g. for a range query, no tuple in a leaf is in the range)
- A transaction T_i that inserts, updates or deletes a tuple t_i in a relation r
 - must update all indices to r
 - must obtain exclusive locks on all index leaf nodes affected by the insert/update/delete
- The rules of the two-phase locking protocol must be observed
- Guarantees that phantom phenomenon won't occur

Next-Key Locking

- Index-locking protocol to prevent phantoms required locking entire leaf
 - Can result in poor concurrency if there are many inserts
- Alternative: for an index lookup
 - Lock all values that satisfy index lookup (match lookup value, or fall in lookup range)
 - Also lock next key value in index
 - Lock mode: S for lookups, X for insert/delete/update
 - Ensures that range queries will conflict with inserts/deletes/updates
 - Regardless of which happens first, as long as both are concurrent

Concurrency in Index Structures

- Indices are unlike other database items in that their only job is to help in accessing data.
- Index-structures are typically accessed very often, much more than other database items.
 - Treating index-structures like other database items, e.g. by 2-phase locking of index nodes can lead to low concurrency.
- There are several index concurrency protocols where locks on internal nodes are released early, and not in a two-phase fashion.
 - It is acceptable to have nonserializable concurrent access to an index as long as the accuracy of the index is maintained.
 - In particular, the exact values read in an internal node of a B⁺-tree are irrelevant so long as we land up in the correct leaf node.

Concurrency in Index Structures (Cont.)

- Example of index concurrency protocol:
- Use crabbing instead of two-phase locking on the nodes of the B⁺-tree, as follows. During search/insertion/deletion:
 - First lock the root node in shared mode.
 - After locking all required children of a node in shared mode, release the lock on the node.
 - During insertion/deletion, upgrade leaf node locks to exclusive mode.
 - When splitting or coalescing requires changes to a parent, lock the parent in exclusive mode.
- Above protocol can cause excessive deadlocks
 - Searches coming down the tree deadlock with updates going up the tree
 - Can abort and restart search, without affecting transaction
- Better protocols are available; see Section 16.9 for one such protocol, the B-link tree protocol
 - Intuition: release lock on parent before acquiring lock on child
 - And deal with changes that may have happened between lock release and acquire

Weak Levels of Consistency

Degree-two consistency: differs from two-phase locking in that S-locks may be released at any time, and locks may be acquired at any time

- X-locks must be held till end of transaction
- Serializability is not guaranteed, programmer must ensure that no erroneous database state will occur]

Cursor stability:

- For reads, each tuple is locked, read, and lock is immediately released
- X-locks are held till end of transaction
- Special case of degree-two consistency

Weak Levels of Consistency in SQL

SQL allows non-serializable executions

- Serializable: is the default
- Repeatable read: allows only committed records to be read, and repeating a read should return the same value (so read locks should be retained)
 - However, the phantom phenomenon need not be prevented
 - T1 may see some records inserted by T2, but may not see others inserted by T2
- Read committed: same as degree two consistency, but most systems implement it as cursor-stability
- **Read uncommitted**: allows even uncommitted data to be read
- In many database systems, read committed is the default consistency level
 - has to be explicitly changed to serializable when required
 - set isolation level serializable

Transactions across User Interaction

- Many applications need transaction support across user interactions
 - Can't use locking
 - Don't want to reserve database connection per user
- Application level concurrency control
 - Each tuple has a version number
 - Transaction notes version number when reading tuple
 - select r.balance, r.version into :A, :version from r where acctld =23
 - When writing tuple, check that current version number is same as the version when tuple was read
 - update r set r.balance = r.balance + :deposit where acctld = 23 and r.version = :version
- Equivalent to optimistic concurrency control without validating read set
- Used internally in Hibernate ORM system, and manually in many applications
- Version numbering can also be used to support first committer wins check of snapshot isolation
 - Unlike SI, reads are not guaranteed to be from a single snapshot

End of Chapter

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot Isolation examples

modified from:

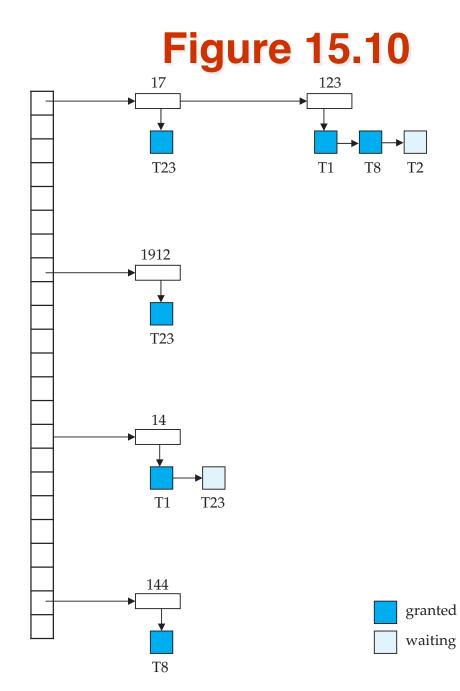
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

	S	Х
S	true	false
Х	false	false

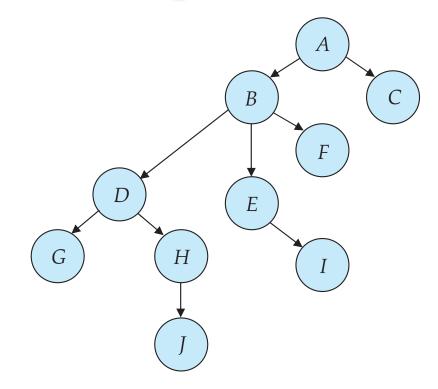
T_1	T_2	concurrency-control manager
lock-x (B) read (B) B := B - 50 write (B) unlock (B)	lock-s (A)	grant-x (<i>B, T</i> ₁)
	read (A) unlock (A) lock-s (B) read (B) unlock (B) display $(A + B)$	grant-s (A , T_2) grant-s (B , T_2)
lock-x (A) read (A) A := A + 50 write (A) unlock (A)		grant-x (A, T ₂)

T_{3}	T_4
lock-x (B)	
read (B)	
B := B - 50	
write (B)	
	lock-s (A)
	read (A)
	lock-s (B)
lock-x (A)	×



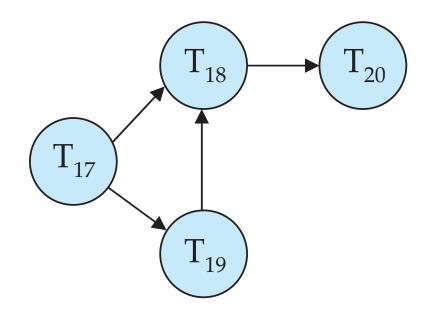
T_5	T_6	T_7
lock-x (A) read (A) lock-s (B) read (B) write (A) unlock (A)	lock-x (A) read (A) write (A) unlock (A)	lock-s (A) read (A)

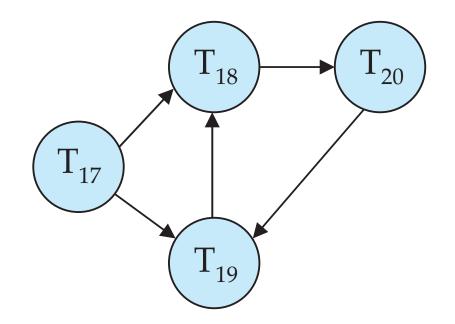
$T_{\mathcal{B}}$	T_9
lock-s (a_1)	
lock-s (a_2)	lock-s (a_1)
10CK 5 (u ₂)	lock-s (a_2)
lock-s (a_3)	
lock-s (a_4)	
	unlock-s (a_3)
	unlock-s (a_4)
lock-s (a_n)	
upgrade (a_1)	



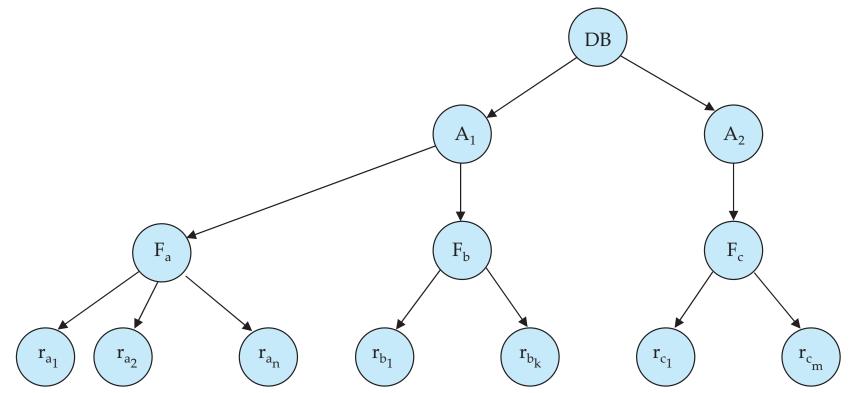
CS425 - Fall 2013 - Boris Glavic

©Silberschatz, Korth and Sudarshan





T ₁₀	T ₁₁	T ₁₂	T ₁₃
lock-x (B)			
	lock-x (D) lock-x (H)		
	unlock (D)		
lock-x (E)			
lock-x (D) unlock (B)			
unlock (E)			
		lock-x (B)	
	unlock (<i>H</i>)	lock-x (E)	
lock-x (G)			
unlock (D)			
			lock-x (D) lock-x (H)
			unlock (D)
		uplock(E)	unlock (H)
		unlock (E) unlock (B)	
unlock (G)		(-)	

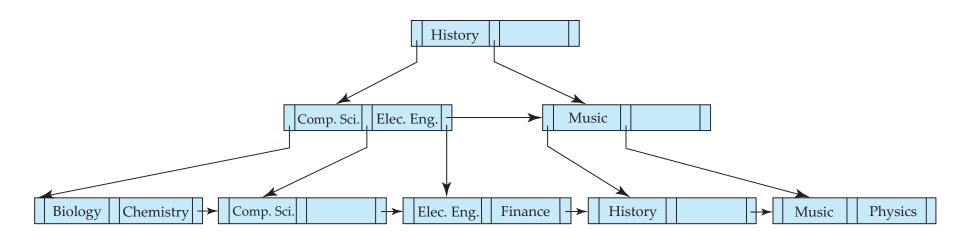


	IS	IX	S	SIX	Х
IS	true	true	true	true	false
IX	true	true	false	false	false
S	true	false	true	false	false
SIX	true	false	false	false	false
Х	false	false	false	false	false

T_{25}	T_{26}
read (B)	
	read (B)
	B := B - 50
	write (B)
read (A)	
	read (A)
display $(A + B)$	
	A := A + 50
	write (A)
	display $(A + B)$

T ₂₇	T ₂₈
read (Q)	
write (Q)	write (<i>Q</i>)

T_{25}	T_{26}
read (B)	
	read (B)
	B := B - 50
	read (A)
	A := A + 50
read (A)	
< validate >	
display $(A + B)$	
	< validate >
	write (B)
	write (A)



T_{32}	T_{33}
lock-s (Q) read (Q) unlock (Q)	
	lock-x (Q) read (Q) write (Q) unlock (Q)
lock-s (Q) read (Q) unlock (Q)	

	S	Х	Ι
S	true	false	false
Х	false	false	false
Ι	false	false	true

Figure in-15.1

<i>T</i> ₂₇	T_{28}	T_{29}
read (Q)		
write (Q)	write (Q)	
		write (Q)