
1

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Chapter 10 : Concurrency Control !

©Silberschatz, Korth and Sudarshan!10.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 10: Concurrency Control!

■  Lock-Based Protocols!
■  Timestamp-Based Protocols!
■  Validation-Based Protocols!
■  Multiple Granularity!
■  Multiversion Schemes!
■  Insert and Delete Operations!
■  Concurrency in Index Structures!

©Silberschatz, Korth and Sudarshan!10.3!CS425 – Fall 2013 – Boris Glavic!

Intuition of Lock-based Protocols!

■  Transactions have to acquire locks on data items before accessing them!
■  If a lock is hold by one transaction on a data item this restricts the ability

of other transactions to acquire locks for that data item!
■  By locking a data item we want to ensure that no access to that data

item is possible that would lead to non-serializable schedules!
■  The trick is to design a lock model and protocol that guarantees that!
■  Lock-based concurrency protocols are a form of pessimistic

concurrency control mechanism!
●  We avoid ever getting into a state that can lead to a non-serializable

schedule!
■  Alternative concurrency control mechanism do not avoid conflicts, but

determine later on (at commit time) whether committing a transaction
would cause a non-serializable schedule to be generated!
●  Optimistic concurrency control mechanism!

©Silberschatz, Korth and Sudarshan!10.4!CS425 – Fall 2013 – Boris Glavic!

Lock-Based Protocols!

■  A lock is a mechanism to control concurrent access to a data item!
■  Data items can be locked in two modes :!
 1. exclusive (X) mode. Data item can be both read as well as !
 written. X-lock is requested using lock-X instruction.!
 2. shared (S) mode. Data item can only be read. S-lock is !
 requested using lock-S instruction.!
■  Lock requests are made to concurrency-control manager. !

●  Transaction do not access data items before having acquired a lock on
that data item!

●  Transactions release their locks on a data item only after they have
accessed a data item!

©Silberschatz, Korth and Sudarshan!10.5!CS425 – Fall 2013 – Boris Glavic!

Lock-Based Protocols (Cont.)!

■  Lock-compatibility matrix!

!
■  A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions!
■  Any number of transactions can hold shared locks on an item, !

●  but if any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item.!

■  If a lock cannot be granted, the requesting transaction is made to wait till
all incompatible locks held by other transactions have been released.
The lock is then granted.!

S X
S true false

X false false

©Silberschatz, Korth and Sudarshan!10.6!CS425 – Fall 2013 – Boris Glavic!

Lock-Based Protocols (Cont.)!

■  Example of a transaction performing locking:!
 T2: lock-S(A);!
 read (A);!
 unlock(A);!
 lock-S(B);!
 read (B);!
 unlock(B);!
 display(A+B)!
■  Locking as above is not sufficient to guarantee serializability — if A and B

get updated in-between the read of A and B, the displayed sum would be
wrong.!

■  A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.!

2

©Silberschatz, Korth and Sudarshan!10.7!CS425 – Fall 2013 – Boris Glavic!

Pitfalls of Lock-Based Protocols!
■  Consider the partial schedule!

 
!

 
!

■  Neither T3 nor T4 can make progress — executing lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.!

■  Such a situation is called a deadlock. !
●  To handle a deadlock one of T3 or T4 must be rolled back  

and its locks released.!

©Silberschatz, Korth and Sudarshan!10.8!CS425 – Fall 2013 – Boris Glavic!

Pitfalls of Lock-Based Protocols (Cont.)!

■  The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.!

■  Starvation is also possible if the concurrency control manager is
badly designed. For example:!
●  A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item. !

●  The same transaction is repeatedly rolled back due to deadlocks.!
■  Concurrency control managers can be designed to prevent starvation.!

©Silberschatz, Korth and Sudarshan!10.9!CS425 – Fall 2013 – Boris Glavic!

The Two-Phase Locking Protocol!

■  This is a protocol which ensures conflict-serializable schedules.!
■  Phase 1: Growing Phase!

●  transaction may obtain locks !
●  transaction may not release locks!

■  Phase 2: Shrinking Phase!
●  transaction may release locks!
●  transaction may not obtain locks!

■  The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.
the point where a transaction acquired its final lock). !

©Silberschatz, Korth and Sudarshan!10.10!CS425 – Fall 2013 – Boris Glavic!

The Two-Phase Locking Protocol (Cont.)!

■  Two-phase locking does not ensure freedom from deadlocks!
■  Cascading roll-back is possible under two-phase locking. To avoid

this, follow a modified protocol called strict two-phase locking. Here
a transaction must hold all its exclusive locks till it commits/aborts.!

■  Rigorous two-phase locking is even stricter: here all locks are held
till commit/abort. In this protocol transactions can be serialized in the
order in which they commit.!

©Silberschatz, Korth and Sudarshan!10.11!CS425 – Fall 2013 – Boris Glavic!

The Two-Phase Locking Protocol (Cont.)!

■  There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used. !

■  However, in the absence of extra information (e.g., ordering of access
to data), two-phase locking is needed for conflict serializability in the
following sense:!

 Given a transaction Ti that does not follow two-phase locking, we can
find a transaction Tj that uses two-phase locking, and a schedule for Ti
and Tj that is not conflict serializable.!

©Silberschatz, Korth and Sudarshan!10.12!CS425 – Fall 2013 – Boris Glavic!

Lock Conversions!

■  Two-phase locking with lock conversions:!
 – First Phase: !

●  can acquire a lock-S on item!
●  can acquire a lock-X on item!
●  can convert a lock-S to a lock-X (upgrade)!

 – Second Phase:!
●  can release a lock-S!
●  can release a lock-X!
●  can convert a lock-X to a lock-S (downgrade)!

■  This protocol assures serializability. But still relies on the programmer to
insert the various locking instructions.!

3

©Silberschatz, Korth and Sudarshan!10.13!CS425 – Fall 2013 – Boris Glavic!

Automatic Acquisition of Locks!

■  A transaction Ti issues the standard read/write instruction, without
explicit locking calls.!

■  The operation read(D) is processed as:!
 if Ti has a lock on D!
 then!
 read(D) !
 else begin !
 if necessary wait until no other !
 transaction has a lock-X on D!
 grant Ti a lock-S on D;!
 read(D)!
 end!

©Silberschatz, Korth and Sudarshan!10.14!CS425 – Fall 2013 – Boris Glavic!

Automatic Acquisition of Locks (Cont.)!

■  write(D) is processed as:!
 if Ti has a lock-X on D !
 then !
 write(D)!
 else begin!
 if necessary wait until no other trans. has any lock on D,!
 if Ti has a lock-S on D!
 then!
 upgrade lock on D to lock-X!
 else!
 grant Ti a lock-X on D!
 write(D)!
 end;!
■  All locks are released after commit or abort!

©Silberschatz, Korth and Sudarshan!10.15!CS425 – Fall 2013 – Boris Glavic!

Implementation of Locking!

■  A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests!

■  The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)!

■  The requesting transaction waits until its request is answered!
■  The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests!
■  The lock table is usually implemented as an in-memory hash table

indexed on the name of the data item being locked!

©Silberschatz, Korth and Sudarshan!10.16!CS425 – Fall 2013 – Boris Glavic!

Lock Table!
■  Black rectangles indicate granted locks,

white ones indicate waiting requests!
■  Lock table also records the type of lock

granted or requested!
■  New request is added to the end of the

queue of requests for the data item, and
granted if it is compatible with all earlier
locks!

■  Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted!

■  If transaction aborts, all waiting or
granted requests of the transaction are
deleted !
●  lock manager may keep a list of

locks held by each transaction, to
implement this efficiently!

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

©Silberschatz, Korth and Sudarshan!10.17!CS425 – Fall 2013 – Boris Glavic!

Graph-Based Protocols!

■  Graph-based protocols are an alternative to two-phase locking!
■  Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data

items.!
●  If di → dj then any transaction accessing both di and dj must

access di before accessing dj.!
●  Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.!
■  The tree-protocol is a simple kind of graph protocol. !

©Silberschatz, Korth and Sudarshan!10.18!CS425 – Fall 2013 – Boris Glavic!

Tree Protocol!

1.  Only exclusive locks are allowed.!
2.  The first lock by Ti may be on any data item. Subsequently, a data Q

can be locked by Ti only if the parent of Q is currently locked by Ti.!
3.  Data items may be unlocked at any time.!
4.  A data item that has been locked and unlocked by Ti cannot

subsequently be relocked by Ti !

A

CB

F

E

IH

J

D

G

4

©Silberschatz, Korth and Sudarshan!10.19!CS425 – Fall 2013 – Boris Glavic!

Graph-Based Protocols (Cont.)!
■  The tree protocol ensures conflict serializability as well as freedom from

deadlock.!
■  Unlocking may occur earlier in the tree-locking protocol than in the two-

phase locking protocol.!
●  shorter waiting times, and increase in concurrency!
●  protocol is deadlock-free, no rollbacks are required!

■  Drawbacks!
●  Protocol does not guarantee recoverability or cascade freedom!

! Need to introduce commit dependencies to ensure recoverability !
●  Transactions may have to lock data items that they do not access.!

!  increased locking overhead, and additional waiting time!
! potential decrease in concurrency!

■  Schedules not possible under two-phase locking are possible under tree
protocol, and vice versa.!

©Silberschatz, Korth and Sudarshan!10.20!CS425 – Fall 2013 – Boris Glavic!

Deadlock Handling!

■  Consider the following two transactions:!
 T1: write (X) T2: write(Y)!
 write(Y) write(X)!
■  Schedule with deadlock!

©Silberschatz, Korth and Sudarshan!10.21!CS425 – Fall 2013 – Boris Glavic!

Deadlock Handling!

■  System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.!

■  Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :!
●  Require that each transaction locks all its data items before it

begins execution (predeclaration).!
●  Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).!

©Silberschatz, Korth and Sudarshan!10.22!CS425 – Fall 2013 – Boris Glavic!

More Deadlock Prevention Strategies!

■  Following schemes use transaction timestamps for the sake of deadlock
prevention alone.!

■  wait-die scheme — non-preemptive!
●  older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled back
instead.!

●  a transaction may die several times before acquiring needed data
item!

■  wound-wait scheme — preemptive!
●  older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older
ones.!

●  may be fewer rollbacks than wait-die scheme.!

©Silberschatz, Korth and Sudarshan!10.23!CS425 – Fall 2013 – Boris Glavic!

Deadlock prevention (Cont.)!

■  Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older transactions
thus have precedence over newer ones, and starvation is hence
avoided.!

■  Timeout-Based Schemes:!
●  a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.!
●  thus deadlocks are not possible!
●  simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.!

©Silberschatz, Korth and Sudarshan!10.24!CS425 – Fall 2013 – Boris Glavic!

Deadlock Detection!

■  Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E), !
●  V is a set of vertices (all the transactions in the system)!
●  E is a set of edges; each element is an ordered pair Ti →Tj. !

■  If Ti → Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.!

■  When Ti requests a data item currently being held by Tj, then the edge
Ti Tj is inserted in the wait-for graph. This edge is removed only when
Tj is no longer holding a data item needed by Ti.!

■  The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look
for cycles.!

5

©Silberschatz, Korth and Sudarshan!10.25!CS425 – Fall 2013 – Boris Glavic!

Deadlock Detection (Cont.)!

Wait-for graph without a cycle! Wait-for graph with a cycle!

T18 T20

T17

T19

T18 T20

T17

T19

©Silberschatz, Korth and Sudarshan!10.26!CS425 – Fall 2013 – Boris Glavic!

Deadlock Recovery!

■  When deadlock is detected :!
●  Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum
cost.!

●  Rollback -- determine how far to roll back transaction!
! Total rollback: Abort the transaction and then restart it.!
! More effective to roll back transaction only as far as necessary

to break deadlock.!
●  Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid
starvation!

©Silberschatz, Korth and Sudarshan!10.27!CS425 – Fall 2013 – Boris Glavic!

Multiple Granularity!

■  Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones!

■  Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)!

■  When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.!

■  Granularity of locking (level in tree where locking is done):!
●  fine granularity (lower in tree): high concurrency, high locking

overhead!
●  coarse granularity (higher in tree): low locking overhead, low

concurrency!

©Silberschatz, Korth and Sudarshan!10.28!CS425 – Fall 2013 – Boris Glavic!

Example of Granularity Hierarchy!

 The levels, starting from the coarsest (top) level are!
●  database!
●  area !
●  file!
●  record !

ra1 ra2 ran rb1 rbk rc1 rcm

Fa Fb Fc

A1 A2

DB

©Silberschatz, Korth and Sudarshan!10.29!CS425 – Fall 2013 – Boris Glavic!

Intention Lock Modes!

■  In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:!
●  intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.!
●  intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks!
●  shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.!

■  intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.!

©Silberschatz, Korth and Sudarshan!10.30!CS425 – Fall 2013 – Boris Glavic!

Compatibility Matrix with Intention Lock Modes!

■  The compatibility matrix for all lock modes is: !

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

6

©Silberschatz, Korth and Sudarshan!10.31!CS425 – Fall 2013 – Boris Glavic!

Multiple Granularity Locking Scheme!
■  Transaction Ti can lock a node Q, using the following rules:!

1.  The lock compatibility matrix must be observed.!
2.  The root of the tree must be locked first, and may be locked in any

mode.!
3.  A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.!
4.  A node Q can be locked by Ti in X, SIX, or IX mode only if the parent

of Q is currently locked by Ti in either IX or SIX mode.!
5.  Ti can lock a node only if it has not previously unlocked any node

(that is, Ti is two-phase).!
6.  Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.!
■  Observe that locks are acquired in root-to-leaf order, whereas they are

released in leaf-to-root order.!
■  Lock granularity escalation: in case there are too many locks at a

particular level, switch to higher granularity S or X lock!

©Silberschatz, Korth and Sudarshan!10.32!CS425 – Fall 2013 – Boris Glavic!

Timestamp-Based Protocols!

■  Each transaction is issued a timestamp when it enters the system. If an old
transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-
stamp TS(Tj) such that TS(Ti) <TS(Tj). !

■  The protocol manages concurrent execution such that the time-stamps
determine the serializability order.!

■  In order to assure such behavior, the protocol maintains for each data Q two
timestamp values:!
●  W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.!
●  R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.!

©Silberschatz, Korth and Sudarshan!10.33!CS425 – Fall 2013 – Boris Glavic!

Timestamp-Based Protocols (Cont.)!
■  The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order.!
■  Suppose a transaction Ti issues a read(Q)!

1.  If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q
that was already overwritten.!
■  Hence, the read operation is rejected, and Ti is rolled back.!

2.  If TS(Ti)≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).!

©Silberschatz, Korth and Sudarshan!10.34!CS425 – Fall 2013 – Boris Glavic!

Timestamp-Based Protocols (Cont.)!

■  Suppose that transaction Ti issues write(Q).!
1.  If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is

producing was needed previously, and the system assumed that
that value would never be produced. !
■  Hence, the write operation is rejected, and Ti is rolled back.!

2.  If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q. !
■  Hence, this write operation is rejected, and Ti is rolled back.!

3.  Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).!

©Silberschatz, Korth and Sudarshan!10.35!CS425 – Fall 2013 – Boris Glavic!

Example Use of the Protocol!

A partial schedule for several data items for transactions with!
timestamps 1, 2, 3, 4, 5!

©Silberschatz, Korth and Sudarshan!10.36!CS425 – Fall 2013 – Boris Glavic!

Correctness of Timestamp-Ordering Protocol!

■  The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:!

 !
!
!
!
!
 Thus, there will be no cycles in the precedence graph!
■  Timestamp protocol ensures freedom from deadlock as no

transaction ever waits. !
■  But the schedule may not be cascade-free, and may not even be

recoverable.!

7

©Silberschatz, Korth and Sudarshan!10.37!CS425 – Fall 2013 – Boris Glavic!

Recoverability and Cascade Freedom!

■  Problem with timestamp-ordering protocol:!
●  Suppose Ti aborts, but Tj has read a data item written by Ti!
●  Then Tj must abort; if Tj had been allowed to commit earlier, the

schedule is not recoverable.!
●  Further, any transaction that has read a data item written by Tj must

abort!
●  This can lead to cascading rollback --- that is, a chain of rollbacks !

■  Solution 1:!
●  A transaction is structured such that its writes are all performed at

the end of its processing!
●  All writes of a transaction form an atomic action; no transaction may

execute while a transaction is being written!
●  A transaction that aborts is restarted with a new timestamp!

■  Solution 2: Limited form of locking: wait for data to be committed before
reading it!

■  Solution 3: Use commit dependencies to ensure recoverability!

©Silberschatz, Korth and Sudarshan!10.38!CS425 – Fall 2013 – Boris Glavic!

Thomas’ Write Rule!

■  Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.!

■  When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}. !
●  Rather than rolling back Ti as the timestamp ordering protocol

would have done, this {write} operation can be ignored.!
■  Otherwise this protocol is the same as the timestamp ordering

protocol.!

■  Thomas' Write Rule allows greater potential concurrency. !

●  Allows some view-serializable schedules that are not conflict-
serializable.!

©Silberschatz, Korth and Sudarshan!10.39!CS425 – Fall 2013 – Boris Glavic!

Validation-Based Protocol!

■  Execution of transaction Ti is done in three phases.!
 1. Read and execution phase: Transaction Ti writes only to !
 temporary local variables!
 2. Validation phase: Transaction Ti performs a ``validation test'' !
 to determine if local variables can be written without violating !
 serializability.!
 3. Write phase: If Ti is validated, the updates are applied to the !
! database; otherwise, Ti is rolled back.!

■  The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases in
that order.!
●  Assume for simplicity that the validation and write phase occur

together, atomically and serially!
!  I.e., only one transaction executes validation/write at a time. !

■  Also called as optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation!

©Silberschatz, Korth and Sudarshan!10.40!CS425 – Fall 2013 – Boris Glavic!

Validation-Based Protocol (Cont.)!

■  Each transaction Ti has 3 timestamps!
●  Start(Ti) : the time when Ti started its execution!
●  Validation(Ti): the time when Ti entered its validation phase!
●  Finish(Ti) : the time when Ti finished its write phase!

■  Serializability order is determined by timestamp given at validation
time, to increase concurrency. !
●  Thus TS(Ti) is given the value of Validation(Ti).!

■  This protocol is useful and gives greater degree of concurrency if
probability of conflicts is low. !
●  because the serializability order is not pre-decided, and!
●  relatively few transactions will have to be rolled back.!

©Silberschatz, Korth and Sudarshan!10.41!CS425 – Fall 2013 – Boris Glavic!

Validation Test for Transaction Tj!

■  If for all Ti with TS (Ti) < TS (Tj) either one of the following condition
holds:!
●  finish(Ti) < start(Tj) !
●  start(Tj) < finish(Ti) < validation(Tj) and the set of data items

written by Ti does not intersect with the set of data items read by
Tj. !

 then validation succeeds and Tj can be committed. Otherwise,
validation fails and Tj is aborted.!

■  Justification: Either the first condition is satisfied, and there is no
overlapped execution, or the second condition is satisfied and!
■  the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.!
■  the writes of Ti do not affect reads of Tj since Tj does not read

any item written by Ti.!

©Silberschatz, Korth and Sudarshan!10.42!CS425 – Fall 2013 – Boris Glavic!

Schedule Produced by Validation!

■  Example of schedule produced using validation!

8

©Silberschatz, Korth and Sudarshan!10.43!CS425 – Fall 2013 – Boris Glavic!

Multiversion Schemes!

■  Multiversion schemes keep old versions of data item to increase
concurrency.!
●  Multiversion Timestamp Ordering!
●  Multiversion Two-Phase Locking!

■  Each successful write results in the creation of a new version of the
data item written.!

■  Use timestamps to label versions.!
■  When a read(Q) operation is issued, select an appropriate version of

Q based on the timestamp of the transaction, and return the value of
the selected version. !

■  reads never have to wait as an appropriate version is returned
immediately.!

©Silberschatz, Korth and Sudarshan!10.44!CS425 – Fall 2013 – Boris Glavic!

Multiversion Timestamp Ordering!

■  Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each
version Qk contains three data fields:!
●  Content -- the value of version Qk.!
●  W-timestamp(Qk) -- timestamp of the transaction that created

(wrote) version Qk!
●  R-timestamp(Qk) -- largest timestamp of a transaction that

successfully read version Qk!
■  when a transaction Ti creates a new version Qk of Q, Qk's W-

timestamp and R-timestamp are initialized to TS(Ti). !
■  R-timestamp of Qk is updated whenever a transaction Tj reads Qk, and

TS(Tj) > R-timestamp(Qk).!

©Silberschatz, Korth and Sudarshan!10.45!CS425 – Fall 2013 – Boris Glavic!

Multiversion Timestamp Ordering (Cont)!

■  Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let
Qk denote the version of Q whose write timestamp is the largest write
timestamp less than or equal to TS(Ti).!

1.  If transaction Ti issues a read(Q), then the value returned is the
content of version Qk.!

2.  If transaction Ti issues a write(Q)!
1.  if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back. !
2.  if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten!
3.  else a new version of Q is created.!

■  Observe that!
●  Reads always succeed!
●  A write by Ti is rejected if some other transaction Tj that (in the

serialization order defined by the timestamp values) should read  
Ti's write, has already read a version created by a transaction older
than Ti.!

■  Protocol guarantees serializability!

©Silberschatz, Korth and Sudarshan!10.46!CS425 – Fall 2013 – Boris Glavic!

Multiversion Two-Phase Locking!

■  Differentiates between read-only transactions and update transactions!
■  Update transactions acquire read and write locks, and hold all locks up

to the end of the transaction. That is, update transactions follow rigorous
two-phase locking.!
●  Each successful write results in the creation of a new version of the

data item written.!
●  each version of a data item has a single timestamp whose value is

obtained from a counter ts-counter that is incremented during
commit processing.!

■  Read-only transactions are assigned a timestamp by reading the current
value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.!

©Silberschatz, Korth and Sudarshan!10.47!CS425 – Fall 2013 – Boris Glavic!

Multiversion Two-Phase Locking (Cont.)!

■  When an update transaction wants to read a data item:!
●  it obtains a shared lock on it, and reads the latest version. !

■  When it wants to write an item!
●  it obtains X lock on; it then creates a new version of the item and

sets this version's timestamp to ∞.!
■  When update transaction Ti completes, commit processing occurs:!

●  Ti sets timestamp on the versions it has created to ts-counter + 1!
●  Ti increments ts-counter by 1!

■  Read-only transactions that start after Ti increments ts-counter will see
the values updated by Ti. !

■  Read-only transactions that start before Ti increments the  
ts-counter will see the value before the updates by Ti. !

■  Only serializable schedules are produced.!

©Silberschatz, Korth and Sudarshan!10.48!CS425 – Fall 2013 – Boris Glavic!

MVCC: Implementation Issues!

■  Creation of multiple versions increases storage overhead!
●  Extra tuples!
●  Extra space in each tuple for storing version information!

■  Versions can, however, be garbage collected!
●  E.g. if Q has two versions Q5 and Q9, and the oldest active

transaction has timestamp > 9, than Q5 will never be required
again!

9

©Silberschatz, Korth and Sudarshan!10.49!CS425 – Fall 2013 – Boris Glavic!

Snapshot Isolation!!

■  Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows!
●  Poor performance results!

■  Solution 1: Give logical “snapshot” of database state to read only
transactions, read-write transactions use normal locking!
●  Multiversion 2-phase locking!
●  Works well, but how does system know a transaction is read only?!

■  Solution 2: Give snapshot of database state to every transaction,
updates alone use 2-phase locking to guard against concurrent
updates!
●  Problem: variety of anomalies such as lost update can result!
●  Partial solution: snapshot isolation level (next slide)!

! Proposed by Berenson et al, SIGMOD 1995!
! Variants implemented in many database systems !

–  E.g. Oracle, PostgreSQL, SQL Server 2005!

©Silberschatz, Korth and Sudarshan!10.50!CS425 – Fall 2013 – Boris Glavic!

Snapshot Isolation!

■  A transaction T1 executing with Snapshot
Isolation!
●  takes snapshot of committed data at

start!
●  always reads/modifies data in its own

snapshot!
●  updates of concurrent transactions are

not visible to T1 !
●  writes of T1 complete when it commits!
●  First-committer-wins rule:!

!  Commits only if no other concurrent
transaction has already written data
that T1 intends to write.!

T1! T2! T3!

W(Y := 1)!
Commit!

Start!
R(X) à 0!
R(Y)à 1!

W(X:=2)!
W(Z:=3)!
Commit!

R(Z) à 0!
R(Y) à 1!
W(X:=3)!
Commit-Req!
Abort!

Concurrent updates not visible!
Own updates are visible!
Not first-committer of X!

Serialization error, T2 is rolled back!

©Silberschatz, Korth and Sudarshan!10.51!CS425 – Fall 2013 – Boris Glavic!

Snapshot Read
■  Concurrent updates invisible to snapshot read!

©Silberschatz, Korth and Sudarshan!10.52!CS425 – Fall 2013 – Boris Glavic!

Snapshot Write: First Committer Wins

●  Variant: “First-updater-wins”!
!  Check for concurrent updates when write occurs by locking item!

–  But lock should be held till all concurrent transactions have finished!
!  (Oracle uses this plus some extra features)!
!  Differs only in when abort occurs, otherwise equivalent !

©Silberschatz, Korth and Sudarshan!10.53!CS425 – Fall 2013 – Boris Glavic!

Benefits of SI!

■  Reading is never blocked, !
●  and also doesn’t block other txns activities!

■  Performance similar to Read Committed!
■  Avoids the usual anomalies!

●  No dirty read!
●  No lost update!
●  No non-repeatable read!
●  Predicate based selects are repeatable (no phantoms)!

■  Problems with SI!
●  SI does not always give serializable executions!

! Serializable: among two concurrent txns, one sees the effects
of the other!

!  In SI: neither sees the effects of the other!
●  Result: Integrity constraints can be violated!

©Silberschatz, Korth and Sudarshan!10.54!CS425 – Fall 2013 – Boris Glavic!

Snapshot Isolation!

■  E.g. of problem with SI!
●  T1: x:=y!
●  T2: y:= x!
●  Initially x = 3 and y = 17!

! Serial execution: x = ??, y = ??!
!  if both transactions start at the same time, with snapshot

isolation: x = ?? , y = ??!
■  Called skew write!
■  Skew also occurs with inserts!

●  E.g:!
! Find max order number among all orders!
! Create a new order with order number = previous max + 1!

10

©Silberschatz, Korth and Sudarshan!10.55!CS425 – Fall 2013 – Boris Glavic!

Snapshot Isolation Anomalies!

■  SI breaks serializability when txns modify different items, each based on a
previous state of the item the other modified!
●  Not very common in practice!

!  E.g., the TPC-C benchmark runs correctly under SI!
!  when txns conflict due to modifying different data, there is usually also

a shared item they both modify too (like a total quantity) so SI will abort
one of them!

●  But does occur!
!  Application developers should be careful about write skew!

■  SI can also cause a read-only transaction anomaly, where read-only
transaction may see an inconsistent state even if updaters are serializable!
●  We omit details!

■  Using snapshots to verify primary/foreign key integrity can lead to
inconsistency!
●  Integrity constraint checking usually done outside of snapshot!

©Silberschatz, Korth and Sudarshan!10.56!CS425 – Fall 2013 – Boris Glavic!

SI In Oracle and PostgreSQL!

■  Warning: SI used when isolation level is set to serializable, by Oracle, and
PostgreSQL versions prior to 9.1!
●  PostgreSQL’s implementation of SI (versions prior to 9.1) described in

Section 26.4.1.3!
●  Oracle implements “first updater wins” rule (variant of “first committer

wins”)!
!  concurrent writer check is done at time of write, not at commit time!
!  Allows transactions to be rolled back earlier!
!  Oracle and PostgreSQL < 9.1 do not support true serializable

execution!
●  PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot

Isolation” (SSI)!
!  Which guarantees true serializabilty including handling predicate

reads (coming up)!

©Silberschatz, Korth and Sudarshan!10.57!CS425 – Fall 2013 – Boris Glavic!

SI In Oracle and PostgreSQL!

■  Can sidestep SI for specific queries by using select .. for update in Oracle
and PostgreSQL!
●  E.g., !

1.  select max(orderno) from orders for update !
2.  read value into local variable maxorder!
3.  insert into orders (maxorder+1, …)!

●  Select for update (SFU) treats all data read by the query as if it were
also updated, preventing concurrent updates!

●  Does not always ensure serializability since phantom phenomena can
occur (coming up)!

■  In PostgreSQL versions < 9.1, SFU locks the data item, but releases locks
when the transaction completes, even if other concurrent transactions are
active!
●  Not quite same as SFU in Oracle, which keeps locks until all!
●  concurrent transactions have completed!

©Silberschatz, Korth and Sudarshan!10.58!CS425 – Fall 2013 – Boris Glavic!

Insert and Delete Operations!

■  If two-phase locking is used :!
●  A delete operation may be performed only if the transaction

deleting the tuple has an exclusive lock on the tuple to be deleted.!
●  A transaction that inserts a new tuple into the database is given an

X-mode lock on the tuple!
■  Insertions and deletions can lead to the phantom phenomenon.!

●  A transaction that scans a relation !
!  (e.g., find sum of balances of all accounts in Perryridge) !
and a transaction that inserts a tuple in the relation !
!  (e.g., insert a new account at Perryridge)!
(conceptually) conflict in spite of not accessing any tuple in

common.!
●  If only tuple locks are used, non-serializable schedules can result!

! E.g. the scan transaction does not see the new account, but
reads some other tuple written by the update transaction!

©Silberschatz, Korth and Sudarshan!10.59!CS425 – Fall 2013 – Boris Glavic!

Insert and Delete Operations (Cont.)!

■  The transaction scanning the relation is reading information that indicates
what tuples the relation contains, while a transaction inserting a tuple
updates the same information.!
●  The conflict should be detected, e.g. by locking the information.!

■  One solution: !
●  Associate a data item with the relation, to represent the information

about what tuples the relation contains.!
●  Transactions scanning the relation acquire a shared lock in the data

item, !
●  Transactions inserting or deleting a tuple acquire an exclusive lock on

the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)!

■  Above protocol provides very low concurrency for insertions/deletions.!
■  Index locking protocols provide higher concurrency while  

preventing the phantom phenomenon, by requiring locks  
on certain index buckets. !

©Silberschatz, Korth and Sudarshan!10.60!CS425 – Fall 2013 – Boris Glavic!

Index Locking Protocol!

■  Index locking protocol:!
●  Every relation must have at least one index. !
●  A transaction can access tuples only after finding them through one or

more indices on the relation!
●  A transaction Ti that performs a lookup must lock all the index leaf

nodes that it accesses, in S-mode!
! Even if the leaf node does not contain any tuple satisfying the index

lookup (e.g. for a range query, no tuple in a leaf is in the range)!
●  A transaction Ti that inserts, updates or deletes a tuple ti in a relation r !

! must update all indices to r!
! must obtain exclusive locks on all index leaf nodes affected by the

insert/update/delete!
●  The rules of the two-phase locking protocol must be observed!

■  Guarantees that phantom phenomenon won’t occur!

11

©Silberschatz, Korth and Sudarshan!10.61!CS425 – Fall 2013 – Boris Glavic!

Next-Key Locking!

■  Index-locking protocol to prevent phantoms required locking entire leaf!
●  Can result in poor concurrency if there are many inserts!

■  Alternative: for an index lookup!
●  Lock all values that satisfy index lookup (match lookup value, or

fall in lookup range)!
●  Also lock next key value in index!
●  Lock mode: S for lookups, X for insert/delete/update!

■  Ensures that range queries will conflict with inserts/deletes/updates!
●  Regardless of which happens first, as long as both are concurrent!

©Silberschatz, Korth and Sudarshan!10.62!CS425 – Fall 2013 – Boris Glavic!

Concurrency in Index Structures!

■  Indices are unlike other database items in that their only job is to help in
accessing data.!

■  Index-structures are typically accessed very often, much more than
other database items. !
●  Treating index-structures like other database items, e.g. by 2-phase

locking of index nodes can lead to low concurrency. !
■  There are several index concurrency protocols where locks on internal

nodes are released early, and not in a two-phase fashion.!
●  It is acceptable to have nonserializable concurrent access to an

index as long as the accuracy of the index is maintained.!
!  In particular, the exact values read in an internal node of a  

B+-tree are irrelevant so long as we land up in the correct leaf
node.!

©Silberschatz, Korth and Sudarshan!10.63!CS425 – Fall 2013 – Boris Glavic!

Concurrency in Index Structures (Cont.)!
■  Example of index concurrency protocol:!
■  Use crabbing instead of two-phase locking on the nodes of the B+-tree, as

follows. During search/insertion/deletion:!
●  First lock the root node in shared mode.!
●  After locking all required children of a node in shared mode, release the lock

on the node.!
●  During insertion/deletion, upgrade leaf node locks to exclusive mode.!
●  When splitting or coalescing requires changes to a parent, lock the parent in

exclusive mode.!
■  Above protocol can cause excessive deadlocks!

●  Searches coming down the tree deadlock with updates going up the tree!
●  Can abort and restart search, without affecting transaction!

■  Better protocols are available; see Section 16.9 for one such protocol, the B-link
tree protocol!
●  Intuition: release lock on parent before acquiring lock on child!

!  And deal with changes that may have happened between lock release
and acquire!

©Silberschatz, Korth and Sudarshan!10.64!CS425 – Fall 2013 – Boris Glavic!

Weak Levels of Consistency!

■  Degree-two consistency: differs from two-phase locking in that S-locks
may be released at any time, and locks may be acquired at any time!
●  X-locks must be held till end of transaction!
●  Serializability is not guaranteed, programmer must ensure that no

erroneous database state will occur]!
■  Cursor stability: !

●  For reads, each tuple is locked, read, and lock is immediately
released!

●  X-locks are held till end of transaction!
●  Special case of degree-two consistency!

©Silberschatz, Korth and Sudarshan!10.65!CS425 – Fall 2013 – Boris Glavic!

Weak Levels of Consistency in SQL!
■  SQL allows non-serializable executions!

●  Serializable: is the default!
●  Repeatable read: allows only committed records to be read, and

repeating a read should return the same value (so read locks should
be retained)!
! However, the phantom phenomenon need not be prevented!

–  T1 may see some records inserted by T2, but may not see
others inserted by T2!

●  Read committed: same as degree two consistency, but most
systems implement it as cursor-stability!

●  Read uncommitted: allows even uncommitted data to be read!
■  In many database systems, read committed is the default consistency

level!
●  has to be explicitly changed to serializable when required!

! set isolation level serializable!

©Silberschatz, Korth and Sudarshan!10.66!CS425 – Fall 2013 – Boris Glavic!

Transactions across User Interaction!
■  Many applications need transaction support across user interactions!

●  Can’t use locking!
●  Don’t want to reserve database connection per user!

■  Application level concurrency control!
●  Each tuple has a version number!
●  Transaction notes version number when reading tuple!

!  select r.balance, r.version into :A, :version  
from r where acctId =23!

●  When writing tuple, check that current version number is same as the
version when tuple was read!
!  update r set r.balance = r.balance + :deposit  

where acctId = 23 and r.version = :version!
■  Equivalent to optimistic concurrency control without validating read set!
■  Used internally in Hibernate ORM system, and manually in many applications!
■  Version numbering can also be used to support first committer wins check of

snapshot isolation!
●  Unlike SI, reads are not guaranteed to be from a single snapshot!

12

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter!

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot
Isolation examples!

©Silberschatz, Korth and Sudarshan!10.68!CS425 – Fall 2013 – Boris Glavic!

Figure 15.01!

S X
S true false

X false false

©Silberschatz, Korth and Sudarshan!10.69!CS425 – Fall 2013 – Boris Glavic!

Figure 15.04!

©Silberschatz, Korth and Sudarshan!10.70!CS425 – Fall 2013 – Boris Glavic!

Figure 15.07!

©Silberschatz, Korth and Sudarshan!10.71!CS425 – Fall 2013 – Boris Glavic!

Figure 15.08!

©Silberschatz, Korth and Sudarshan!10.72!CS425 – Fall 2013 – Boris Glavic!

Figure 15.09!

13

©Silberschatz, Korth and Sudarshan!10.73!CS425 – Fall 2013 – Boris Glavic!

Figure 15.10!

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

©Silberschatz, Korth and Sudarshan!10.74!CS425 – Fall 2013 – Boris Glavic!

Figure 15.11!
A

CB

F

E

IH

J

D

G

©Silberschatz, Korth and Sudarshan!10.75!CS425 – Fall 2013 – Boris Glavic!

Figure 15.12!

©Silberschatz, Korth and Sudarshan!10.76!CS425 – Fall 2013 – Boris Glavic!

Figure 15.13!

T18 T20

T17

T19

©Silberschatz, Korth and Sudarshan!10.77!CS425 – Fall 2013 – Boris Glavic!

Figure 15.14!

T18 T20

T17

T19

©Silberschatz, Korth and Sudarshan!10.78!CS425 – Fall 2013 – Boris Glavic!

Figure 15.15!

ra1 ra2 ran rb1 rbk rc1 rcm

Fa Fb Fc

A1 A2

DB

14

©Silberschatz, Korth and Sudarshan!10.79!CS425 – Fall 2013 – Boris Glavic!

Figure 15.16!

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

©Silberschatz, Korth and Sudarshan!10.80!CS425 – Fall 2013 – Boris Glavic!

Figure 15.17!

©Silberschatz, Korth and Sudarshan!10.81!CS425 – Fall 2013 – Boris Glavic!

Figure 15.18!

©Silberschatz, Korth and Sudarshan!10.82!CS425 – Fall 2013 – Boris Glavic!

Figure 15.19!

©Silberschatz, Korth and Sudarshan!10.83!CS425 – Fall 2013 – Boris Glavic!

Figure 15.20!

©Silberschatz, Korth and Sudarshan!10.84!CS425 – Fall 2013 – Boris Glavic!

Figure 15.21!

History

Elec. Eng.

Biology Comp. Sci. Elec. Eng. Finance History

Music

Music Physics

15

©Silberschatz, Korth and Sudarshan!10.85!CS425 – Fall 2013 – Boris Glavic!

Figure 15.22!

History

Elec. Eng.

Biology .celEyrtsimehC Eng. FinanceComp. Sci.

Music

Music Physics

Comp. Sci.

History

©Silberschatz, Korth and Sudarshan!10.86!CS425 – Fall 2013 – Boris Glavic!

Figure 15.23!

S X I

S true false false

X false false false

I false false true

©Silberschatz, Korth and Sudarshan!10.87!CS425 – Fall 2013 – Boris Glavic!

Figure in-15.1!

T27 T28 T29
read (Q)

write (Q)
write (Q)

write (Q)

