
What is Good Design?

1) Easier: What is Bad Design?
modified from:
Database System Concepts, ${ }^{\text {th }}$ Ed.
©silberschatz, Korth and Suadrshan
See www.db-book.com for conditions on re-use

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Functional Dependency Theory
- Algorithms for Functional Dependencies
- Decomposition Using Multivalued Dependencies
- More Normal Form
- Database-Design Process
- Modeling Temporal Data

A Combined Schema Without Repetition

- Combining is not always bad!
- Consider combining relations
sec_class(sec_id, building, room_number) and
- section(course_id, sec_id, semester, year)
into one relation
section(course_id, sec_id, semester, year building, room_number)
- No repetition in this case

What About Smaller Schemas?

- Suppose we had started with inst_dept. How would we know to split up (decompose) it into instructor and department?
- Write a rule "if there were a schema (dept_name, building, budget), then dept_name would be a candidate key"
- Denote as a functional dependency dept_name \rightarrow building, budget
- In inst_dept, because dept_name is not a candidate key, the building and budget of a department may have to be repeated.
- This indicates the need to decompose inst dept
- Not all decompositions are good. Suppose we decompose employee(ID, name, street, city, salary) into employee1 (ID, name)
employee2 (name, street, city, salary)
- The next slide shows how we lose information -- we cannot reconstruct the original employee relation -- and so, this is a lossy decomposition.
8.7 osiliberschazt, Korth and Sudarsha

Example of Lossless-Join Decomposition

- Lossless join decomposition
- Decomposition of $R=(A, B, C)$

$$
R_{1}=(A, B) \quad R_{2}=(B, C)
$$

$\Pi_{A, B}(\mathrm{r}) \bowtie \Pi_{\mathrm{B}, \mathrm{C}}(\mathrm{r})$

A	B	C
α	1	A
β	2	B

Goal - Devise a Theory for the Following

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ such that
each relation is in good form
the decomposition is a lossless-join decomposition
- Our theory is based on:
- 1) Models of dependency between attribute values
, functional dependencies
multivalued dependencies

2) Concept of lossless decomposition

- 3) Normal Forms Based On
, Atomicity of values
- Avoidance of redundancy
, Lossless decomposition
CS425-Fall 2013 - Boris Glavic \qquad 8.11 ESilberschazaz, Korth and Sudarshan

Goals of Lossless-Join Decomposition

- Lossless-Join decomposition means splitting a table in a way so that we do not loose information
- That means we should be able to reconstruct the original table from the decomposed table using joins

A	B	C			
α	1	A			
β	2	B			
r			\quad	A	B
:---:	:---:				
α	1				
β	2				
$\prod_{A, B}(r)$		\quad	B	C	
:---:	:---:	\quad	1	A	
:---:	:---:				
2	B				
$\prod_{B, C}(r)$					

$\prod_{\mathrm{A}}(\mathrm{r}) \bowtie \prod_{\mathrm{B}}(\mathrm{r})$

A	B	C
α	1	A
β	2	B

${ }^{8.10}$ esiliberschatz, Korth and Sudrese

Modeling Dependencies between Attribute Values: Functional Depedencies Multivalued Depedencies

Database System Concepts, $6^{\text {th }}$ Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use
Functional Dependencies
Constraints on the set of legal instances for a relation schema.
Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.
A functional dependency is a generalization of the notion of a key.
Thus, every key is a functional dependency
Functional Dependencies (Cont.)

- Let R be a relation schema

$$
\alpha \subseteq R \text { and } \beta \subseteq R
$$

- The functional dependency

$$
\underset{\substack{\alpha \rightarrow \beta \\ \text { nly if for an }}}{\text { and }}
$$

holds on R if and only if for any legal relations $r(\mathrm{R})$, whenever any two tuples t_{1} and t_{2} of r agree on the attributes α, they also agree on the attributes β. That is, $t_{1}[\alpha]=t_{2}[\alpha] \Rightarrow t_{1}[\beta]=t_{2}[\beta]$
■ Example: Consider $r(\mathrm{~A}, B)$ with the following instance of r.

- On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.

Functional Dependencies (Cont.)

- Let R be a relation schema
- The functional dependency
$\underset{\alpha}{\alpha \rightarrow \beta}$
holds on R if and only if for any legal relations $r(\mathrm{R})$, whenever any two tuples t_{1} and t_{2} of r agree on the attributes α, they also agree on the attributes β. That is,

$$
t_{1}[\alpha]=t_{2}[\alpha] \Rightarrow t_{1}[\beta]=t_{2}[\beta]
$$

- Example: Consider $r(\mathrm{~A}, B)$ with the following instance of r.

- On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.
Use of Functional Dependencies
We use functional dependencies to:
test relations to see if they are legal under a given set of functional
dependencies.
, If a relation r is legal under a set F of functional dependencies, we
say that r satisfies F.
specify constraints on the set of legal relations
, We say that F holds on R if all legal relations on R satisfy the set
of functional dependencies F.
test relations to see if they are legal under a given set of functional pris.
say that r satisfies F.
pecify constraints on the set of legal relations
We say that F holds on R if all legal relations on R satisfy the se

Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal nstances
For example, a specific instance of instructor may, by chance, satisfy name $\rightarrow I D$. 8.17 esilberschata, Korth and Sudarshan

Functional Dependencies (Cont.)

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
- $K \rightarrow R$, and
- for no $\alpha \subset K, \alpha \rightarrow R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:
inst_dept (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:
dept_name \rightarrow building
and $\quad I D \rightarrow$ building
but would not expect the following to hold:
dept_name \rightarrow salary

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation
- Example:
- ID, name $\rightarrow I D$
, name \rightarrow name
- In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

	Closure of a Set of Functional Dependencies - Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F. \qquad - The set of all functional dependencies logically implied by F is the closure of F. - We denote the closure of F by \mathbf{F}^{+} - F^{+}is a superset of F
	Somame

Functional-Dependency Theory

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies
- How do we get the initial set of FDs?
- Semantics of the domain we are modelling
- Has to be provided by a human (the designer)
- Example
- Relation Citizen(SSN, FirstName, LastName, Address)
- We know that SSN is unique and a person has a a unique SSN
- Thus, SSN \rightarrow FirstName, LastName
Example
$R=(A, B, C, G, H, I)$
$F=\left\{\begin{array}{l}A \rightarrow B \\ A \rightarrow C\end{array}\right.$
$C G \rightarrow H$
$C G \rightarrow I$
$B \rightarrow H\}$
some members of F^{+}
$A \rightarrow H$
, by transitivity from $A \rightarrow B$ and $B \rightarrow H$
$A G \rightarrow I$
, by augmenting $A \rightarrow C$ with G, to get $A G \rightarrow C G$
and then transitivity with $C G \rightarrow I$

Prove Additional Implications

- Prove or disprove the following rules from Amstrong's axioms
- 1) $A \rightarrow B$, C implies $A \rightarrow B$ and $A \rightarrow C$
- 2) $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B, C$
- 3) $A, B \rightarrow B, C$ implies $A \rightarrow C$
- 4) $\mathrm{A} \rightarrow B$ and $\mathrm{C} \rightarrow D$ implies $A, C \rightarrow B, D$

Procedure for Computing F^{+}

- To compute the closure of a set of functional dependencies F:
$F^{+}=F$
repeat
for each functional dependency f in F^{+}
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F^{+}
for each pair of functional dependencies f_{1} and f_{2} in F
if f_{1} and f_{2} can be combined using transitivity
then add the resulting functional dependency to F^{+}
until F^{+}does not change any further
NOTE: We shall see an alternative more efficient procedure for this task later

Example of Attribute Set Closure

■ $R=(A, B, C, G, H, I)$

- $F=\{A \rightarrow B$
$C G \rightarrow H$
$C G \rightarrow H$
$C G \rightarrow H$
- $(A G)^{+}$

1. result $=A G$
2. result $=A B C G \quad(A \rightarrow C$ and $A \rightarrow B)$
3. result $=A B C G H \quad(C G \rightarrow H$ and $C G \subseteq A G B C)$
4. result $=A B C G H I \quad(C G \rightarrow I$ and $C G \subseteq A G B C H)$

Is $A G$ a candidate key?
Is AG a super key?
. Does $A G \rightarrow R$? $==$ Is $(A G)^{+} \subseteq R$
2. Is any subset of $A G$ a superkey?

1. Does $A \rightarrow R$? $==$ Is $(A)^{+} \subseteq R$
2. Does $G \rightarrow R$? $==$ Is $(G)^{+} \subseteq R$
CS425-Fall 2013- Boris Glavic esiliberschatz, Korth and Sudarshar

O(n) Algorithm for Attribute Closure

- Data Structures
- Enumerate the FDs and attributes
- int[] c: an integer array with one element per FD that is initialized to the size of the LHS of the FD
- list<int>[] rhs: an array of lists with one element per FD. The lement stores the numeric ID of the attributes of the FDs RHS
list<int>[] Ihs: an array of lists of integers, one element per attribute. The element for each attribute stores the numeric IDs of the FDs that have the attribute in its LHS
- set<int> aplus: a set storing the attributes currently established to be implied by A
- stack<int> todo: a stack of attributes to be processed next

O(n) Algorithm for Attribute Closure

- Algorithm
- Initialize c, rhs, Ihs, aplus to the emptyset, todo to \mathbf{A}
while(!todo.isEmpty) \{ curA $=$ todo.pop();
aplus.add(curA);
// add curA to result
for fd in lhs[curA] \{ // update how many attribute found for LHS

$$
c[f d]--; \quad / / \text { found a LHS attr for } \mathrm{fd}
$$

if ($c[f d]==0)$ \{
remove(lhs[curA], fd); // avoid firing twice
for newA in rhs[fd] \{ // add implied attributes
if (!aplus[newA]) // if attribute is new add to todo todo.push(newA)
aplus.add (newA) ;
\}
\}
\}
\}
225-Fall 2013 - Boris Glavic ${ }^{8} .30$

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
- To test if attribute $A \in \alpha$ is extraneous in α
compute $(\{\alpha\}-A)^{+}$using the dependencies in F

2. check that $(\{\alpha\}-A)^{+}$contains β; if it does, \boldsymbol{A} is extraneous in α

- To test if attribute $A \in \beta$ is extraneous in β
compute α^{+}using only the dependencies in
$F^{\prime}=(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$,

2. check that α^{+}contains A; if it does, A is extraneous in β

Testing if an Attribute is Extraneous
Consider a set F of functional dependencies and the functional
dependency $\alpha \rightarrow \beta$ in F.
To test if attribute $A \in \alpha$ is extraneous in α
3. compute $(\{\alpha\}-A)^{+}$using the dependencies in F
4. check that $(\{\alpha\}-A)^{+}$contains β; if it does, A is extraneous in α
To test if attribute $A \in \beta$ is extraneous in β
5. compute α^{+}using only the dependencies in
$F^{\prime}=(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$,
6. | check that α^{+}contains A; if it does, A is extraneous in β |
| :--- |

©s425-Fall 2013- Boris Glavic

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
- Attribute A is extraneous in α if $A \in \alpha$
and F logically implies $(F-\{\alpha \rightarrow \beta\}) \cup\{(\alpha-A) \rightarrow \beta\}$.
- Attribute A is extraneous in β if $A \in \beta$
and the set of functional dependencies
$(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$ logically implies F
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F=\{A \rightarrow C, A B \rightarrow C\}$
- B is extraneous in $A B \rightarrow C$ because $\{A \rightarrow C, A B \rightarrow C\}$ logically implies $A \rightarrow C$ (I.e. the result of dropping B from $A B \rightarrow C$).
- Example: Given $F=\{A \rightarrow C, A B \rightarrow C D\}$
- C is extraneous in $A B \rightarrow C D$ since $A B \rightarrow C$ can be inferred even after deleting C

Lossless Join-Decomposition Dependency Preservation

A canonical cover for F is a set of dependencies F_{c} such that

- F logically implies all dependencies in F_{c}, and
- F_{c} logically implies all dependencies in F, and
- No functional dependency in F_{c} contains an extraneous attribute, and
- Each left side of functional dependency in F_{c} is unique.
- To compute a canonical cover for F :
repeat
Use the union rule to replace any dependencies in F
$\alpha_{1} \rightarrow \beta_{1}$ and $\alpha_{1} \rightarrow \beta_{2}$ with $\alpha_{1} \rightarrow \beta_{1} \beta_{2}$
Find a functional dependency $\alpha \rightarrow \beta$ with an
extraneous attribute either in α or in β
l^{*} Note: test for extraneous attributes done using $F_{c, \text {, }}$ not $\mathrm{F}^{\star /}$
If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$
until F does not change
- Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

modified from:
Database System Concepts, 6 ${ }^{\text {th }}$ Ed ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Theory of dependencies What is missing? When is a decomposition loss-less What else is missing? Define what constitutes a good relation , Normal forms How to check for a good relation , Test normal forms How to achieve a good relation , Translate into normal form , Involves decomposition	
CS425-Fall 2013-Boris Glavic er ${ }^{\text {e }}$	©siliberschatz, Korth and Sudarshan

Example

- $R=(A, B, C)$
$F=\{A \rightarrow B, B \rightarrow C)$
- Can be decomposed in two different ways
- $R_{1}=(A, B), \quad R_{2}=(B, C)$
- Lossless-join decomposition: $R_{1} \cap R_{2}=\{B\}$ and $B \rightarrow B C$
Dependency preserving
- $R_{1}=(A, B), \quad R_{2}=(A, C)$
- Lossless-join decomposition:

$$
R_{1} \cap R_{2}=\{A\} \text { and } A \rightarrow A B
$$

- Not dependency preserving
(cannot check $B \rightarrow C$ without computing $R_{1} \bowtie R_{2}$)

Testing for Dependency Preservation

■ To check if a dependency $\alpha \rightarrow \beta$ is preserved in a decomposition of R into $R_{1}, R_{2}, \ldots, R_{n}$ we apply the following test (with attribute closure done with respect to F

- result = α
while (changes to result) do
for each R_{i} in the decomposition
$t=\left(\text { result } \cap R_{i}\right)^{+} \cap R_{i}$
result $=$ result $\cup t$
- If result contains all attributes in β, then the functional dependency $\alpha \rightarrow \beta$ is preserved
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure (attribute closure) takes polynomial time, instead of the exponential time required to compute F^{+}and $\left(F_{1} \cup F_{2} \cup \ldots \cup\right.$ $\left.F_{\mathrm{n}}\right)^{+}$

For the case of $R=\left(R_{1}, R_{2}\right)$, we require that for all possible relation instances r on schema R

$$
r=\prod_{R 1}(r) \bowtie \prod_{R 2}(r)
$$

- A decomposition of R into R_{1} and R_{2} is lossless join if at least one of the following dependencies is in F^{+}.
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

$\begin{aligned} & \text { Let } F_{i} \text { be } \\ & R_{i} . \end{aligned}$	es F end $=F$ upd re	on attributes if functional hich is
CS425-Fall 2013 - Boris Glavic	8.40	esiliberschatz, k

Example $\begin{gathered} R=(A, B, C) \\ F=\{A \rightarrow B \\ B \rightarrow C\} \\ K e y=\{A\} \end{gathered}$ - Decomposition $R_{1}=(A, B), R_{2}=(B, C)$ - Lossless-join decomposition - Dependency preserving	
CSS25- Fall 2013 - Boris Glavic 8.42	esilberschatz, Korth and Sudarshan

Goals of Normalization
Let R be a relation scheme with a set F of functional dependencies.

- Decide whether a relation scheme R is in "good" form.
In the case that a relation scheme R is not in "good" form,
decompose it into a set of relation scheme $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ such that
each relation scheme is in good form
the decomposition is a lossless-join decomposition
- Preferably, the decomposition should be dependency preserving.

First Normal Form (Cont' d)

- Atomicity is actually a property of how the elements of the domain are used.
- Example: Strings would normally be considered indivisible
- Suppose that students are given roll numbers which are strings of he form CS0012 or EE1127
If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
- Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

First Normal Form
A domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:
, Set of names, composite attributes
, Identification numbers like CS101 that can be broken up into
parts
A relational schema R is in first normal form if the domains of all
attributes of R are atomic

Non-atomic values complicate storage and encourage redundant
(repeated) storage of data
- Example: Set of accounts stored with each customer, and set of
owners stored with each account
We assume all relations are in first normal form
(revisited in Chapter 22 of the textbook: Object Based Databases)

cs425-Fall 2013- Boris Glavic
Second Normal Form
A relation schema R in 1 NF is in second normal form (2NF) iff

- No non-prime attribute depends on parts of a candidate key
R

Second Normal Form Interpretation

- Why is a dependency on parts of a candidate key bad? - That is why is a relation that is not in 2NF bad?
- 1) A dependency on part of a candidate key indicates potential for redudancy
- Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
- StudentCWID \rightarrow StudentName
- If a student is advised by multiple instructors we record his name several times
- 2) A dependency on parts of a candidate key shows that some attributes are unrelated to other parts of a candidate key
- That means the table should be split

2NF is What We Want?

- Instructor(Name, Salary, DepName, DepBudget) $=\mathrm{I}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ - $A \rightarrow B, C, D$
- $C \rightarrow D$
- $\{$ Name $\}$ is the only candidate key
- I is in 2NF
- However, as we have seen before I still has update redundancy that can cause update anomalies
- We repeat the budget of a department if there is more than one instructor working for that department

3NF Example

- Instructor(Name, Salary, DepName, DepBudget) $=I(A, B, C, D)$ - $A \rightarrow B, C, D$
- $C \rightarrow D$
- \{Name\} is the only candidate key
- 1 is in 2 NF
- I is not in 3NF

Third Normal Form

- A relation schema R is in third normal form (3NF) if for all:
$\alpha \rightarrow \beta$ in F^{+}
at least one of the following holds:
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for R
- Each attribute A in $\beta-\alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)

Alternatively,

- Every attribute depends directly on a candidate key, i.e., for every attribute A there is a dependency $X \rightarrow A$, but no dependency $Y \rightarrow A$ where Y is not a candidate key

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F^{+}.
- Use attribute closure to check for each dependency $\alpha \rightarrow \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
- this test is rather more expensive, since it involve finding candidate keys
- testing for 3NF has been shown to be NP-hard
- Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

3NF Decomposition Algorithm		
```Let \(F_{c}\) be a canonical cover for \(F\); \(i:=0\); for each functional dependency \(\alpha \rightarrow \beta\) in \(F_{c}\) do if none of the schemas \(R_{j}, 1 \leq j \leq i\) contains \(\alpha \beta\) then begin \(i:=i+1 ;\) \(R_{i}:=\alpha \beta\) end if none of the schemas \(R_{j}, 1 \leq j \leq i\) contains a candidate key for \(R\) then begin \(i:=i+1 ;\) \(R_{i}:=\) any candidate key for \(R ;\) end \(/{ }^{*}\) Optionally, remove redundant relations */ repeat if any schema \(R_{j}\) is contained in another schema \(R_{k}\) then \(/{ }^{*}\) delete \(R_{j}{ }^{* /}\) \(R_{j}=R\);; \(i=i-1\); return \(\left(R_{1}, R_{2}, \ldots, R_{i}\right)\)```		
CS425-Fall 2013 - Boris Glavic	8.55	©Sillerschat, Kor

## 3NF Decomposition: An Example

- Relation schema:
cust_banker_branch $=(\underline{\text { customer id, employee id }}$, branch_name, type $)$
- The functional dependencies for this relation schema are:
customer_id, employee_id $\rightarrow$ branch_name, type

2. employee_id $\rightarrow$ branch_name
3. customer_id, branch_name $\rightarrow$ employee_id

- We first compute a canonical cover
- branch_name is extraneous in the r.h.s. of the $1^{\text {st }}$ dependency
- No other attribute is extraneous, so we get $\mathrm{F}_{\mathrm{C}}=$
customer_id, employee_id $\rightarrow$ type
employee_id $\rightarrow$ branch_name
customer_id, branch_name $\rightarrow$ employee_id

3NF Decomposition Algorithm (Cont.)

- Above algorithm ensures:
- each relation schema $R_{i}$ is in 3NF
- decomposition is dependency preserving and lossless-join
- Proof of correctness is at end of this presentation (click here)
CS425-Fall 2013 - Boris Clavic esicterschatz, Korth and Sudarshan


## 3NF Decompsition Example (Cont.)

- The for loop generates following 3NF schema: (customer_id, employee_id, type ) (employee_id, branch_name) (customer_id, branch_name, employee_id)
- Observe that (customer_id, employee_id, type) contains a candidate key of the original schema, so no further relation schem needs be added
- At end of for loop, detect and delete schemas, such as (employee id. branch_name), which are subsets of other schemas
- result will not depend on the order in which FDs are considered
- The resultant simplified $3 N F$ schema is:
(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)



## Boyce-Codd Normal Form

A relation schema $R$ is in BCNF with respect to a set $F$ of
functional dependencies if for all functional dependencies in $\mathrm{F}^{+}$of the form
$\alpha \rightarrow \beta$
where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
$\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ )

- $\alpha$ is a superkey for $R$

Example schema not in BCNF:
instr_dept (ID, name, salary, dept_name, building, budget)
because dept_name $\rightarrow$ building, budget
holds on instr_dept, but dept_name is not a superkey
CS425-Fall 2013-Boris Glavic esillicershatz, Korth and Sudarshal

## Testing for BCNF

- To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF 1. compute $\alpha^{+}$(the attribute closure of $\alpha$ ), and

2. verify that it includes all attributes of $R$, that is, it is a superkey of $R$.

- Simplified test: To check if a relation schema $R$ is in BCNF, it suffices to check only the dependencies in the given set $F$ for violation of $B C N F$, rather than checking all dependencies in $F^{+}$
- If none of the dependencies in $F$ causes a violation of BCNF, then
none of the dependencies in $F^{+}$will cause a violation of BCNF either.
- However, simplified test using only $F$ is incorrect when testing a relation in a decomposition of $\mathbf{R}$
- Consider $R=(A, B, C, D, E)$, with $F=\{A \rightarrow B, B C \rightarrow D\}$
- Decompose $R$ into $R_{1}=(A, B)$ and $R_{2}=(A, C, D, E)$
- Neither of the dependencies in $F$ contain only attributes from ( $A, C, D, E$ ) so we might be mislead into thinking $R_{2}$ satisfies BCNF.
- In fact, dependency $A C \rightarrow D$ in $F^{+}$shows $R_{2}$ is not in BCNF

CS425-Fall 2013 - Boris Glavic
3 $\qquad$

## Decomposing a Schema into BCNF

- Suppose we have a schema $R$ and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
We decompose $R$ into:
- $(\alpha \cup \beta)$
- $(R-(\beta-\alpha))$
- In our example,
- $\alpha=$ dept_name
- $\beta=$ building, budget
and inst_dept is replaced by
- $(\alpha \cup \beta)=($ dept_name, building, budget $)$
- $(R-(\beta-\alpha))=(I D$, name, salary, dept_name $)$




## BCNF and Dependency Preservation

- If a relation is in BCNF it is in $3 N F$
- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- Because it is not always possible to achieve both BCNF and dependency preservation, we usually consider normally third norma form.

Testing Decomposition for BCNF

■ To check if a relation $R_{i}$ in a decomposition of $R$ is in BCNF ,

- Either test $R_{i}$ for BCNF with respect to the restriction of $F$ to $R_{i}$ (that is, all FDs in $\mathrm{F}^{+}$that contain only attributes from $\mathrm{R}_{\mathrm{i}}$ )
- or use the original set of dependencies $F$ that hold on $R$, but with the following test:
for every set of attributes $\alpha \subseteq R_{i}$, check that $\alpha^{+}$(the
attribute closure of $\alpha$ ) either includes no attribute of $R_{\Gamma} \alpha$, or includes all attributes of $R_{i}$.
, If the condition is violated by some $\alpha \rightarrow \beta$ in $F$, the dependency
$\alpha \rightarrow\left(\alpha^{+}-\alpha\right) \cap R^{\prime}$
can be shown to hold on $R_{i,}$, and $R_{i}$ violates BCNF.
, We use above dependency to decompose $R_{i}$
CS425- Fall 2013 - Boris Glavic esillerschatz, Korth and Sudarshat


## BCNF Decomposition Algorithm

result : $=\{R\}$;
result $:=\{R\}$,
done $:=$ false;
compute $F^{+}$;
while (not done) d
while (not done) do
(there is a schema $R_{i}$ in result that is not in BCNF)
then begin
let $\alpha \rightarrow \beta$ be a nontrivial functional dependency that holds on $R_{i}$ such that $\alpha \rightarrow R_{i}$ is not in $F^{+}$, and $\alpha \cap \beta=\varnothing$;
result $:=\left(\right.$ result $\left.-R_{i}\right) \cup\left(R_{i}-\beta\right) \cup(\alpha, \beta)$;
end
else done := true
Note: each $R_{i}$ is in BCNF, and decomposition is lossless-join.


## BCNF Decomposition (Cont.)

- course is in BCNF
- How do we know this?
- building, room_number $\rightarrow$ capacity holds on class-1
- but \{building, room_number\} is not a superkey for class-1.
- We replace class-1 by:
classroom (building, room_number, capacity)
section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.
BCNF Decomposition (Cont.)
course is in BCNF
- How do we know this?
building, room_number $\rightarrow$ capacity holds on class-1
- but \{building, room_number is not a superkey for class-1.
- We replace class- 1 by:
, classroom (building, room_number, capacity)
, section (course_id, sec_id, semester, year, building,
room_number, time_slot_id)
classroom and section are in BCNF.


## Example of BCNF Decomposition

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)

- Functional dependencies:
- course_id $\rightarrow$ title, dept_name, credits
- building, room_number $\rightarrow$ capacity
course_id, sec_id, semester, year $\rightarrow$ building, room_number, time_slot_id
- A candidate key \{course_id, sec_id, semester, year\}.
- BCNF Decomposition
course_id $\rightarrow$ title, dept_name, credits holds
but course_id is not a superkey
We replace class by
- course(course_id, title, dept_name, credits)
- class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

	There are database schemas in BCNF that do not seem to be sufficiently normalized   Consider a relation   inst_info (ID, child_name, phone)   - where an instructor may have more than one phone and can have multiple children		
	ID	child_name	phone
	99999 99999 99999 99999	David   David   William   Willian	$\begin{aligned} & 512-555-1234 \\ & 512-555-4321 \\ & 512-555-1234 \\ & 512-555-4321 \end{aligned}$
inst_info			
CS425-Fall	2013-Boris Glavic	${ }^{8.71}$	esilbersch

## BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

- $R=(J, K, L)$
$F=\{J K \rightarrow L$
$L \rightarrow K\}$
Two candidate keys $=J K$ and $J L$
- $R$ is not in BCNF
- Any decomposition of $R$ will fail to preserve

$$
J K \rightarrow L
$$

This implies that testing for $J K \rightarrow L$ requires a join
How good is BCNF? (Cont.)
There are no non-trivial functional dependencies and therefore the
relation is in BCNF
Insertion anomalies - i.e., if we add a phone 981-992-3443 to 99999,
we need to add two tuples
(99999, David, 981-992-3443)
(99999, William, 981-992-3443)


## Summary Normal Forms

■ BCNF -> 3NF -> $2 N F->1 N F$

- 1NF
- atomic attributes
- 2NF
- no non-trivial dependencies of non-prime attributes on parts of the key
- 3NF
- no transitive non-trivial dependencies on the key
- BCNF
- only non-trivial dependencies on a superkey

Database System Concepts, $6^{\text {th }}$ Ed
©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use


## Multivalued Dependencies and 4NF, 5NF

## Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
- the decomposition is lossless
- the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
- the decomposition is lossless
- it may not be possible to preserve dependencies.


## Design Goals Revisited

- Goal for a relational database design is:
- BCNF.

Lossless join

- Dependency preservation
- If we cannot achieve this, we accept one of
- Lack of dependency preservation
- Redundancy due to use of 3NF
- Interestingly, SQL does not provide a direct way of specifying functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, (and currently not supported by any of the widely used databases!)
- Even if we had a dependency preserving decomposition, using SQL we would not be able to efficiently test a functional dependency whose left hand side is not a key.


## Multivalued Dependencies

- Suppose we record names of children, and phone numbers for instructors:
- inst_child(ID, child_name)
- inst_phone(ID, phone_number)
- If we were to combine these schemas to get
- inst_info(ID, child_name, phone_number)
- Example data:
(99999, David, 512-555-1234)
99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)
- This relation is in BCNF
- Why?

Multivalued Dependencies (MVDs)

- Let $R$ be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency
holds on $R$ if in any legal relation $r(R)$, for all pairs for tuples $t_{1}$ and $t_{2}$ in $r$ such that $t_{1}[\alpha]=t_{2}[\alpha]$, there exist tuples $t_{3}$ and $t_{4}$ in $r$ such that:

$$
t_{1}[\alpha]=t_{2}[\alpha]=t_{3}[\alpha]=t_{4}[\alpha]
$$

$$
t_{3}[\beta]=t_{1}[\beta]
$$

$$
\begin{aligned}
t_{3}[R-\beta] & =t_{2}[R-\beta] \\
t_{4}[\beta] & =t_{[ }[\beta]
\end{aligned}
$$

$$
\begin{aligned}
& t_{4}[\beta]=t_{2}[\beta] \\
& t_{4}[R-\beta]=t_{1}[R-\beta]
\end{aligned}
$$

## MVD (Cont.)

- Tabular representation of $\alpha \rightarrow \beta$

	$\alpha$	$\beta$	$R-\alpha-\beta$
$t_{1}$	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$a_{j+1} \ldots a_{n}$
$t_{2}$	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$b_{j+1} \ldots b_{n}$
$t_{3}$	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$b_{j+1} \ldots b_{n}$
$t_{4}$	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$a_{j+1} \ldots a_{n}$

Example (Cont.)
In our example:
ID $\rightarrow$ child_name
Ine above formal definition is supposed to formalize the notion that given
a particular value of $Y(I D)$ it has associated with it a set of values of $Z$
(child_name) and a set of values of $W$ (phone_number), and these two
sets are in some sense independent of each other.
Note:
If $Y \rightarrow Z$ then $Y \rightarrow \rightarrow Z$
Indeed we have (in above notation) $Z_{1}=Z_{2}$
The claim follows.

Theory of MVDs			
From the definition of multivalued dependency, we can derive the following rule:			
- If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$			
That is, every functional dependency is also a multivalued dependency			
	The closure $\mathrm{D}^{+}$of $D$ is the set of all functional and multivalued dependencies logically implied by $D$.		
We can compute $\mathrm{D}^{+}$from $D$, using the formal definitions of functional dependencies and multivalued dependencies.			
We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice			
For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules (see Appendix C).			
CS425-Fall 201	13-Boris Glavic	${ }^{8.84}$	$\xrightarrow[\text { esilberschatz, Korth a }]{ }$



4NF Decomposition Algorithm
result: $=\{R\} ;$
done := fals
compute $D^{+}$
Let $D_{i}$ denote the restriction of $D^{+}$to $R_{i}$
while (not done)
if (there is a schema $\mathbf{R}_{i}$ in result that is not in 4 NF ) then begin
let $\alpha \rightarrow$ be a nontrivial multivalued dependency that holds
on $R_{i}$ such that $\alpha \rightarrow R_{i}$ is not in $D_{i}$, and $\alpha \cap \beta=\phi$;
result := (result $\left.-R_{i}\right) \cup\left(R_{i}-\beta\right) \cup(\alpha, \beta)$;
end
else done:= true;
Note: each $R_{i}$ is in 4NF, and decomposition is lossless-join
$\qquad$

## Further Normal Forms

- Join dependencies generalize multivalued dependencies
- lead to project-join normal form (PJNF) (also called fifth normal form)
- A class of even more general constraints, leads to a normal form called domain-key normal form.
- Problem with these generalized constraints: are hard to reason with, and no set of sound and complete set of inference rules exists.
- Hence rarely used


## Restriction of Multivalued Dependencies

- The restriction of $D$ to $R_{i}$ is the set $D_{i}$ consisting of
- All functional dependencies in $\mathrm{D}^{+}$that include only attributes of $\mathrm{R}_{\mathrm{i}}$
- All multivalued dependencies of the form $\alpha \rightarrow\left(\beta \cap R_{i}\right)$
where $\alpha \subseteq R_{i}$ and $\alpha \rightarrow \beta$ is in $D^{+}$



Final Thoughts on Design Process
modified from:
Database System Concepts, $6{ }^{\text {th }}$ Ed ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use


## Denormalization for Performance

- May want to use non-normalized schema for performance
- For example, displaying prereqs along with course_id, and title requires join of course with prereq
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes
- faster lookup
- extra space and extra execution time for updates
- extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as course prereq
- Benefits and drawbacks same as above, except no extra coding work for programmer and avoids possible errors


## ER Model and Normalization

- When an ER diagram is carefully designed, identifying all entities correctly, the tables generated from the ER diagram should not need further normalization
- However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of the entity
- Example: an employee entity with attributes department_name and building, and a functional dependency department_name $\rightarrow$ building
- Good design would have made department an entity

Functional dependencies from non-key attributes of a relationship set possible, but rare --- most relationships are binary
Other Design ISSUES
Some aspects of database design are not caught by normalization
Examples of bad database design, to be avoided:
Instead of earnings (company_id, year, amount), use
earnings_2004, earnings_2005, earnings_2006, etc., all on the
schema (company_id, earnings).
, Above are in BCNF, but make querying across years difficult and
needs new table each year
company_year (company_id, earnings_2004, earnings_2005,
earnings_2006)
, Also in BCNF, but also makes querying across years difficult and
requires new attribute each year.
, Is an example of a crosstab, where values for one attribute
become column names
, Used in spreadsheets, and in data analysis tools


- Axioms
- Closure
- Minimal Cover
- Attribute Closure
- Redundancy and lossless decomposition
- Normal-Forms
- 1NF, 2NF, 3NF
- BCNF
- 4NF, 5NF


## Recap

Functional and Multi-valued Dependencies

CS425-Fall 2013 - Boris Glavic 8.95 esilberschaza, Korth and Sudarshan

End of Chapter
modified from:
Database System Concepts, $6^{\text {th }}$ Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Algorithm (Cont' $d_{\text {.) }}$ Correctness of 3NF Decomposition
(Cliaim: if a relation $R_{i}$ is in the decomposition generated by the
above algorithm, then $R_{i}$ satisfies 3NF.
Let $R_{i}$ be generated from the dependency $\alpha \rightarrow \beta$
Let $\gamma \rightarrow$ B be any non-trivial functional dependency on $R_{i}$ (We need only
consider FDs whose right-hand side is a single attribute.)

Now, $B$ can be in either $\beta$ or $\alpha$ but not in both. Consider each case
separately.

es425-Fall 2013-Boris Glavic

## Correctness of 3NF Decomposition (Cont'd.)

- Case 2: $B$ is in $\alpha$
- Since $\alpha$ is a candidate key, the third alternative in the definition of $3 N F$ is trivially satisfied.
- In fact, we cannot show that $\gamma$ is a superkey
- This shows exactly why the third alternative is present in the definition of $3 N F$.
Q.E.D.

Claim: if a relation $R_{i}$ is in the decomposition generated by the
algorithm, then $R_{i}$ satisfies 3NF

- Let $\gamma \rightarrow \mathrm{B}$ be any non-trivial functional dependency on $R_{i}$. (We need only consider FDs whose right-hand side is a single attribute.) separately


## Correctness of 3NF Decomposition Algorithm

3NF decomposition algorithm is dependency preserving (since there is a relation for every FD in $F_{c}$ )

- Decomposition is lossles
- A candidate key $(C)$ is in one of the relations $R_{i}$ in decomposition
- Closure of candidate key under $F_{c}$ must contain all attributes in $R$.
- Follow the steps of attribute closure algorithm to show there is only one tuple in the join result for each tuple in $R_{i}$
(Cont' d.)
Correctness of 3NF Decomposition
Case 2: $B$ is in $\alpha$.
Since $\alpha$ is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.
- In fact, we cannot show that $\gamma$ is a superkey.
- This shows exactly why the third alternative is present in the
definition of 3NF.
Q.E.D.
(Cs425-Fall 2013- Boris Glavic

	Figure 8.02					
	ID	name	salary	dept_name	building	budget
	22222	Einstein	95000	Physics	Watson	70000
	12121	Wu	90000	Finance	Painter	120000
	32343	El Said	60000	History	Painter	50000
	45565	Katz	75000	Comp. Sci.	Taylor	100000
	98345	Kim	80000	Elec. Eng.	Taylor	85000
	76766	Crick	72000	Biology	Watson	90000
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
	58583	Califieri	62000	History	Painter	50000
	83821	Brandt	92000	Comp. Sci.	Taylor	100000
	15151	Mozart	40000	Music	Packard	80000
	33456	Gold	87000	Physics	Watson	70000
	76543	Singh	80000	Finance	Painter	120000





