

CS425 – Fall 2013 Boris Glavic Chapter 8: Relational Database Design

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

What is Good Design?

1) Easier: What is Bad Design?

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use


```
O(n) Algorithm for Attribute Closure

Data Structures

Enumerate the FDs and attributes

int[] c: an integer array with one element per FD that is initialized to the size of the LHS of the FD

list-int-[] rhs: an array of lists with one element per FD. The element stores the numeric ID of the attributes of the FDs RHS

list-int-[] lhs: an array of lists of integers, one element per attribute. The element to each attribute stores the numeric IDs of the FDs that have the attribute in its LHS

set-int-aplus: a set storing the attributes currently established to be implied by A

stack-int- todo: a stack of attributes to be processed next
```

```
O(n) Algorithm for Attribute Closure
Algorithm

    Initialize c, rhs, lhs, aplus to the emptyset, todo to A

   while(!todo.isEmptv) {
      curA = todo.pop();
       aplus.add(curA):
                             // add curA to result
       for fd in lhs[curA] { // update how many attribute found for LHS
           c[fd]--:
                             // found a LHS attr for fd
           if (c[fd] == 0) {
              remove(lhs[curA], fd); // avoid firing twice
              for newA in rhs[fd] { // add implied attributes
                  if (!aplus[newA]) // if attribute is new add to todo
                     todo.push(newA);
                  aplus.add(newA);
```


Canonical Cover

- Sets of functional dependencies may have redundant dependencies
 - For example: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified

 $\{A \to B, \ B \to C, \ A \to D\}$

E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to

 $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
 - Attribute A is **extraneous** in α if $A \in \alpha$ and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$.
 - Attribute A is **extraneous** in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \to C$ (i.e. the result of dropping B from $AB \to C$).
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in AB → CD since AB → C can be inferred even after deleting C

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
- To test if attribute $A \in \alpha$ is extraneous in α
 - compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- To test if attribute $A \in \beta$ is extraneous in β
 - compute $\alpha^{\scriptscriptstyle +}$ using only the dependencies in
 - $\mathsf{F}' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\},\$

check that α^+ contains A: if it does, A is extraneous in β

Canonical Cover

- A canonical cover for F is a set of dependencies F such that
 - F logically implies all dependencies in F_a and
 - F_logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.
- To compute a canonical cover for F:

Use the union rule to replace any dependencies in F

Ose the union the to replace any dependencies in $\alpha_{-} \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2 . Find a functional dependency $\alpha_2 \to \beta$ with an extraneous attribute either in α or in β . Note: test for extraneous attributes done using F_α not $F^*/$ If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$ until F does not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
- Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$

 $AB \rightarrow C$

- Check if the result of deleting A from $AB \rightarrow C$ is implied by the other
 - Yes: in fact, B → C is already present!
- Set is now $\{A \rightarrow BC, B \rightarrow C\}$ C is extraneous in $A \rightarrow BC$
 - Check if A → C is logically implied by A → B and the other dependencies
 - Yes: using transitivity on A → B and B → C.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Lossless Join-Decomposition Dependency Preservation

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Normal Forms

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Goals of Normalization

- Let R be a relation scheme with a set F of functional dependencies.
- Decide whether a relation scheme R is in "good" form.
- In the case that a relation scheme R is not in "good" form, decompose it into a set of relation scheme $\{R_1, R_2, ..., R_n\}$ such that
 - each relation scheme is in good form
 - the decomposition is a lossless-join decomposition
 - Preferably, the decomposition should be dependency preserving.

First Normal Form

- A domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - Set of names, composite attributes
 - → Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - Example: Set of accounts stored with each customer, and set of owners stored with each account
 - . We assume all relations are in first normal form
 - (revisited in Chapter 22 of the textbook: Object Based Databases)

First Normal Form (Cont'd)

- Atomicity is actually a property of how the elements of the domain are Example: Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of
 - the form CS0012 or EE1127
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
 - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

Second Normal Form

- A relation schema R in 1NF is in second normal form (2NF) iff
 - No non-prime attribute depends on parts of a candidate key
 - . An attribute is non-prime if it does not belong to any candidate key for

Second Normal Form Example

- R(A,B,C,D)
 - A,B → C,D
 - A → C
 - B → D
- {A,B} is the only candidate key
- R is not in 2NF, because A->C where A is part of a candidate key and C is not part of a candidate key
- Interpretation **R**(A,B,C,D) is **Advisor**(InstrSSN, StudentCWID, InstrName, StudentName)
 - Indication that we are putting stuff together that does not belong together

CS425 - Fall 2013 - Boris Glavi

8.49

Silberschatz, Korth and Sudarshan

Second Normal Form Interpretation

- Why is a dependency on parts of a candidate key bad?
 - That is why is a relation that is not in 2NF bad?
- 1) A dependency on part of a candidate key indicates potential for redudancy
 - Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
 - StudentCWID → StudentName
 - If a student is advised by multiple instructors we record his name several times
- 2) A dependency on parts of a candidate key shows that some attributes are unrelated to other parts of a candidate key
 - That means the table should be split

CS425 - Fall 2013 - Boris Glavic

8.50

Silberschatz, Korth and Sudarsha

2NF is What We Want?

- Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)
 - A → B,C,D
 - C → D
- {Name} is the only candidate key
- I is in 2NI
- However, as we have seen before I still has update redundancy that can cause update anomalies
 - We repeat the budget of a department if there is more than one instructor working for that department

CS425 - Fall 2013 - Boris Glavi

8.5

Silberschatz, Korth and Sudarshan

Third Normal Form

- A relation schema R is in third normal form (3NF) if for all:
 - $\alpha \rightarrow \beta \text{ in } F^+$

at least one of the following holds:

- $\bullet \ \alpha \to \beta \text{ is trivial (i.e., } \beta \in \alpha)$
- α is a superkey for R
- ullet Each attribute A in $eta-\alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)

Alternatively,

 Every attribute depends directly on a candidate key, i.e., for every attribute A there is a dependency X → A, but no dependency Y → A where Y is not a candidate key

CS425 - Fall 2013 - Boris Glavic

Silberschatz, Korth and Sudarsha

3NF Example

- Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)
 - A → B,C,D
 - C → D
- {Name} is the only candidate key
- I is in 2NF
- I is not in 3NF

S425 – Fall 2013 – Boris Glav

8.53

©Silberschatz, Korth and Sudarshan

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F+
- Use attribute closure to check for each dependency $\alpha \to \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - this test is rather more expensive, since it involve finding candidate keys
 - testing for 3NF has been shown to be NP-hard
 - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

CS425 - Fall 2013 - Boris Glavic

8.54

©Silberschatz, Korth and Sudarshan

```
SNF Decomposition Algorithm

Let F_c be a canonical cover for F;
i \coloneqq 0;
for each functional dependency \alpha \to \beta in F_c do
If none of the schemas R_p, 1 \le j \le i contains \alpha \beta
then begin
i \coloneqq i + 1;
R_i \coloneqq \alpha \beta
end
If none of the schemas R_p, 1 \le j \le i contains a candidate key for R then begin
i \coloneqq i + 1;
R_i \coloneqq \text{any} candidate key for R;
end

I' Optionally, remove redundant relations '/
repeat
If any schema R_i is contained in another schema R_k
then I' delete R_i, '/
R_i = R_i;
i = i - 1;
return (R_1, R_2, ..., R_k)
```


Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F+ of

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- \blacksquare $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \blacksquare α is a superkey for R

Example schema not in BCNE

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name→ building, budget holds on instr_dept, but dept_name is not a superkey

BCNF and Dependency Preservation

- If a relation is in BCNF it is in 3NF
- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- Because it is **not always** possible to achieve **both BCNF and dependency preservation**, we usually consider normally *third normal*

Testing for BCNF

- To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - 1. compute α^+ (the attribute closure of α), and
 - 2. verify that it includes all attributes of R, that is, it is a superkey of R.
- **Simplified test:** To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F.
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F will cause a violation of BCNF
- However, simplified test using only F is incorrect when testing a relation in a decomposition of R
 - Consider R = (A, B, C, D, E), with $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Decompose R into $R_1 = (A,B)$ and $R_2 = (A,C,D,E)$
 - Neither of the dependencies in F contain only attributes from (A,C,D,E) so we might be mislead into thinking R_2 satisfies BCNF.
 - ▶ In fact, dependency $AC \rightarrow D$ in F⁺ shows R₂ is not in BCNF.

Testing Decomposition for BCNF

- To check if a relation R_i in a decomposition of R is in BCNF,
 - Either test R_i for BCNF with respect to the **restriction** of F to R_i (that is, all FDs in F+ that contain only attributes from R_i)
 - or use the original set of dependencies F that hold on R, but with
 - for every set of attributes $\alpha \subseteq R_p$ check that α^+ (the attribute closure of α) either includes no attribute of R_i α , or includes all attributes of R_i .
 - If the condition is violated by some $\alpha \rightarrow \beta$ in F, the dependency $\alpha \rightarrow (\alpha^+ - \alpha) \cap R_i$
 - can be shown to hold on R_i , and R_i violates BCNF.
 - ightharpoonup We use above dependency to decompose R_i

Decomposing a Schema into BCNF

- Suppose we have a schema R and a non-trivial dependency α→β causes a violation of BCNF.
 - We decompose R into: • (α U β)
 - (R-(β-α))
- In our example, α = dept_name
 - β = building, budget
 - and inst_dept is replaced by
 - (α U β) = (dept_name, building, budget)
 - $(R (\beta \alpha)) = (ID, name, salary, dept_name)$

BCNF Decomposition Algorithm

```
done := false:
while (not done) do
  if (there is a schema R<sub>i</sub> in result that is not in BCNF)
then begin
                  let \alpha \to \beta be a nontrivial functional dependency that holds on R_i such that \alpha \to R_i is not in F^+,
                     and \alpha \cap \beta = \emptyset;

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
                  end
      else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- R = (A, B, C) $F = \{A \to B \mid B \to C\}$ $Key = \{A\}$
- R is not in BCNF ($B \rightarrow C$ but B is not superkey)
- Decomposition
 - $R_1 = (B, C)$
 - R₂ = (A,B)

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - course_id→ title, dept_name, credits
 - building, room_number→capacity
 - course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key {course_id, sec_id, semester, year}.
- BCNF Decomposition:
 - course_id→ title, dept_name, credits holds
 - but course_id is not a superkey.
 - We replace class by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
- How do we know this?
- building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1.
 - We replace class-1 by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

R = (J, K, L) $F = \{JK \to L \\ L \to K\}$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

 $JK \rightarrow L$

This implies that testing for $JK \rightarrow L$ requires a join

How good is BCNF?

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

inst_info (ID, child_name, phone)

 where an instructor may have more than one phone and can have multiple children

ID	child_name	phone	
99999	David	512-555-1234	
99999	David	512-555-4321	
99999	William	512-555-1234	
99999	Willian	512-555-4321	

inst_info

How good is BCNF? (Cont.)

- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples

(99999, David, 981-992-3443) (99999, William, 981-992-3443)

Multivalued Dependencies (MVDs)

■ Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency

$$\alpha \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha]=t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$\begin{array}{ll} t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha] \\ t_3[\beta] &= t_1[\beta] \\ t_3[R-\beta] = t_2[R-\beta] \\ t_4[\beta] &= t_2[\beta] \\ t_4[R-\beta] = t_1[R-\beta] \end{array}$$

CS425 - Fall 2013 - Boris Glavic

8 70

Opilhamakata Karth and P

Example

■ Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.

We say that Y→→ Z(Y multidetermines Z) if and only if for all possible relations r(R)

$$< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$$

hen

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

Note that since the behavior of Z and W are identical it follows that Y → Z if Y → W

CS425 - Fall 2013 - Boris Glavi

8.8

@Silberschatz Korth and Sudarshan

Example (Cont.)

In our example

- The above formal definition is supposed to formalize the notion that given a particular value of Y (ID) it has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and these two sets are in some sense independent of each other.
- Note:
- If $Y \rightarrow Z$ then $Y \rightarrow Z$
- Indeed we have (in above notation) Z₁ = Z₂
 The claim follows.

113 – Boris Glavic 8.82

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
 - To specify constraints on the set of legal relations. We shall thus concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

CS425 - Fall 2013 - Boris Glav

8.83

Silberschatz, Korth and Sudarshan

Theory of MVDs

- From the definition of multivalued dependency, we can derive the following rule:
 - If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$

That is, every functional dependency is also a multivalued dependency

- The closure D+ of *D* is the set of all functional and multivalued dependencies logically implied by *D*.
 - We can compute D⁺ from D, using the formal definitions of functional dependencies and multivalued dependencies.
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules (see Appendix C).

CS425 - Fall 2013 - Boris Glavic

Silberschatz, Korth and Sudars

Overall Database Design Process

- We have assumed schema R is given
 - R could have been generated when converting an ER diagram to a set of tables.
 - R could have been a single relation containing all attributes that are
 of interest (called universal relation).
 - Normalization breaks R into smaller relations
 - R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

CS425 - Eall 2013 - Borie Glavi

8.9

Iberschatz, Korth and Sudarshan

ER Model and Normalization

- When an ER diagram is carefully designed, identifying all entities correctly, the tables generated from the ER diagram should not need further normalization.
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
 - Example: an employee entity with attributes department_name and building, and a functional dependency department_name→ building
 - Good design would have made department an entity
- Functional dependencies from non-key attributes of a relationship set possible, but rare --- most relationships are binary

S425 - Fall 2013 - Boris Glavic

92

Silberschatz, Korth and Sudarsha

Denormalization for Performance

- May want to use non-normalized schema for performance
- For example, displaying prereqs along with course_id, and title requires join of course with prereq
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes
 - faster lookup
 - extra space and extra execution time for updates
 - extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as course prereq
 - Benefits and drawbacks same as above, except no extra coding work for programmer and avoids possible errors

CS425 - Fall 2013 - Boris Glavi

8.9

Silberschatz, Korth and Sudarshar

Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use

- earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings).
 - Above are in BCNF, but make querying across years difficult and needs new table each year
- company_year (company_id, earnings_2004, earnings_2005, earnings_2006)
 - Also in BCNF, but also makes querying across years difficult and requires new attribute each year.
 - Is an example of a crosstab, where values for one attribute become column names
 - Used in spreadsheets, and in data analysis tools

CS425 - Fall 2013 - Boris Glavio

8.94

@Silberschatz, Korth and Sudars

Recap

- Functional and Multi-valued Dependencies
 - Axioms
 - Closure
 - Minimal Cover
 - Attribute Closure
- Redundancy and lossless decomposition
- Normal-Forms
 - 1NF, 2NF, 3NF
 - BCNF
 - 4NF, 5NF

CS425 - Fall 2013 - Boris Glavio

8.95

@Silberschatz, Korth and Sudarshan

End of Chapter

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Proof of Correctness of 3NF Decomposition Algorithm

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Correctness of 3NF Decomposition Algorithm

- 3NF decomposition algorithm is dependency preserving (since there is a relation for every FD in F_c)
- Decomposition is lossless
- A candidate key (C) is in one of the relations R_i in decomposition
- Closure of candidate key under F_c must contain all attributes in
- Follow the steps of attribute closure algorithm to show there is only one tuple in the join result for each tuple in R_i

Correctness of 3NF Decomposition Algorithm (Cont' d.)

Claim: if a relation R_i is in the decomposition generated by the above algorithm, then R, satisfies 3NF.

- Let R_i be generated from the dependency $\alpha \rightarrow \beta$
- Let $\gamma \rightarrow B$ be any non-trivial functional dependency on R_r (We need only consider FDs whose right-hand side is a single attribute.)
- Now, B can be in either β or α but not in both. Consider each case

Correctness of 3NF Decomposition (Cont'd.)

- Case 1: If B in β:
 - $\bullet\,$ If γ is a superkey, the 2nd condition of 3NF is satisfied
 - Otherwise α must contain some attribute not in γ
 - Since $\gamma \to B$ is in F^* it must be derivable from F_{ci} by using attribute
 - Attribute closure not have used $\alpha \rightarrow \beta$. If it had been used, α must be contained in the attribute closure of $\boldsymbol{\gamma},$ which is not possible, since we assumed γ is not a superkey.
 - Now, using α→ (β-{B}) and γ → B, we can derive α →B (since $\gamma \subseteq \alpha \ \beta,$ and B $\notin \gamma$ since $\gamma \to \textit{B}$ is non-trivial)
 - Then, *B* is extraneous in the right-hand side of $\alpha \rightarrow \beta$; which is not possible since $\alpha \rightarrow \beta$ is in F_{α} .
 - Thus, if B is in β then γ must be a superkey, and the second condition of 3NF must be satisfied.

Correctness of 3NF Decomposition (Cont'd.)

- Case 2: B is in α.
 - $\bullet\,$ Since $\alpha\,$ is a candidate key, the third alternative in the definition of 3NF is trivially satisfied.
 - In fact, we cannot show that γ is a superkey.
 - . This shows exactly why the third alternative is present in the definition of 3NF

Q.E.D.

Figure 8.02

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

