\square
CWID

Test Questions

Nov 26th

CS425 - Database Organization Results

\square

Part 1.1 Normalization and Functional Dependencies (Total: 0 Points)

Consider the following relation $R(A, B, C, D)$ and functional dependencies F that hold over this relation.

$$
\begin{gathered}
F=A \rightarrow B, D \\
C, D \rightarrow B \\
C \rightarrow D \\
B \rightarrow D
\end{gathered}
$$

Question 1.1.1 (0 Points)
Determine all candidate keys of R.

Solution

Question 1.1.2 (0 Points)

Compute the attribute cover of $X=\{C, B\}$ according to F.

Solution

$$
X^{+}=\{B, C, D\}
$$

Question 1.1.3 (0 Points)

Compute the attribute cover of F. Show each step of the generation according to the algorithm shown in class.

Solution

1th iteration: 1) Apply union rule to combine right-hand sides: no union possible

$$
F_{1}=A \rightarrow B, D \quad C, D \rightarrow B \quad C \rightarrow D \quad B \rightarrow D
$$

1th iteration: 2) Find extraneous attribute:
D is extraneous in $C, D \rightarrow B$

$$
F_{2}=A \rightarrow B, D \quad C \rightarrow B \quad C \rightarrow D \quad B \rightarrow D
$$

2nd iteration: 1) Apply union rule to combine right-hand sides:

$$
F_{3}=A \rightarrow B, D \quad C \rightarrow B, D \quad B \rightarrow D
$$

2nd iteration: 2) Find extraneous attribute:
D is extraneous in $A \rightarrow B, D$.

$$
F_{4}=A \rightarrow B \quad C \rightarrow B, D \quad B \rightarrow D
$$

3rd iteration: 1) Apply union rule to combine right-hand sides: none apply.
$F_{5}=A \rightarrow B$
$C \rightarrow B, D$
$B \rightarrow D$

3rd iteration: 2) Find extraneous attribute: D is extraneous in $C \rightarrow B, D$.

$$
F_{6}=A \rightarrow B \quad C \rightarrow B \quad B \rightarrow D
$$

4th iteration: 1) +2)
none apply.

$$
F_{c}=A \rightarrow B \quad C \rightarrow B \quad B \rightarrow D
$$

Question 1.1.4 (0 Points)

In which normal form is relation R (recall that a relation can be in multiple normal forms).
$\square \quad 2 \mathrm{NF}$
$\square 3 \mathrm{NF}$
\square BCNF

Question 1.1.5 (0 Points)

If R is not in 3NF then decompose it.

Solution

Adding relations for each functional dependency:

$$
R_{1}(A, B) \quad R_{2}(C, B) \quad R_{3}(B, D)
$$

Add relation to hold candidate key if necessary:

$$
\begin{array}{ccc}
R_{1}(A, B) & R_{2}(C, B) & R_{3}(B, D)
\end{array} R_{4}(A, C)
$$

Remove contained relations (in this case none)

$$
\begin{array}{llll}
R_{1}(A, B) & R_{2}(C, B) & R_{3}(B, D) & R_{4}(A, C)
\end{array}
$$

Question 1.1.6 (0 Points)

If you have composed R in the previous step then determine the candidate keys for each relation created during the decomposition.

Solution

Relations are

$$
\begin{array}{llll}
R_{1}(A, B) & R_{2}(C, B) & R_{3}(B, D) & R_{4}(A, C)
\end{array}
$$

Candidate keys are $R_{1}:\{A\}, R_{2}:\{C\}, R_{3}:\{B\}$, and $R_{4}:\{A, C\}$.

Part 1.2 Concurrency Control (Total: 0 Points)

Question 1.2.1 (1 Point)

For each of the following schedules determine which properties this schedule has. E.g., a schedule may be recoverable and cascade-less (strict) or conflict-serializable. Consider the following notation for operations of transactions:

$w_{1}(A)$	transaction 1 wrote item A
$r_{1}(A)$	transaction 1 read item A
c_{1}	transaction 1 commits
a_{1}	transaction 1 aborts

$$
\begin{aligned}
& S_{1}=r_{1}(A), w_{2}(A), r_{1}(B), c_{1}, w_{3}(B), r_{3}(B), w_{3}(A), c_{3}, r_{2}(C), c_{2} \\
& S_{2}=r_{1}(A), w_{2}(B), r_{1}(B), c_{1}, c_{2} \\
& S_{3}=r_{1}(A), w_{2}(B), c_{2}, r_{1}(B), w_{1}(B), c_{1} \\
& S_{4}=w_{1}(A), w_{2}(A), c_{2}, w_{1}(A), c_{1}
\end{aligned}
$$

■ S_{1} is recoverable
S_{1} is cascade-less
S_{1} is conflict-serializable
S_{2} is recoverable
$\square \quad S_{2}$ is cascade-less

- $\quad S_{2}$ is conflict-serializable
- S_{3} is recoverable
- $\quad S_{3}$ is cascade-less
- $\quad S_{3}$ is conflict-serializable
- S_{4} is recoverable
$\square \quad S_{4}$ is cascade-less
$\square \quad S_{4}$ is conflict-serializable

Question 1.2.2 Create a Strict Schedule (8 Points)

Consider the following set of transactions:

$$
\begin{aligned}
& T_{1}=r_{1}(A), w_{1}(A), c_{1} \\
& T_{2}=r_{2}(B), r_{2}(A), w_{2}(B), w_{2}(A), c_{2} \\
& T_{3}=r_{3}(B), w_{3}(B)
\end{aligned}
$$

1. Write a cascade-less history involving these three transactions.

Solution

Several solutions are correct. For example,

$$
S=r_{1}(a), w_{1}(A), c_{1}, r_{2}(B), r_{2}(A), w_{2}(B), w_{2}(A), c_{2}, r_{3}(C), w_{3}(C)
$$

In a correct solution, if one transaction T_{i} writes an item, then the others cannot read nor write the same item until T_{i} commits.

Question 1.2.3 (1 Point)

Check all correct statements below

In a cascade-less (strict) schedule if a transaction T_{j} read a data item written by transaction T_{i} then the commit of T_{i} has to be before this read operation of T_{j}
\square A recoverable schedule is also cascade-less
\square Not all conflict-serializable schedules are also 2PL
\square Under 2PL a transaction is split into three phases, a first growing phase, a shrinking phase, and a second growing phase

- Every SS2PL schedule is also 2PL

Solution

