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Abstract—Many existing models of point-to-point communication in distributed systems ignore the impact of memory and middleware.

Including such details may make these models impractical. Nonetheless, the growing gap between memory and CPU performance

combined with the trend toward large-scale, clustered shared memory platforms implies an increased need to consider the impact of

middleware on distributed communication. We present a general software-parameterized model of point-to-point communication for

use in performance prediction and evaluation. We illustrate the utility of the model in three ways: 1) to derive a simplified, useful, more

accurate model of point-to-point communication in clusters of SMPs, 2) to predict and analyze point-to-point and broadcast

communication costs in clusters of SMPs, and 3) to express, compare, and contrast existing communication models. Though our

methods are general, we present results on several Linux clusters to illustrate practical use on real systems.

Index Terms—Distributed systems, middleware, performance modeling and prediction.
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1 INTRODUCTION

FOR many scientific distributed applications, the cost of
communication dominates overall execution time.

Point-to-point communication requires moving data from
the source process’ local memory to the target process’ local
memory. Algorithm designers and application program-
mers use explicit communications to specify source and
target buffer locations and amount (or type) of data
transferred. For example, given source (B[i]) and target
(A[i]) array elements of type double, A½i� ¼ B½i� specifies an
explicit data transfer of 8 bytes within a single address
space on many 32-bit systems. Explicit communications
across address spaces (e.g., MPI send communications1)
require additional information to identify source and target
processes.

An explicit communication is an abstraction for a series of
implicit communications. In a typical load-store architec-
ture for a loop assigning A½i� ¼ B½i� for 0 < i < n� 1, a
series of block transfers between memory hierarchy levels
brings data from main memory to cache to registers to
complete this task. The user explicitly specifies source and
target locations, but the assignment implicitly causes
movement of data from memory to registers and back to

memory. Implicit communications are the transmissions that
occur “behind the scenes” to complete an explicit commu-
nication. This requires hardware (e.g., data replication from
memory to cache) and system software support (e.g.,
demand paging) when the data does not reside in memory.
The details of the implicit communication are hidden to
ease programming efforts.

For message passing in a distributed system, sends and
receives are explicit communications accomplished using
implicit communication mechanisms provided in middle-
ware. Communication middleware is systems software or
libraries designed to support abstraction in explicit com-
munications. In distributed communication using MPI, this
includes the costs of operating system overhead and MPI
software. For example, an MPI_Send() of a strided2 message
describes a point-to-point transfer explicitly. To ensure that
packed data is actually sent across the network, MPI
middleware performs a series of implicit communications
to complete the transfer (i.e., packing strided data at the
source and unpacking data by stride at the target). Some
transmissions occur in user space, others via the operating
system in kernel space.

Models of communication cost must balance abstraction
and accuracy. The PRAM model [11] assumes unit cost for
implicit communication. Optimal algorithm design using
PRAM minimizes the number of explicit communications.
Unfortunately, the “flat” cost in the PRAM model does not
accurately reflect the characteristics of today’s complicated,
multilevel communication systems. This can lead to algo-
rithm designs that perform poorly on real systems.
Succeeding variants of PRAM [1] introduce complexity to
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1. In this paper, we focus on message passing (e.g., MPI) due to its
popularity in large-scale clusters. Our approach is general and applicable to
shared memory communication as well, though our parameter measure-
ment techniques may require extension (e.g., OpenMP).

2. The words “strided,” “distributed,” “unpacked,” and “noncontig-
uous” are interchangeable. So are “unit-stride,” “not distributed,”
“packed,” and “contiguous.” Each refers to the degree of spatial locality
in message data in this paper.
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improve accuracy considering additional application (and

rudimentary system) characteristics such as arbitration of

reads and writes, yet do not typically consider the effects of

hardware or middleware.
Hardware-parameterized models ignore the increasing

effects of middleware on communication cost. The LogP [8],

[9] model uses hardware-specific measurements and an

analytical machine model to predict [19] and analyze

implicit communication more accurately than PRAM and

at finer granularity than models of aggregate communica-

tion such as BSP [21]. The hardware costs of small message

injection overhead ðoÞ, message repeat rate ðgÞ, and network

latency ðLÞ define the analytical model. Succeeding variants

of LogP [3], [7], [12], [14], [16] reflect evolving architectures

that diverge from the MPP designs (e.g., CM-5) upon which

LogP is based. Examples include:

1. practical elimination of the repeat rate cost ðgÞ
parameter,

2. extension to long messages by adding the G
parameter (LogGP [3]),

3. extension to active messages by adding the C
parameter (LoPC [12], LoGPC [16]), and

4. incorporation of synchronization costs by adding the
S parameter (LoGPS [14]).

There are compelling reasons to incorporate middleware

costs into models of distributed communication. First,

middleware can dominate communication cost. For exam-

ple, Fig. 1 shows the software-parameterized costs of point-

to-point communication on an Itanium cluster. The lower

stack of each bar (overhead) is the total unit-stride transfer

cost in microseconds between source and target nodes for

various data message sizes (1K, 4K, and 16K bytes). This

cost, an upper bound of the hardware transfer cost, does not

change with a message’s stride size (16, 64, 256, and

1K bytes). The communication cost is quickly dominated by

the upper stack of each bar (latency) or the additional cost

due to strided memory accesses. The impact of latency on

communication varies with data size, data stride, and

system implementation. These effects are ignored under

hardware parameterized models.

Second, more accurate models of communication en-

courage efficient algorithm design. Existing hardware-

parameterized models of communication ignore middle-

ware as a potential performance bottleneck. This implies

algorithms designed may be less than optimal. For example,

an algorithm designed under LogP has no incentive to

reduce the number of strided communications. Nonethe-

less, Fig. 1 shows such communications can easily grow to

4x the cost of unit-stride communications. Additionally,

more accurate cost models encourage overlap in commu-

nications. The latency costs in Fig. 1 have the potential for

overlap depending on system design, such as nonblocking

memory accesses or aggressive prefetching and algorithm

characteristics.
Since existing parallel programs often do not exhibit

good performance on distributed systems, a large class of

scientific applications (e.g., simulations) stands to benefit

from the development of predictive models of distributed

communication that incorporate system software character-

istics and encourage reductions in middleware commu-

nication cost. For example, the 3D FFT applications

described in Section 4.3.4 can spend as much as 50 percent

of their execution time in middleware communication.
In this paper, we describe our approach to separate the

costs of unit-stride and strided accesses at various points

along the communication critical path. In Section 2, we

discuss our general model of point-to-point communication

ðlogn PÞ which is accurate and robust yet cumbersome to

use in practice. Hence, we also show how to apply the

general model to existing clusters to create a practical model

of point-to-point communication that incorporates the

significant costs of middleware ðlog3 PÞ. Section 3 describes

our experimental platforms and measurement techniques.

Section 4 presents the practical application of our model

ðlog3 PÞ on various platforms to obtain parameters, analyze

communication costs, and predict performance. In Sec-

tion 4.3.4, we show how log3 P can be used in algorithm

design to optimize performance. Section 5 describes related

work showing how the logn P model can be used to derive

most existing models of point-to-point communication

prevalent in the literature. In this section, we also compare

and contrast the complexity of all related models of

communication to our models. Last, we discuss conclu-

sions, including the limitations of our approach and future

directions.

2 THE LOGNP MODEL OF POINT-TO-POINT

COMMUNICATION

In this section, we present a general model ðlogn PÞ of

communication that incorporates middleware costs. Pre-

vious models of communication (e.g., LogP) have been

augmented to suit architectural evolution. Our general

model is designed for flexibility. To ease use, we simplify

our general model to create a model ðlog3 PÞ that reflects the

current architectural trend toward parallel systems consist-

ing of clusters of SMPs. We then use log3 P to predict and

analyze communication costs on several clusters.
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Fig. 1. Half round-trip time for point-to-point communication. Overhead is

the communication cost of nonstrided message transfers. Latency is the

additional time for strided message transfers. Latency can dominate

transmission costs for strided communications.



Fig. 2 provides an illustrative view of the succeeding
discussion. We formally characterize data transfer costs
using five parameters:
l: the effective latency (the letter “ell”), defined as the

effective delay3 in the transmission or reception of a strided
message over and above the cost of a unit-stride transfer.
The system-dependent l cost is a function of the message
data size ðsÞ under a variable stride or distribution ðdÞ. We
denote this function as l ¼ fðs; dÞ, where variable s
corresponds to a series of discrete message sizes in bytes,
variable d corresponds to a series of discrete stride distances
in bytes between array elements, and function f is the
additional time for transmission in microseconds over and
above the unit-stride cost for variable message data size s
and stride d. This cost is bounded above by the cost of data
transfers without computational overlap and bounded
below by 0 or full computational overlap.
o: the effective overhead, defined as the effective delay in

the transmission or reception of a unit-stride message. The
system-dependent o cost is a function of the message data
size ðsÞ under a fixed unit-stride (i.e., when d ¼ 1 array
element). We denote this function as fðs; dÞ ¼ fðs; 1Þ ¼ o,
where variable s corresponds to a series of discrete message
sizes in bytes,4 variable d ¼ 1 array element corresponds to
the unit-stride between adjacent array elements, and
function f is the time for transmission in microseconds for
variable message data size s and stride d ¼ 1 array element.
This average, unavoidable overhead represents the best
case for data transfer on a target system. This cost is
bounded below by the data size divided by the hardware
bandwidth.
g: the gap, is unit-stride point-to-point effective commu-

nication cost, including additional system delays. o is the
cost of a unit-stride point to point transfer without resource
contention. g� o is the additional cost of contention.

g provides flexibility for expansion of our model to consider
effects of multiple messages not covered by o and l. For
now, we assume this parameter has no impact on
communication cost, effectively using o ¼ g. At times, we
use maxðo; gÞ for completeness, but this cost simply reduces
to o under our assumption.
n: the number of implicit transfers along the data transfer

path between two endpoints of communication. Endpoints
can be as simple as two distinct local memory arrays or as
complex as a remote transfer between source and target
memories across a network. oi or li are the average costs for
the ith implicit transfer along the data transfer path where
0 < i < n� 1. As n increases, so does the accuracy and
complexity of the model of implicit communication.
P : the number of processor/memory modules. This

parameter is used when determining the cost of collective
communications estimated as a series of point-to-point
transfers.

All parameters are measured as multiples of processor
clock cycles converted to microseconds. Conversion to rates
of cycles or microseconds per byte is straightforward. In our
discussion, we assume typical load/store architectures with
hierarchical memory implementations. Clusters may be
composed of single processor or multiprocessor nodes
communicating on a shared bus or through a network
interface card (NIC) attached to interconnect. Our analyses
and predictions are at the application level, so nondetermi-
nistic characteristics of memory access delay at the
microarchitecture level are not considered. We assume
deterministic access delay and use minimums of average
values as inputs to our model. This assumption is validated
if our predictions are accurate. In this paper, our predictions
for common collective communications are typically within
3 percent. As is customary, we assume the receiving
processor may access a message only after the entire
message has arrived. At any given time, a processor can
either be sending or receiving a single message.

2.1 Usage of the Model

logn P estimates point-to-point communication cost (or time,
T) as:

T ¼
Xn�1

i¼0

maxðoi; giÞ þ lif g: ð1Þ

T is the cost of an explicit communication consisting of
n implicit transfers numbered 0 to n� 1. Any transfer has
data characteristics of size ðsÞ and stride ðdÞ. oi is the cost for
unit-stride transfers for implicit communication number i.
oi is a function of the size ðsÞ and unit-stride ðd ¼ 1Þ, so
oi ¼ fðs; dÞi ¼ fðs; 1Þi. We assume gi � oi ¼ 0 since we do
not consider system contention in this work. li is the
additional cost for strided transfers for implicit commu-
nication number i. li is a function of the size and stride of a
message, so li ¼ fðs; dÞi. Equation (1) can be expressed as:

T ¼
Xn�1

i¼0

oi þ lif g ¼
Xn�1

i¼0

fðs; 1Þi þ fðs; dÞi
� �

: ð2Þ

The main drawback to using logn P directly as described
in (2) is complexity. This approach allows consideration of
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3. Our model parameters do not explicitly model communication
overlap such as prefetching. However, the use of “effective” measurements
allows inclusion of these effects provided overlap occurs in steady state
communication. For example, when we measure source node overhead,
prefetching reduces the effective overhead cost. In this case, we measure the
repeatable, steady-state effective rate per byte for transmissions.

4. In our results, we refer to unit stride for doubles as d ¼ 8 bytes. We use
d ¼ 1 array element in this discussion to maintain independence from an
underlying architecture or array element type.

Fig. 2. Performance bounds with the logn P model parameters. o and l

are both functions of message size. l is additionally subject to variations

due to stride size. l is shown for a single, fixed stride.



costs previously ignored by hardware models of commu-
nication. It is also flexible enough to apply to any point-to-
point transfer. However, such complexity can prohibit
practical use. Too many parameters may keep nonexperts
from drawing conclusions and isolating communication
cost bottlenecks. Too few parameters do not provide
enough information. Additionally, the parameters must be
measurable. We analyze the complexity of our model in
relation to others in Section 5.

2.2 The log3 P Model of Point-to-Point
Communication

Current debate notwithstanding,5 the convergence of
distributed architectures to clusters of SMPs implies we
can make some assumptions to reduce the complexity of the
communication model described by (2). We assume o ¼ g,
and n ¼ 3 points of implicit communication. The first
reduction corresponds to ignoring the extraneous effects
of multiple messages competing in the system. This is
reasonable as our initial intent is to model point-to-point
and collective communication operations, not nondetermi-
nistic effects of resource contention. This assumption is
validated by the resulting accuracy of our techniques. The
second assumption is a starting point for our analyses. If a
further breakdown of costs is necessary, we can refine the
model by increasing n > 3 and applying (2).

For n ¼ 3, (2) reduces to:

T ¼
X2

i¼0

fðs; 1Þi þ fðs; dÞi
� �

¼ fðs; 1Þ0 þ fðs; dÞ0
� �

þ

fðs; 1Þ1 þ fðs; dÞ1
� �

þ fðs; 1Þ2 þ fðs; dÞ2
� �

;

ð3Þ

T ¼ o0 þ l0f g þ o1 þ l1f g þ o2 þ l2f g: ð4Þ

Equation (4) describes implicit communication points 0,
1, and 2, respectively. Each implicit point is broken into
costs ðoþ lÞ under our model. The implicit points corre-
spond to hops between endpoints as follows: 0) Middle-
ware communication within user space to the network
interface buffer; this includes the effects of hierarchical
memory. 1) Communication across the interconnect. 2) Mid-
dleware communication from the network interface buffer
to user space; this includes the effects of hierarchical
memory. The number of implicit communications may be
larger (e.g., across the memory hierarchy); we abstract them
into three single points for simplicity. This assumption is
validated by the resulting usefulness of our techniques for
performance prediction and analysis.

We combine source and target overhead—common
practice in communication models such as LogP. It is
practically cumbersome to measure and separate source
and target overheads individually. Additionally, since any
point-to-point communication inherently requires source
and target overhead, separation as such doesn’t provide
information of enough interest to warrant the complexity of
separate parameters in the model. On the other hand,
maintaining the separation of costs as overhead (unit-stride

cost) and latency (additional strided data costs) seems
warranted given the previous discussion regarding mid-
dleware costs and the impact of memory. Hence, we
reformulate (4):

T ¼ o0 þ o2f g þ l0 þ l2f g þ o1 þ l1f g: ð5Þ

More precisely, though the costs at points i ¼ 0 and i ¼ 2

are distinct, for simplicity we group by pairs and provide
more meaningful subscripts: middleware overhead ¼ omw ¼
fo0 þ o2g ¼ ffðs; 1Þ0 þ fðs; 1Þ2g and middleware latency ¼
lmw ¼ fl0 þ l2g ¼ ffðs; dÞ0 þ fðs; dÞ2g under the preceding
simplifications. For point i ¼ 1 or network transfer cost, o1 ¼
fðs; 1Þ1 is a linear function of a fixed packet size transfer cost
across the interconnect and l1 ¼ fðs; dÞ1 is assumed to be zero
since packets are unit-stride and fixed size. The resulting
linear function is the network overhead ¼ onet ¼ fðs; 1Þ1. The
log3 P model can be expressed semantically as:

T ¼ omw þ lmw þ onet: ð6Þ

3 EXPERIMENTAL DETAILS

3.1 Platforms

In the next section, we provide detailed results for an IA-64
Linux cluster referred to as Titan. Each node of Titan has two
800 MHz Intel Itanium I processors running Red Hat Linux
7.1. Each processor is equipped with L1, L2, and L3 caches of
32 KB, 96 KB, and 4 MB, respectively. Each node has 2 GB ECC
SDRAM and nodes are connected using Myrinet 2000
technology.

We are able to measure our model parameters on nearly
any platform. Measurement of model parameters allows
accurate prediction of communication algorithm costs. Our
analysis techniques are general, but, at times, system
implementation details are needed to explain performance
trends. For example, to best analyze distributed commu-
nication costs, we need some understanding of the buffer
transmissions performed by the middleware. The open-
source characteristics of MPICH allow us to study im-
plementation specifics. This was a significant motivation for
the use of Linux-based platforms. The machines studied use
a version of the MPICH implementation of the MPI
standard. For analysis on nonopen source platforms, policy
decisions must be inferred if not provided directly to the
public. All of the following discussions refer to MPICH.

3.2 Techniques

We created a set of micro benchmarks using a modified
version of mpptest [11]. The mpptest tool provides platform
independent, reproducible measurement of message pas-
sing experiments such as ping-pong and memory copy and
is part of the MPICH distribution. It can be used to
benchmark systems for determining MPICH platform
dependent parameters. To ensure reproducible results, we
do the following:

1. preload data sets to “warm up” the cache so we do
not measure start-up costs,

2. repeat an explicit communication operation n times
(n is an input parameter, usually > 100) and take the
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5. US supercomputing strategy is in flux. Evolving systems will be large
and complex. Since experts cannot agree on which fundamental technology
should dominate, it is likely systems will be diverse as well.



average as one sample to ensure we are measuring a
steady state,

3. take m samples (m is an input parameter set to 100)
and choose the minimum of these m samples as the
measured value to select the best case transmission,
and

4. repeat this full set of m� n measurements at least
two different times at varied hours to ensure system
loads do not perturb results.

The mpptest tool provides various functions of use in
our experiments. Specifically, we control the message size
and type, call type (e.g., blocking or nonblocking send), and
the precision or tolerance desired. We modified the tool to
provide further granularity such as specifying the stride of a
message. We use the resulting control to vary the data type
(char, integer, and double), message size ðsÞ, and stride ðdÞ.
The modified tool6 is portable to all systems under study
(and any system running MPI). For simplicity, we only
present results for data type double and common commu-
nication functions MPI_Send and MPI_Recv unless men-
tioned explicitly. For all measurements related to strided
data, we consider only regular access patterns and, if using
derived data types, use MPI_Type_vector.

4 EXPERIMENTAL RESULTS

Our experimental objectives are threefold. First, we verify
how we obtain parameter values. Second, we use our model
to study the communication costs of high-end clusters.
Third, we apply our model to predict communication cost
for use in algorithm design.

4.1 Parameter Evaluation

Before we evaluate our model parameters, we discuss the
MPICH implementation for the common send operation
(MPI_Send) on a Linux cluster. Fig. 3 provides an abstract
flow chart for the implicit communication on the sender
side for long messages. Unit-stride messages do not require
packing. Strided data is packed into a contiguous buffer and
sent across the network to its destination. In either case, the
“send contiguous” function is invoked.

At this point, one of three size-dependent protocols is
selected to ensure good performance. Messages are classified
as short ðs < 1 KbytesÞ, long ð1 Kbytes < s < 128 KbytesÞ,
and very long ðs > 128 KbytesÞ. For short and long
messages, no message handshakes or acknowledgments
establish communication as the data has been saved in an
intermediate local buffer on the sender side.7 For very long
messages, handshakes or acknowledgments are required.
We denote two cases for MPI_Send:

Case 1: Same source and destination (send to self).
Short/Long messages. Data copy from send buffer to

intermediate buffer to receive buffer.
Very long messages. Streaming data copy between send

buffer and receive buffer.

Case 2: Different source and destination (remote send).
All messages. Data sent in socket to destination.
Fig. 4 shows our model parameters for the sender and

receiver (generally) and costs for long messages (16 Kbyte)
and long, strided messages (1 Kbyte stride) on the IA-64
Linux cluster (Titan). Figs. 4a and 4b show costs for unit-
stride send and receive pairs. For simplicity, we use
symmetrical parameters (e.g., the values for o0 and o2 from
(5) are averaged for sender and receiver and expressed as a
single value such as o0 ¼ omw=2 and o2 ¼ omw=2). The omw
term used in later graphs refers to the total overhead ðomw ¼
omw=2þ omw=2Þ on sender and receiver as described by (6).
Figs. 4c and 4d show the additional latency for strided
communications (see the “pack message” in Fig. 3). The lmw
term is the total middleware latency on sender and receiver.
As discussed earlier, network transfer costs have lnet ¼ 0, so
it is not necessary to break onet down further (since sender
and receiver network latency is intuitively a single cost).

We identify each term of Fig. 4 for our model as follows:
We begin by obtaining the round trip costs of contiguous
transfers for two cases (send to self or 0 sends to 0 and
remote send or 0 sends to 1, respectively) as a function of
size ¼ s (denoted as “ðsÞ”): send to self ð2T0;0ðsÞÞ and remote
send ð2T0;1ðsÞÞ. Next, we measure Tmem (the cost of memory
copy) for different message sizes. We then solve the send to
self equation ðT0;0ðsÞ ¼ omw=2þ Tmem þ omw=2Þ to obtain omw.
Last, we use the remote send equation ðT0;1ðsÞ ¼ omw=2þ
onet þ omw=2Þ to solve for onet. Both omw and onet are
functions of size ðsÞ. At this point, we have individual
costs for Figs. 4a and 4b.

Using these costs, we perform similar comparisons to
separate the costs for noncontiguous data lmw. We begin by
obtaining the round trip cost of noncontiguous transfers as
a function of size ¼ s and stride ¼ d (denoted as “ðs; dÞ”) for
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6. Our implementation is open-source and available (cameron@vt.edu)
upon request.

7. Astute readers will notice that we simplify this discussion slightly by
ignoring tiny buffer characteristics which are ignored in our MPICH
implementation. While analyses could be extended to include these details,
this level of granularity is beyond the scope our work.

Fig. 3. Sender distributed communication. This flow chart shows MPICH
implementation of a blocking MPI_SEND for long messages. Any strided
message is packed prior to transmission. Messages sent in shared
memory (or to self) avoid the use of sockets. Messages sent across the
network use sockets and require additional size-dependent buffering.



send to self ð2T0;0ðs;dÞÞ. Next, we use our previously

measured and calculated costs to solve the send to self

equation for noncontiguous data ðT0;0ðs;dÞ ¼ omw=2þ
lmw=2þ Tmem þ lmw=2þ omw=2Þ to obtain lmw. By definition,

lmw is a function of size ðsÞ and data stride ðdÞ. We can then

predict the cost of remote send ð2T0;1ðs;dÞÞ using the

parameters. Later, we show the accuracy of this prediction

by comparing to direct measurement of the half-round trip

remote send for strided data.
The values of our model parameters for 16KB message

and 1K stride on the Titan (IA-64) machine are obtained

from Fig. 4: omw ¼ 29us, lmw ¼ 420us, Tmem ¼ 3us, and

onet ¼ 131us. We stress that, using our methodology, all

values are measured many times and are repeatable.

Half-round-trip time for send-to-self of noncontiguous
data (T0;0ðs;dÞ, where s ¼ 16KB, d ¼ 1KB) is 452us on the
IA-64 systems. Though one would not ordinarily send data
to oneself using MPI, this is a measure of the MPI overhead.
In contrast, the half-round-trip time for remote send of
noncontiguous data (T0;1ðs;dÞ, where s ¼ 16 KB, d ¼ 1 KB) is
580 us on the IA-64 systems.

4.2 System Performance Analysis

4.2.1 System Performance Analysis of the IA-64 Cluster

The left-hand picture in Fig. 5 shows the measured
middleware overhead ðomwÞ and network overhead ðonetÞ
on the Itanium cluster. From the figure, we see both
middleware overhead ðomwÞ and network overhead ðonetÞ
increase with all message size, while middleware overhead
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Fig. 4. Half-round trip sender/receiver communication cost. Case 1 (same source and destination or send to self) shown for nonstrided and strided
costs in (a) and (c), respectively. Case 2 (different source and destination) shown for nonstrided and strided costs in (b) and (d), respectively. Actual
costs (in microseconds) shown for message size of 16 Kbytes, stride of 1 Kbyte for (c) and (d) on IA-64 cluster. Note: Costs not drawn to scale for
illustrative purposes. (a) Send contiguous data to self. (b) Half-round trip of contiguous data. (c) Send noncontiguous data to self. (d) Half-round trip
of noncontiguous data.

Fig. 5. Measured overhead and latency on the IA-64 (Titan) cluster. The left picture shows how middleware overhead ðomwÞ and network overhead

ðonetÞ vary with size. Though the trends are linear as expected (x axis is in log), the slopes are different, indicating trade-offs occur at some crossover

point that varies with data size. The right picture illustrates how the latency (additional costs for strides) varies substantially (x and y axes are in log2 )

with size and stride. The varied magnitude of this cost implies crossover points in the left figure will vary with size and stride.



ðomwÞ increases faster for large message sizes. For small
message sizes, network overhead ðonetÞ dominates the cost.
With the increase in message size, middleware overhead
ðomwÞ or the memory/middleware communication cost
dominates communication cost. For small message sizes,
when data fits in cache, hit rate is high and middleware
overhead ðomwÞ is small. However, once the message size
exceeds the cache size, capacity misses increase the average
memory access time. Additional costs in middleware
determine a system-specific intersection of the two curves.
This crossover point is the point at which memory or
middleware delays on the source and target nodes
dominate overall communication cost.

Latency costs, depicted on the right side of Fig. 5, are
particularly susceptible to cache characteristics such as
associativity. This figure depicts various strides over
increasing message sizes. The larger the stride and message
size, the more this cost dominates communication. Note the
x and y-axes are expressed in log2. Cache characteristics are
evident in the large differences between various strides and
the relationship between (size� stride) and cost. As
distances between accesses increase, average memory
access times increase.

The left-hand graph of Fig. 5 illustrates an important use
of our log3 P model for application and system analysis. In
the graph, the crossover point occurs at about 512K.
Message transmissions larger than 512K are dominated by
memory/middleware communication cost. We have addi-
tional data that shows onet versus ðomw þ lmwÞ for various
stride sizes. As the costs due to data strides increase
(reflected in the lmw parameters on the right side of Fig. 5),
crossover points will move steadily to the left (in the graph
on the left in Fig. 5) to smaller data sizes. For example,
stride ¼ 16 bytes results in a crossover point at message size
of 32K and stride ¼ 256 bytes results in a crossover point at
message size of 8K.

Applications that limit messages falling to the right of a
crossover point may improve performance. If such messages
are unavoidable, then system improvements in the middle-
ware or hardware should target reducing memory commu-
nication costs. In such applications and systems, decreasing
network transmission latency will not address the dominant
bottleneck of the communication. A corollary to this observa-
tion is that our analyses could influence machine design to
support a single type of application that only exhibits
characteristics on one side of this crossover point.

Next, we analyze the performance of the middleware
implementation. Fig. 6 shows the cost separation by our
model parameters for strided message transfers into three
parameters: middleware overhead ðomwÞ, network overhead
ðonetÞ, and middleware latency ðlmwÞ. These three para-
meters increase with message size, while middleware
latency ðlmwÞ increases the fastest. Moreover, middleware
latency ðlmwÞ varies with stride as well as data size.

The larger the stride size, the larger the middleware
latency ðlmwÞ due to plateau cache performance already
discussed. For large message size with large stride size,
middleware latency ðlmwÞ dominates communication time.
MPICH is responsible for the middleware latency ðlmwÞ,
allocating extra buffers for pack and unpack operations on

the sender and receiver. These additional memory copies
impact performance severely. This indicates where MPICH
performance can be targeted for optimization.8

4.3 Cost Prediction

4.3.1 Point-to-Point Communication

In this section, we predict the performance of point-to-point
communications using the derived log3 P model parameters
(from Section 4.1) and compare this prediction to the LogP/
LogGP model. We calculate cost predictions per message
using the LogGP model as 2oþ Lþ ðk� 1ÞG, where k is the
message size in bytes. In all of our direct comparisons with
LogP/LogGP, we consider changes between rates (cycles
per message in LogGP) and direct cost (microseconds in
log3 P) when predicting transfer time. We use the MPI
LogP/LogGP benchmark tool [15] to gather the parameters9

presented in Table 1.
Fig. 7 shows the point-to-point communication predic-

tion using the log3 P model and LogGP model on the IA-64
Linux cluster (Titan). For a given message size, data stride
does not affect LogGP predictions. LogGP captures hard-
ware characteristics and ignores the effects of middleware.
As shown (note the y axis is in log), middleware has a
significant effect on the communication cost. The bigger the
stride size, the larger this extra cost. The average relative
error of LogGP prediction for contiguous data communica-
tion is 28 percent. The proposed log3 P model can predict
the cost with average error of 5 percent for all the
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Fig. 6. Parameterized strided costs broken down for the NCSA IA-64
cluster (Titan): middleware overhead ðomwÞ, network overhead ðonetÞ,
and middleware latency ðlmwÞ. Data characteristics determine which
parameter dominates communication cost and should be targeted for
optimization. For each message size (1K, 4K, 16K), costs for four
different stride sizes (16, 64, 256, and 1K) are measured.

8. We do not mean to imply that middleware latency is the fault of the
MPI implementation. Our model isolates the costs resulting from the
interaction of application and middleware. An application may require
strided accesses, resulting in significant middleware latency. Our model
quantifies the impact and identifies a possible culprit (MPI). However, it
may be more appropriate in some cases to modify the application.

9. Such tool measurements make obtaining LogGP parameters as easy as
obtaining the parameters of our model. We assume the tool is accurate and
the predictions are comparable to our own. Our hope is to present the
LogP/LogGP models in the best light possible to underscore the
contribution of our model. An alternative would be to use hardware
parameters for LogP/LogGP specified by the system manufacturer. These
predictions are inaccurate since they do not consider any software effects on
performance.



measurements. Our model prediction is slightly more
accurate for short messages less than 256 bytes and large
messages bigger than 128K bytes. This observation can be
explained by the fact that, under these situations, data can
be fit in cache totally or out of cache, and the data transfer
cost is slightly more stable and predictable. The log3 P
model captures the cost of memory communication through
parameters such as middleware overhead ðomwÞ and
middleware latency ðlmwÞ. Predictions are more accurate
with these parameters.

4.3.2 Derived Data Type Analyses

Derived data types provide an abstraction to ease program-

ming; some implementations (e.g., MPICH) may suffer poor

performance when DDTs are employed. An alternative

often embraced by users is to pack and unpack data

manually (using simple optimizations for block size, loop

unrolling, etc.). One implementation of packing and

unpacking can be simulated by copying indexed items in

a buffer to a contiguous buffer, for instance: for

ði ¼ 0; j ¼ 0; j < count; iþ ¼ stride; jþþÞ, a½j� ¼ b½i�. Un-

packing is copying items from a contiguous buffer to a

noncontiguous buffer by index. The sum of packing and

unpacking is the cost of the explicit communication.

We use our log3 P model to predict the cost of packing
and unpacking for various size and strides of data. Fig. 8
shows the measured and predicted latency using our
model. The average relative error of prediction is
3.5 percent. The prediction is slightly more accurate for
short messages less than 256 bytes and large messages
bigger than 128K bytes for all the strides. One interesting
observation is that, instead of providing much better
performance, which we expected, manual packing and
unpacking doesn’t always guarantee much better perfor-
mance on this IA-64 cluster. The average improvement
over derived data types is about 15 percent. The
maximum improvement is as much as 50 percent, while,
in some cases, the improvement is just below 2 percent.

Researchers at Argonne National Laboratory have used
our model to improve the general performance of derived
data types. This is done as follows: When a derived data
type is used, the size and stride information is embedded in
the DDT representation. At runtime, the size and stride
information is used as input to our model to predict the
performance of various algorithm implementations. The
prediction is used to suggest the best algorithm implemen-
tations for various blocking and array padding factors. By
selecting the best performing algorithm at runtime, derived
data type performance was improved significantly (at times
more than 50 percent) over both MPICH and proprietary
IBM MPI implementations for various systems. Further
details can be found in a related paper [6].

4.3.3 Collective Communication

In this section, we illustrate use of the point-to-point log3 P
communication model to analyze two collective commu-
nication algorithms: linear broadcast and tree structured
broadcast. The communication patterns are depicted in
Fig. 9. The actual MPI broadcast is implemented in MPICH
by integrating these two algorithms. For example, for an
8-node broadcast, MPICH uses linear broadcast (Fig. 9a) for
group10 size ¼ 8 and tree-structured broadcast (Fig. 9b) for
group size ¼ 1. For other group sizes, a tree-structured
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TABLE 1
LogP/LogGP Parameters

Fig. 7. Measured versus predicted cost of half-round trip for derived data
type on Itanium cluster using LogGP (first bar) and log3P (third bar) are
presented. The x-axis is the message size in bytes and the y-axis is the
cost in microseconds on a log scale. For each message size, we
measure and predict a regular stride of 16, 64, 256, and 1,024 bytes. 10. A “group” in MPI parlance refers to a group of processes.

Fig. 8. Measured versus predicted half-round trip time for packing and
unpacking. The x-axis is message size in bytes and y-axis is time in
microseconds. For each message size, we measure and predict a
regular stride of 16, 64, 256, and 1,024 bytes. The first bar is measured
cost, while the second bar is the predicted cost.



algorithm is used to broadcast a message between groups of
processes and then the linear algorithm is used to broadcast
the message from the first process in a group to all other
processes. These examples serve several purposes: 1) They
quantify the impact of middleware costs for simple
algorithm cost models and 2) they illustrate how to apply
the model to algorithm cost analysis for comparison.

The linear broadcast algorithm is based on point-to-point
communication in which ðP � 1Þ individual consecutive
MPI_Sends are used at the source/root node to transfer
data to each remaining node, where P is the number of
processors. The cost of this implementation of broadcast
includes the overhead at the source, the cost of network
transmission, and the cost of delays until the last node
receives the message. We implement a linear broadcast, as
one would implement an algorithm, predict the cost
analytically, and compare this prediction to the measured
cost. For data transmission, the cost should be the sum of
contiguous data communication and the extra latency
introduced by strided data. Using log3 P, the cost is
P �ðomw=2þ lmw=2Þ þ onet, where P �ðomw=2þ lmw=2Þ is the
middleware overhead and middleware latency occurring at
the source node for sending data to other ðP � 1Þ nodes and
the last receiving node and onet is the network overhead.
The prediction of broadcasting a message size of ðkþ 1Þ
bytes with LogGP is 2oþ Lþ ðP � 1ÞGkþ ðP � 2Þg, where
2o is the overhead at the source node and the last receiving
node, L is the network latency, ðP � 1ÞGk is the cycles to
send ðP � 1Þ messages with each of them taking Gk cycles,
and ðP � 2Þg is the cost of ðP � 2Þ gaps between ðP � 1Þ
messages. The values of parameters o, L, G, and g are given
in Table 1.

Fig. 10 shows predictions for linear broadcast using the
log3 P model and LogGP model on the IA-64 Linux cluster.
For small message sizes and small strides, the LogGP
prediction is accurate. But, for large message sizes and larger
strides, LogGP prediction error is considerable and it
increases with data size and stride. For the data points
measured, the maximum relative error of LogGP is 54 percent
and the average relative error is 20.3 percent. The average
error of log3 P predictions is about 3 percent and the
maximum relative error is 11 percent for the data points
measured.

For the tree-structured broadcast algorithm, each node
sends data to its children after receiving from its parent. The

root node is the source. This algorithm has a characteristic

that the message latency is determined by the height of the
tree. Using the log3 P model, the latency of this algorithm is

ðomw þ lmw þ onetÞ times the height of the tree, which is

h ¼ log2ðP Þ, where P is the number of processors. The

prediction for LogGP is hð2oþ Lþ kGÞ þ ðh� 1Þg, where
ðkþ 1Þ is the message size in bytes and other parameters are

given in Table 1.
Fig. 11 shows the predictions for tree-structured broad-

cast using the log3 P model and LogGP model on the IA-64
Linux cluster. The average relative error of LogGP predic-
tion is 46 percent for the data points measured. The error
increases with data size and stride. The minimum relative
error is 16 percent for contiguous data with size of 4 Kbytes,
and maximum relative error is 72 percent at size 16 Kbytes
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Fig. 10. Cost prediction of linear broadcast. The x-axis is message size
in bytes and the y-axis is time in microseconds. For each message size,
we measure and predict regular stride of 8, 128, and 512 bytes. The first
bar is LogGP predicted cost, the second bar is the measured cost, while
the third bar is the predicted cost by the log3 P model.

Fig. 9. Communication patterns of 8-way broadcast. Here, the
numbering denotes the order of the communications. A typical MPICH
broadcast implements a hybrid version of these algorithms where
processes are grouped. Linear broadcast is used within the groups and
tree-structured broadcast is used across groups. We show linear and
tree-structured broadcast only since the hybrid scheme is a subset of
these two extremes. (a) Linear broadcast algorithm. (b) Tree-structured
broadcast algorithm.

Fig. 11. Cost prediction of tree-structured broadcast. The x-axis is
message size in bytes and y-axis is time in microseconds. For each
message size, we measure and predict a regular stride of 8, 128, and
512 bytes. The first bar is LogGP predicted cost, the second bar is the
measured cost, while the third bar is the predicted cost by the log3 P
model.



with stride of 512 bytes. The average relative error of log3 P
prediction is about 6 percent for the measured data points.
The maximum error is 18 percent for 16 nodes broadcast
and 11 percent for 32 nodes broadcast.

4.3.4 Algorithm Analysis

In this section, we show how the use of the log3 P model leads
to efficient parallel algorithm design for a layered 3D FFT
application. The 3D FFT algorithm partitions a 3D array of
data in the z direction and performs three 1D FFT operations
in the x, y, and z dimensions. The 1D FFT in the x and y
dimensions can be completed locally on each node, but the
1D FFT in the z dimension requires all-to-all exchanges
between nodes and a transpose between endpoints.

We first consider communication using a derived data
type (ddt) algorithm to exchange strided data and perform
the transpose. The ddt algorithm relies on middleware to
pack the strided data and map strided data to contiguous
locations at the destination. This results in middleware
latency ðlmwÞ. A second algorithm design (pack) manually
packs and transposes the matrix and then exchanges the
packed message data with other processors. Both designs
are naive [5] in that they operate on entire rows or columns
and introduce significant latency due to strided memory
communication. A third optimized (opt) algorithm design
uses blocking to manually pack and transpose the matrix.
The NAS PB FT benchmark uses a similar implementation
and blocking.

We used the NAS Parallel Benchmark (FT) for the opt
algorithm and created our own versions of FT for the ddt
and pack algorithms. These codes were executed on an
NERSC IBM 1.9 GHz p575 POWER 5 system of 122
8-processor nodes, each with 32 GB shared memory
connected by a high-bandwidth low-latency switching
network. Each processor has a 64 KB/32 KB Instruction/
Data L1 cache, 1.92 MB L2 cache, and 36 MB L3 cache.
Fig. 12 shows costs for the ddt, pack, and opt11 algorithms for
three sets of problem-size+processor combinations (FT.B.4,

FT.B.8, and FT.C.16). Within a single set, there are three
groups of three bars. The groups refer to predicted
communication cost combined with measured computation
cost for LogP (i.e., LogGP) and log3 P and actual measured
values, respectively. Each bar in a group provides values for
the three algorithms under study.

For each bar in Fig. 12, we divide the actual or predicted

execution time into three costs as appropriate: FFT computa-

tion time,12 contiguous data communication time ðonet þ omwÞ,
and strided data communication time ðlmwÞ. We also

measured FFT setup, checksum, and synchronization time,

but omit these in our graphs since they represent a small

fraction of total time and are constant across all algorithm

implementations.
We first observe that the memory communication cost in

these implementations is significant. Fig. 12 shows actual

measurements in all three data sets for the ddt and pack

algorithms. The actual cost of packing strided data in

middleware ðlmwÞ in the ddt algorithm is 51.6 percent of the

total execution time13 for FT.B running on four processors.

The actual cost of manually packing strided data in our pack

algorithm is 48.5 percent of total execution time on four

processors—this cost is included in the “computation” cost.

The opt algorithm improves the ddt algorithm performance

by 43.5 percent on four nodes. The percentages of packing

cost to total cost are 59.3 percent for the ddt algorithm and

11.3 percent for the opt algorithm on 16 processors. In all
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Fig. 12. LogP and log3 P predicted and actual performance on 4, 8, and 16 processors with ddt, pack, and opt algorithms. LogP assumes middleware
latency ðlmwÞ is negligible and suggests the ddt algorithm always performs best. log3 P suggests the opt algorithm will perform best and suggests
optimizing middleware cost may result in cost savings. Memory communication for these FFT codes is as much as 59.3 percent of total time.

11. Block size ¼ 512 bytes.

12. In this section, we include the memory cost of packing/unpacking
manually in “computation.” LogP variants (strictly speaking) estimate
computation cost using a simple RAM model (or computation count x time
per computation). Thus, manual packing/unpacking is basically ignored or
considered additional “computation,” motivating simplification in our
discussion. We note that application of logn P or recursive application of
log3 P can be used to further model packing/unpacking, as shown in
Section 4.3.2.

13. All percentages of total execution time in this section use total
application execution time including FFT setup, checksum, and synchro-
nization costs. As mentioned, these additional costs are not included in
Fig. 14 for ease of discussion.



cases, the best (i.e., shortest) actual execution time is found
using the opt algorithm.

Now that we have identified the best cost for the actual
measurements on a real system, we can use LogP and log3 P to
identify the best algorithms suggested by model prediction.
Fig. 12 shows the predicted execution times for LogP and
log3 P. For FT.B.4, LogP suggests the best execution time is
obtained using the ddt algorithm, while log3 P suggests the
best execution time is obtained using the opt algorithm. Since
opt is the actual best in all cases, log3 P suggests the
appropriate algorithm. In the ddt case, LogP underpredicts
since it ignores the middleware costs and log3 P predicts
accurately and quantifies the costs of middleware that can be
reduced with optimization. In the pack case, LogP and log3 P
provide good estimates of actual cost since packing costs are
absorbed in the computational cost.14 In the opt case, LogP
and log3 P provide accurate estimates since middleware costs
have been minimized via blocking.

The results for FT.B.8 and FT.C.16 are similar. In both
cases, LogP suggests the ddt algorithm performs best, while
the log3 P model suggests the opt algorithm performs best.
Again, LogP and log3 P are accurate for the pack algorithm
and the opt algorithm, but the lack of middleware estimates
by LogP significantly underestimates the actual cost of the
ddt algorithm, which leads to an incorrect conclusion.

5 MODEL DERIVATIONS USING LOGNP

The logn P model can describe any data transfer. We have
already shown how to derive a practical model ðlog3 PÞ for
point-to-point communication prediction in clusters of
SMPs. The logn P (and thus log3 P) model is inspired by
three existing models. First, the previous LogP model and
its variants inspire the 3-points of implicit communication
used in log3 P for modeling distributed communications at a
practical level of granularity. Second, the flexibility of
modeling a number of successive transfers with varying
distributions is similar to the approach of the copy-transfer
model by Stricker and Gross [18]. Third, the simplicity of
dividing communications into contiguous and noncontig-
uous costs was inspired by the memory logP model of
shared memory communication [7]. We begin by expressing
LogP variants in logn P terminology and then we derive the
copy transfer model and PRAM to show all of these models
are, in fact, special cases of logn P.

Fig. 13a provides an illustrative view of the succeeding
discussion. To derive any LogP variant, we first observe
that these models define three points of implicit commu-
nication for an explicit data transfer. That is, they use n ¼ 3
in logn P terminology. This is a natural reflection of point-to-
point communication in massively parallel architectures.
Communication originates on the source node (point 0), is
transmitted between two (or more) network interfaces
(point 1) and is then serviced by the target node (point 2).
All variations on LogP use this approach.

For convenience, we will use N , S, and D to describe
the complexity of logn P and other models. N is the
number of terms needed to describe the communication
hops; Si and Di for 0 � i � ðN � 1Þ are the number of
terms needed to describe the discrete sizes and the
discrete distributions (strides) used by the model, respec-
tively, at communication hop i. A logn P communication
is described explicitly by (1). Expression of the costs in
logn P requires

PN�1
i¼0 ðSi þ Si �DiÞ terms or N�S�ð1þDÞ if

S0 ¼ S1 ¼ . . . ¼ SN�1 ¼ S and D0 ¼ D1 ¼ . . . ¼ DN�1 ¼ D.
Thus, the number of hops and the number of discrete

sizes and strides impacts the complexity. Other models
make assumptions about the number and type of transmis-
sions resulting in reduced complexity (in number of terms),
as shown in Fig. 13b. The log3 P model, for example,
assumes N ¼ 3, resulting in 3�S�ð1þDÞ terms. Complexity
in log3 P can be controlled by minimizing the number15 of
sizes and distributions.

LogP. Though the proposed logn P denotes parameters
similarly to the original LogP model,16 the models are quite
different. The o parameter of LogP is actually a lower bound
for the oi parameter of logn P. The o parameter of LogP is the
cost for a fixed message size. This limits the context of LogP
to small messages. Since the oi parameter of logn P includes
all costs for contiguous transfers as size varies, any
additional repeat rate costs (or assist costs) due to limited
buffer sizes are additionally incorporated. Hence, the gap
parameter, g, of LogP is also absorbed in the oi parameter of
logn P. LogP ignores data distribution, so li cost from logn P
is not present.

Point-to-point communication cost in LogP is typically
modeled as fog0 þ fLg1 þ fog2 for implicit communication
points 0, 1, and 2, respectively. Formally, the logn P
equivalent model is:

T ¼
X2

i¼0

fðs; 1Þi þ fðs; dÞi: ð7Þ

Equations (3) and (4) are more detailed expressions of
(7). To derive LogP formally from (7) requires applying
assumptions to individual terms as we did to derive log3 P.
Hardware-parameterized costs will be less than their
software-parameterized counterparts. For point i ¼ 0 or
source overhead, fðs; 1Þ0 is reduced from a function to a
constant, o, and fðs; dÞ0 is assumed to be zero. For point
i ¼ 1 or network transfer cost, fðs; 1Þ1 is reduced from a
function to a constant, L and fðs; dÞ1 is assumed to be zero.
Both of these assumptions are reasonable for point i ¼ 1
since packets consist of contiguous data and packet size is
typically fixed. For point i ¼ 2 or target overhead, fðs; 1Þ2 is
reduced from a function to a constant, o and fðs; dÞ0 is
assumed to be zero. Again, contiguous and noncontiguous
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14. We use the measured (actual) computation cost to “predict” the
computational cost for both models. This way, we are able to present total
cost estimates for both models, quantify the impact of memory commu-
nication on total cost, and avoid prediction errors that are artifacts of the use
of the RAM model or simple computation counts to approximate the
computational cost.

15. We purposely make no claim as to the number of discrete sizes and
strides needed since these numbers are application dependent. For our FFT
example in Section 4.3.4, the complexity of our FFT predictions is given as
follows: For FT.B.4, d ¼ 512 Kbytes, s ¼ 128 Mbytes, S ¼ 1, D ¼ 1,
complexity ¼ 6 terms; for FT.B.8, d ¼ 256 Kbytes,s ¼ 64 Mbytes, S ¼ 1,
D ¼ 1, complexity ¼ 6 terms; a n d , f o r F T . C . 1 6 , d ¼ 256 Kbytes,
s ¼ 128 Mbytes, S ¼ 1, D ¼ 1, complexity ¼ 6 terms.

16. Of course, this was our intention. While the models differ
fundamentally for analysis purposes, the result is cost predictions that are
similar in look and feel.



memory costs are ignored. In practice, the o term of LogP is
an average of the source and target overheads. This implies
the costs from point i ¼ 0 and point i ¼ 2 are actually o ¼
½fðs; 1Þ0 þ fðs; 1Þ2�=2 under the preceding simplifications. In
LogP terms then, (7) can be expressed as T ¼ oþ Lþ o
without loss of generality. Parameters in LogP ignore the
effects of data size and distribution. Expression of the costs
in LogP requires N�S�ð1þDÞ terms, where N ¼ 3, S ¼ 1,
and D ¼ 0 resulting in three total terms.

LogGP. Evolving systems were able to reduce network
injection overhead using additional hardware support.
Long messages sent as streams instead of a series of smaller
messages incur overhead ðoÞ only at the beginning and end
of a message transfer (assuming n ¼ 3 implicit communica-
tion points). Additional overhead per byte ðGÞ was added
to reflect costs in longer messages.

Point-to-point communication cost in LogGP is modeled
as foþ ððk� 1ÞGÞg0 þ fLg1 þ fog2 for implicit communica-
tion points 0, 1, and 2, respectively. Here, k is the number of
bytes in a long message. The logn P equivalent model is
similar to (7). The reductions are the same for o and L, and,
once again (for small messages), o ¼ ½fðs; 1Þ0 þ fðs; 1Þ2�=2.
The difference is in the estimate of implicit communication
for point i ¼ 0. Under the original LogP model, a long
message would be sent as a series of explicit, short messages.
These explicit messages each incurred the original 2oþ L
cost. For longer messages, a single explicit message can be

initiated and hardware supports implicit transfers costing
G ¼ fðs; 1Þ0 per byte. fðs; 1Þ0 is an additional constant
representation of long message cost. We could represent the
point i ¼ 0 as a simple step function of costs for small and
large messages to express LogGP in terms similar to (though
simpler than the continuous fðs; 1Þ function in) (3). LogGP
increases the accuracy of LogP at the expense of an additional
parameter step function. Expression of the costs in LogGP
requires

PN�1
i¼0 ðSi þ Si �DiÞ terms, where N ¼ 3, S0 ¼ 2,

S1 ¼ S2 ¼ 1, and D0 ¼ D1 ¼ D2 ¼ 0, resulting in four total
terms. This reflects the use of S0 ¼ 2 message sizes that
changes the injection rate of messages; this cost is only
incurred when the message is sent ði ¼ 0Þ since the cost
propagates (i ¼ 1, and i ¼ 2) along the critical path to the
destination.

LoPC, LoGPC. One-sided communication requires an-
other LogP variant. In this case, active messages are
modeled by an additional parameter to incorporate re-
source contention at the source and target of the one-sided
communication. LoPC and LoGPC model contention in the
interrupt queues among all network interfaces involved in
communication for small and large messages, respectively.
In both cases, point i ¼ 0 or point i ¼ 2 in logn P terminol-
ogy are extended to incorporate contention at source or
target endpoints, respectively (corresponding to get or put
one-sided communication operations). All parameters
ignore the effects of data distribution. For small messages,
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Fig. 13. Model comparisons. (a) The logn P model can be used to express any point-to-point communication. LogP-variants are special cases of
logn P where n ¼ 3 and the o and l parameters are simplified under various assumptions. To highlight model differences, the actual costs are not
drawn to scale. See Fig. 1 for cost comparisons drawn to scale that highlight the impact of memory communication on point-to-point communication
cost. (b) The logn P model is similar in complexity to the copy transfer model. The log3 P model balances accuracy and complexity by limiting the
number of terms used and assumptions applied.



point-to-point communication cost in LoPC is modeled as
fog0 þ fLg1 þ fCn þ og2 for implicit communication points
0, 1, and 2, respectively. Queuing methods are used to
approximate Cn. This cost estimates contention among
contiguous data packets; thus, data size and distribution are
fixed (for small messages). This cost can be folded into the
constant approximation (as in LogP) of the fðs; 1Þ function.
Once the value for Cn is estimated using the model, the
resulting cost can be expressed using (7). Extending to large
messages is slightly more complicated [16], but basically
involves modified estimates of the Cn term. LoPC and
LoGPC increase accuracy of LogP at the expense of an
additional parameter queuing function ðCnÞ.

Expression of the costs in LoPC requires N�S�ð1þDÞ
terms, where N ¼ 3, S ¼ 1, D ¼ 0, and jCnj for i ¼ 2,
resulting in 3þ jCnj total terms, assuming jCnj denotes the
number of terms necessary for the contention model. This
reflects the use of Cn to model contention as a queue at the
message destination ði ¼ 2Þ. The use of Cn in LoPC (and
LoGPC) affects the relative ranking of accuracy and
complexity (see Fig. 13b). In this figure, we assume
jCnj < Sð1þDÞ, which may or may not be true depending
on the use of either model.

Memory logP. This model differs from other LogP
variants. Memory logP attempts to augment the o para-
meter of LogP with a model of memory performance. For
shared memory communication, the number of implicit
communication operations is modeled as n ¼ 1. This
abstracts out the performance of memory hierarchies and
system software optimizations such as prefetching. For
point i ¼ 0 or source/target memory communication,
performance is divided into contiguous and noncontiguous
costs using fðs; 1Þ0 and fðs; dÞ0. These estimates are then
combined with the L parameter of LogP to create a model of
point-to-point communication. The resulting cost estimate
for small messages is

T ¼ ffðs; 1Þ0 þ fðs; dÞ0g þ fLg þ ffðs; 1Þ2 þ fðs; dÞ2g:

As in the LoPC model, memory logP focuses on small
messages. It does not consider feedback (or buffer copies in
middleware) due to limited resources at the network
interface (i.e., assumes an infinite network interface buffer).

Memory logP uses parameters that consider the effects of
size and distribution resulting in improved accuracy at the
expense of additional parameter functions. Expression of
the costs in memory logP requires N�S�ð1þDÞ terms,
where N ¼ 3, resulting in 3�S�ð1þDÞ total terms. We note
that a primary difference between memory logP and log3 P
is the use of Tmem (or memory copy cost) to approximate
fðs; dÞ in memory logP.

Copy-transfer model. This low-level model of commu-
nication cost is not a LogP variant. Where LogP variants
attempt to minimize the number of implicit communication
points ðnÞ for simplicity, the copy-transfer model from
Stricker and Gross [18] attempts to maximize n for accuracy.
Communications are described as they occur in hardware.
This model formally describes a transmission in terms of
the end-to-end throughput or bandwidth of the hardware.
Reduction of fðs; 1Þ and fðs; dÞ to the underlying hardware
bandwidth for each hardware data transfer i in (2) results in

an expression of the copy-transfer model. The copy-transfer
model increases the number of implicit communications to
improve accuracy at the expense of complexity. This model
considers the effects of data distribution on cost. Expression
of the costs in the copy-transfer model requires N�S�ð1þ
DÞ terms, making it as complex as logn P but not directly
applicable to distributed communication.

PRAM. This model of point-to-point communication is
the easiest to use since it assumes a unit cost. To express
PRAM in terms of logn P, we set N ¼ 1 and assume a unit
cost for overhead and latency, so T ¼ oþ l ¼ 1. Expression
of the costs in the PRAM model requires N�S�ð1þDÞ
terms, where N ¼ 1, S ¼ 1, D ¼ 0, resulting in one term and
making PRAM the simplest model of communication.
PRAM variants (EREW, CREW, etc.) require modifying
the unit cost to include contention costs for shared data.
PRAM and its variants ignore hardware characteristics and
software characteristics such as data size and distribution in
favor of a simple representation.

6 OTHER RELATED WORK

To the best of our knowledge, this is the first model to
consider the middleware cost and the effect of strided data
when evaluating distributed communication performance.
Nevertheless, previous work (other than the approaches
discussed in the previous section) modeling either inter-
connect performance or memory hierarchy performance is
prevalent.

Analytical techniques to predict cache performance can be
used to estimate model parameters as desired. But, accurate
models of memory hierarchy performance are necessarily
complicated [2], [10]. Other models that attempt to capture
the effects of spatial locality have been proposed. Of these,
Sivasubramaniam et al. [17] and Stricker and Gross [18]
address memory communication. The former consider
spatial locality in a CC-NUMA architecture applying the
traditional LogP model to estimate communication cost for
optimizing simulation performance. The latter approach uses
a fine grain model of the critical data path. As mentioned, this
motivated the granularity of logn P.

The Hierarchical Memory Model (HMM) [4], [13] applies
the characteristics of memory hierarchies to network
communication. Cost estimates are accurate for very large
sets of streaming data [20], [22], but ignore the network
attributes common to parallel and distributed systems. Our
work provides impetus for combining hierarchical memory
performance with estimates of network communication
cost, distinguishing the two approaches.

7 CONCLUSIONS

Previous hardware-parameterized models of communica-
tion cost do not consider the influence of middleware on
performance. To address this problem, we defined the
logn P model of communication by combining the memory
communication cost estimates of an earlier model (memory
logP) with the throughput-driven copy-transfer model. The
logn P model incorporates middleware costs in a model of
point-to-point communication on emergent systems at the
expense of complexity. To address complexity, we derived
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the log3 P model by applying reductions to logn P inspired
by LogP variants. We then show how to measure log3 P
parameters and use them for accurate analysis, prediction
of point-to-point (within 5 percent error) and collective
broadcast communications (within 3 percent error), and to
predict, analyze, and suggest algorithms when memory
communication cost is significant. Since our techniques are
fast and accurate, they have been used to improve MPICH
performance [5].

Although our analysis techniques show promise in
performance evaluation and prediction, there are some
limitations. Our analyses were limited to regular access
patterns. Prediction is more cumbersome for the irregular
patterns present in some codes that use sparse matrices. We
are exploring techniques used by the copy-transfer model to
handle irregular accesses, though it is not clear at present
whether this is applicable to middleware cost estimation.
For more realistic communication schemes embedded in
full applications, analyses will be additionally complicated.
For instance, we are exploring incorporation of contention
in the g parameter of our model. We are attempting to refine
our approach for improved accuracy in such a context.
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