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Motivation

• A single MDS is not enough

• P2p system concepts and scalability functions

• Propose a portable, scalable and high 
performance DFS



System Overview

• DHT-based metadata server cluster

– Chord, Chimera, CAN, Pastry

• User-space local file system

– FUSE



System Architecture
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Lookup service

• Centralized

– Napster (centralized Database, O(N))

• Flooded queries 

– Gnutella (worse case O(N))

• Routed queries 

– Chord (O(logN))



Chord

• Consistent hash
– filename and IP address can be uniformly distributed in the 

ID space

– Nodes join and leave the network without disrupting the 
network

• Keys and Nodes are assigned IDs from the 
same 160-bit id space
– Node IDs  = SHA-1(ip)

– Keys = SHA-1(block content)

• How to map block keys to node IDs?



Chord Hashes a Key to its Successor

• Successor: node with next highest ID

N32

N10

N100

N80

N60

Circular
ID Space

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID   Node ID



Basic Lookup

• Lookups find the ID’s predecessor
• Correct if successors are correct
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Successor Lists Ensure Robust Lookup

• Each node remembers r successors
• Lookup can skip over dead nodes to find blocks
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Chord “Finger Table” Accelerates 
Lookups
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Software Stack

Distributed hash table

DHT-DFS

get (key) Metadata/data

node node node….

put(key, metadata/data)

Lookup service
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•DHT distributes metadata storage over many nodes



File Data structure
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DFS APIs

• Dht_init/finalize

• Dht_open/close

• Dht_read/write

• Dependency

– Sfslite, berkeley database, Chord/dhash



dht_init/finalize

• Dht_init

– Initialize the DFS client

– Set configuration parameters

• Dht_finalize

– Release the resources allocated by dht_init



dht_open/close

• Dht_open

– Name mapping

• Global name to Chord Key

– Fetch data if the file mode is read open

• Dht_close

– Commit the store if file mode is write open



dht_read/write

• Local memory copy



Performance Evaluation

• Experiments setup

– 1-8 Chord nodes at Falkon

– 16 virtual nodes total

– No block replication

– The network is static, no node join or leave during 
file operations



Metadata store/fetch

2000 metadata ops per node



File data store/fetch BW

100 files per node, 10MB per file



Load balance

N=4, 100 file writes per node, 10MB per file 



Load balance (n=4)

N=4, 100 file writes per node, 10MB per file 



Load balance (n=8)

N=8, 100 file writes per node, 10MB per file 



Future work

• Integrate the DHT APIs into fuse

• Refine the APIs to support directory, 
permission

• replicates, data consistency, data caching and 
prefetching

• Replace the Berkeley DB as backend storage


