
Distributed File System

Chen Jin

Outline

• Motivation

• System overview

• System implementation

• Performance results

Motivation

• A single MDS is not enough

• P2p system concepts and scalability functions

• Propose a portable, scalable and high
performance DFS

System Overview

• DHT-based metadata server cluster

– Chord, Chimera, CAN, Pastry

• User-space local file system

– FUSE

System Architecture

DHT
Node

file ops

FUSE

DFS APIs

Internet

DHT
Node

DHT
Node

kernel

user

Chord Server

Chord Client

VFS

glibc
glibc

Posix-IO

Dhash Client

Dhash Server

Lookup service

• Centralized

– Napster (centralized Database, O(N))

• Flooded queries

– Gnutella (worse case O(N))

• Routed queries

– Chord (O(logN))

Chord

• Consistent hash
– filename and IP address can be uniformly distributed in the

ID space

– Nodes join and leave the network without disrupting the
network

• Keys and Nodes are assigned IDs from the
same 160-bit id space
– Node IDs = SHA-1(ip)

– Keys = SHA-1(block content)

• How to map block keys to node IDs?

Chord Hashes a Key to its Successor

• Successor: node with next highest ID

N32

N10

N100

N80

N60

Circular
ID Space

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID Node ID

Basic Lookup

• Lookups find the ID’s predecessor
• Correct if successors are correct

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is key 50?”

“Key 50 is
At N60”

Successor Lists Ensure Robust Lookup

• Each node remembers r successors
• Lookup can skip over dead nodes to find blocks

N32

N10

N5

N20

N110

N99

N80

N60

N40

10, 20, 32

20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99
99, 110, 5

110, 5, 10

5, 10, 20

Chord “Finger Table” Accelerates
Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

Software Stack

Distributed hash table

DHT-DFS

get (key) Metadata/data

node node node….

put(key, metadata/data)

Lookup service

lookup(key) node IP address

(DFS)

(DHash)

(Chord)

•DHT distributes metadata storage over many nodes

File Data structure

InodeIndirect

Inode

root

Root_id

Id_i

Id_1

Id_2

id_nId_j

Key

Foo.txt

global/foo.txt

20-byte key

File size

Original onwer

Data
Block 1

Data
Block n

Data
Block 2

File Size = (BLOCKSIZE/20)^2 * BLOCKSIZE
If BLOCKSIZE = 16k, file size = 10G

DFS APIs

• Dht_init/finalize

• Dht_open/close

• Dht_read/write

• Dependency

– Sfslite, berkeley database, Chord/dhash

dht_init/finalize

• Dht_init

– Initialize the DFS client

– Set configuration parameters

• Dht_finalize

– Release the resources allocated by dht_init

dht_open/close

• Dht_open

– Name mapping

• Global name to Chord Key

– Fetch data if the file mode is read open

• Dht_close

– Commit the store if file mode is write open

dht_read/write

• Local memory copy

Performance Evaluation

• Experiments setup

– 1-8 Chord nodes at Falkon

– 16 virtual nodes total

– No block replication

– The network is static, no node join or leave during
file operations

Metadata store/fetch

2000 metadata ops per node

File data store/fetch BW

100 files per node, 10MB per file

Load balance

N=4, 100 file writes per node, 10MB per file

Load balance (n=4)

N=4, 100 file writes per node, 10MB per file

Load balance (n=8)

N=8, 100 file writes per node, 10MB per file

Future work

• Integrate the DHT APIs into fuse

• Refine the APIs to support directory,
permission

• replicates, data consistency, data caching and
prefetching

• Replace the Berkeley DB as backend storage

