
Automatic Parallelism 

Discovery

Hongyu Gao



Introduction

D

A

CB

A

B

C

D

Sequential vs Parallel execution



Introduction

 Why do we need parallel execution?

 Ever increasing computation scale

 Limited computational power of a single 
processor

 Large scale computation infrastructure 
available

 IBM Blue Gene/P, 1PFLOPS with 294,912 processors



Introduction

 A dilemma:

 Emerging need for parallel computing

 Difficulty of parallel programming

 A solution:

 Automatic parallelization of sequential program



Proposed Solution

 A system that

 Takes in sequential program

 Automatically reveals potential parallelism

 Automatically executes the program in parallel



Proposed Solution, cont’d



Dependency graph generation

 A directed acyclic graph

 A node:

The smallest block of code that is scheduled for 
parallel execution

 An edge:

A node depends on the completion of another 
node before it can be executed



An example



Dependency graph constructor



Task scheduler

 A node (task) can be scheduled if:

 It has no in-edge

 All nodes that it depends on have been 
completed



Task scheduler



Pipelined execution

 Observation 1: The ready node in the 
dependency graph can be scheduled even 
before the graph is completely built.

 Observation 2: All the undeterministic
factors that prevents the construction of the 
complete dependency graph can be resolved 
by executing the partial graph that has been 
constructed



Pipelined execution

 Multiprocess design:

 graph constructor incrementally inserts new 
nodes into the graph.

 A window size limitation

 Task scheduler blocks waiting for either a node 
is ready or an execution has completed



Experimental results



Experimental results, cont’d



Questions?



Thank you!


