Automatic Parallelism
Discovery

Introduction

Sequential vs Parallel execution

Introduction

» Why do we need parallel execution?
» Ever increasing computation scale

» Limited computational power of a single
processor

» Large scale computation infrastructure
available

IBM Blue Gene/P, 1PFLOPS with 294,912 processors

Introduction

» A dilemma:
» Emerging need for parallel computing
» Difficulty of parallel programming

» A solution:
» Automatic parallelization of sequential program

Proposed Solution

» A system that

» Takes in seg
» Automatical

uential program
ly reveals potential parallelism

» Automatical

ly executes the program in parallel

Proposed Solution, cont’'d

[nput Sequential Code

Appl(inputl):
Loop:

App2(input2):
App3(input3):

Dependency
P\ o
@K\o\ Pl Graph
Lo /,./”' ~N | Constructor
///,.-"// I
T T T T T I
Y O |
[nterpreter | N <
2 L &/> | | Daemon
i N C Y] dau
i \J \ /I __/ !
D |
I _/ I
L |
Dependency Graph
&
v 4 Z
o
%\0
Task
Execution

Engine

Task
Scheduler

Dependency graph generation

» A directed acyclic graph

+ A node:

The smallest block of code that is scheduled for
parallel execution

» An edge:

A node depends on the completion of another
node before it can be executed

An example

=
=
=
—.I-_
(=]
.|Iu
=
e |
—

Dependency graph constructor

Algorithm 1 InsertNewNode()
n < thenewnode
(G — thecurrentdependencygraph
Foreach v € GG.nodes
If (v.output N n.input # ()
or v.output N n.output # ()
n.counter + -+
n.depend.insert(v)
v.be_depended.insert(n)
EndIf
EndForeach
G.nodes.insert(n)
If (n.depend = ()
n.type — ready
G:.ready-nodes.insert(n)
Else
n.type «— blocking
EndIf

Task scheduler

» A node (task) can be scheduled if:

» It has no in-edge

» All nodes that it depends on have been
completed

Task scheduler

Algorithm 2 TaskCompletion()

wait(sig_task_complete)
t «— thetaskthatjustcompletes
G «— thecurrentdependencygraph
t.type < done
Foreach n € t.be_depended
n.counter — —
n.depend.remove(t)
If (n.counter = 0)
n.type < ready
G.ready_nodes.insert(n)
signal(sig_node_ready)
EndIf
EndForeach

Pipelined execution

» Observation 1: The ready node in the
dependency graph can be scheduled even
before the graph is completely built.

» Observation 2: All the undeterministic
factors that prevents the construction of the
complete dependency graph can be resolved
by executing the partial graph that has been
constructed

Pipelined execution

» Multiprocess design:

o graph constructor incrementally inserts new
nodes into the graph.

A window size limitation

» Task scheduler blocks waiting for either a node
is ready or an execution has completed

time (seconds)

1000

100 |

—
o
T 1]

Experimental results

1 10 100 1000 10000
dataset size (MB)

Experimental results, cont’d

3500

3000 P
2500 |

2000

time (seconds)

1500

1000

500

1 10 100 1000
worker num

Questions?

Thank you!

