Automatic Parallelism
Discovery



Introduction

Sequential vs Parallel execution



Introduction

» Why do we need parallel execution?
» Ever increasing computation scale

» Limited computational power of a single
processor

» Large scale computation infrastructure
available

IBM Blue Gene/P, 1PFLOPS with 294,912 processors



Introduction

» A dilemma:
» Emerging need for parallel computing
» Difficulty of parallel programming

» A solution:
» Automatic parallelization of sequential program



Proposed Solution

» A system that

» Takes in seg
» Automatical

uential program
ly reveals potential parallelism

» Automatical

ly executes the program in parallel



Proposed Solution, cont’'d
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Dependency graph generation

» A directed acyclic graph

+ A node:

The smallest block of code that is scheduled for
parallel execution

» An edge:

A node depends on the completion of another
node before it can be executed



An example
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Dependency graph constructor

Algorithm 1 InsertNewNode()
n < thenewnode
(G — thecurrentdependencygraph
Foreach v € GG.nodes
If (v.output N n.input # ()
or v.output N n.output # ()
n.counter + -+
n.depend.insert(v)
v.be_depended.insert(n)
EndIf
EndForeach
G.nodes.insert(n)
If (n.depend = ()
n.type — ready
G:.ready-nodes.insert(n)
Else
n.type «— blocking
EndIf




Task scheduler

» A node (task) can be scheduled if:

» It has no in-edge

» All nodes that it depends on have been
completed



Task scheduler

Algorithm 2 TaskCompletion()

wait(sig_task_complete)
t «— thetaskthatjustcompletes
G «— thecurrentdependencygraph
t.type < done
Foreach n € t.be_depended
n.counter — —
n.depend.remove(t)
If (n.counter = 0)
n.type < ready
G.ready_nodes.insert(n)
signal(sig_node_ready)
EndIf
EndForeach




Pipelined execution

» Observation 1: The ready node in the
dependency graph can be scheduled even
before the graph is completely built.

» Observation 2: All the undeterministic
factors that prevents the construction of the
complete dependency graph can be resolved
by executing the partial graph that has been
constructed



Pipelined execution

» Multiprocess design:

o graph constructor incrementally inserts new
nodes into the graph.

A window size limitation

» Task scheduler blocks waiting for either a node
is ready or an execution has completed
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Experimental results, cont’d
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Questions?



Thank you!



