
Tunebot in the Cloud

Arefin Huq

18 Mar 2010



What is Tunebot?



What is Tunebot?

http://tunebot.cs.northwestern.edu

• Automated online music search engine for 
query-by-humming (QBH).

http://tunebot.cs.northwestern.edu


What is Tunebot?

http://tunebot.cs.northwestern.edu

• Automated online music search engine for 
query-by-humming (QBH).

• Users sing or hum tunes to search.

• Queries are matched against other sung 
examples that have been contributed.

http://tunebot.cs.northwestern.edu


What is Tunebot?

http://tunebot.cs.northwestern.edu

• Automated online music search engine for 
query-by-humming (QBH).

• Users sing or hum tunes to search.

• Queries are matched against other sung 
examples that have been contributed.

• Current DB: nearly 10K examples of over 3000 
songs

http://tunebot.cs.northwestern.edu


What is Tunebot?

• A project of the Interactive Audio Lab

led by Prof. Bryan Pardo (EECS)

http://music.cs.northwestern.edu

• Single-machine locally-hosted installation

• Web/Flash/iPhone client

• PHP/MySQL server-side front-end on Apache

• Java/MySQL back-end as a Tomcat servlet

http://music.cs.northwestern.edu


Tunebot Traffic
(Source: Google Analytics)



Architecture



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size

• Handle larger database

– DB expected to grow to “critical mass” of 10K 
songs



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size

• Handle larger database

– DB expected to grow to “critical mass” of 10K 
songs

• Adapt to growing and varying load

– Handle traffic spikes



Project Status

Task

Port front-end to Linux

Port back-end to Linux

Write load-testing framework

Deploy back-end in Cloud (single instance)

Deploy front-end in Cloud (single instance)

Decouple database from front-end

Deploy load-balancing front-end with replicated DBs

Parallelize search for single user

Dynamic provisioning



Project Status

Task Done?

Port front-end to Linux Yes

Port back-end to Linux Yes

Write load-testing framework No

Deploy back-end in Cloud (single instance) Yes

Deploy front-end in Cloud (single instance) Yes

Decouple database from front-end No

Deploy load-balancing front-end with replicated DBs No

Parallelize search for single user Yes

Dynamic provisioning No



Linux Port



Linux Port

• equivalent software installation and 
configuration

• file system dependencies

• permissions

– groups, sticky bits, umask

• Adobe Flash Media Server



Amazon Cloud



Amazon Cloud

http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/

• Ubuntu 9.10 64-bit AMI

• EC2 m1.large instance

– 2 virtual cores x 2 EC2 compute units

– 7.5 GB memory

– “high” IO

• Elastic Block Store

http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/


Parallelization



Algorithm

• Users contribute songs to the database by 
singing a portion of the melody and labeling it.

• This is converted to an internal representation 
(NIS) that is similar to MIDI or musical 
notation. This representation is the database 
key.

• When a user searches for a song their singing 
is also converted to NIS format.



Parallelization

• Search requires a linear scan of the database 
and a score of how well the query matches 
each key.

• Overall algorithm is O(n).

• Cost of computing each score is proportional 
to st where s and t are the lengths of the 
query and key respectively.

• Solution is to compute scores in parallel.



Except…

That’s not the problem.



Except…

That’s not the problem.

Most of the time is spent converting the input audio 
file to NIS format.

(all times in seconds)

Query Length Query response time
(HttpServlet:doPost)

Audio conversion time

0.19 0.147 0.024

18.11 4.99 4.58

48.51 13.2 12.4



Speeding up Audio Conversion

• Replace hand-coded conversion with 
optimized third-party code.

• Eliminate lots of unnecessary data copying.

• Improve parameter choices?

• Use System.arrayCopy() instead of for-loops.

• Convert audio while streaming?

• Parallelize the audio conversion?



Parallelization

But O(n) will be an issue eventually.



Parallelization

But O(n) will be an issue eventually.

(Intel 2.4GHz Core 2 Quad 64-bit Java)

Query Length 1 thread 4 threads Speedup

0.19 s 40 ms 23 ms 1.7x

18.11 s 331 ms 195 ms 1.7x

48.51 s 749 ms 425 ms 1.8x



Database and File System



Database and File System

• Front-end and back-end talk directly to the 
database and file system. Back-end assumes 
all files (currently 30+ GB) are available.

• Requires architectural redesign to change.

• Amazon Cloud does not have a notion of 
shared file system.
– Instance Store

– EBS

– Simple Storage Service



Database and File System

• Database usage pattern is simple – mostly 
SELECT with few predicates or joins.

• Amazon Simple DB

• Amazon Relational Database Service



Dynamic Provisioning

• Amazon CloudWatch

• Amazon Elastic Load Balancing

• Amazon Auto Scaling

All depends on decoupling database and file 
system and managing concurrency.

Need to remove hardcoded URLs in PHP and 
Flash.


