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What is Tunebot?

http://tunebot.cs.northwestern.edu

• Automated online music search engine for 
query-by-humming (QBH).

• Users sing or hum tunes to search.

• Queries are matched against other sung 
examples that have been contributed.

• Current DB: nearly 10K examples of over 3000 
songs
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What is Tunebot?

• A project of the Interactive Audio Lab

led by Prof. Bryan Pardo (EECS)

http://music.cs.northwestern.edu

• Single-machine locally-hosted installation

• Web/Flash/iPhone client

• PHP/MySQL server-side front-end on Apache

• Java/MySQL back-end as a Tomcat servlet

http://music.cs.northwestern.edu


Tunebot Traffic
(Source: Google Analytics)



Architecture



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size

• Handle larger database

– DB expected to grow to “critical mass” of 10K 
songs



Goals

• Improve query response time to < 1 sec

– Typical query takes 5 seconds to complete

– Computation is linear in DB size

• Handle larger database

– DB expected to grow to “critical mass” of 10K 
songs

• Adapt to growing and varying load

– Handle traffic spikes



Project Status

Task

Port front-end to Linux

Port back-end to Linux

Write load-testing framework

Deploy back-end in Cloud (single instance)

Deploy front-end in Cloud (single instance)

Decouple database from front-end

Deploy load-balancing front-end with replicated DBs

Parallelize search for single user

Dynamic provisioning



Project Status

Task Done?

Port front-end to Linux Yes

Port back-end to Linux Yes

Write load-testing framework No

Deploy back-end in Cloud (single instance) Yes

Deploy front-end in Cloud (single instance) Yes

Decouple database from front-end No

Deploy load-balancing front-end with replicated DBs No

Parallelize search for single user Yes

Dynamic provisioning No
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Linux Port

• equivalent software installation and 
configuration

• file system dependencies

• permissions

– groups, sticky bits, umask

• Adobe Flash Media Server
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Amazon Cloud

http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/

• Ubuntu 9.10 64-bit AMI

• EC2 m1.large instance

– 2 virtual cores x 2 EC2 compute units

– 7.5 GB memory

– “high” IO

• Elastic Block Store

http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/
http://ec2-174-129-48-175.compute-1.amazonaws.com/beta/


Parallelization



Algorithm

• Users contribute songs to the database by 
singing a portion of the melody and labeling it.

• This is converted to an internal representation 
(NIS) that is similar to MIDI or musical 
notation. This representation is the database 
key.

• When a user searches for a song their singing 
is also converted to NIS format.



Parallelization

• Search requires a linear scan of the database 
and a score of how well the query matches 
each key.

• Overall algorithm is O(n).

• Cost of computing each score is proportional 
to st where s and t are the lengths of the 
query and key respectively.

• Solution is to compute scores in parallel.
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Except…

That’s not the problem.

Most of the time is spent converting the input audio 
file to NIS format.

(all times in seconds)

Query Length Query response time
(HttpServlet:doPost)

Audio conversion time

0.19 0.147 0.024

18.11 4.99 4.58

48.51 13.2 12.4



Speeding up Audio Conversion

• Replace hand-coded conversion with 
optimized third-party code.

• Eliminate lots of unnecessary data copying.

• Improve parameter choices?

• Use System.arrayCopy() instead of for-loops.

• Convert audio while streaming?

• Parallelize the audio conversion?
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Parallelization

But O(n) will be an issue eventually.

(Intel 2.4GHz Core 2 Quad 64-bit Java)

Query Length 1 thread 4 threads Speedup

0.19 s 40 ms 23 ms 1.7x

18.11 s 331 ms 195 ms 1.7x

48.51 s 749 ms 425 ms 1.8x
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Database and File System

• Front-end and back-end talk directly to the 
database and file system. Back-end assumes 
all files (currently 30+ GB) are available.

• Requires architectural redesign to change.

• Amazon Cloud does not have a notion of 
shared file system.
– Instance Store

– EBS

– Simple Storage Service



Database and File System

• Database usage pattern is simple – mostly 
SELECT with few predicates or joins.

• Amazon Simple DB

• Amazon Relational Database Service



Dynamic Provisioning

• Amazon CloudWatch

• Amazon Elastic Load Balancing

• Amazon Auto Scaling

All depends on decoupling database and file 
system and managing concurrency.

Need to remove hardcoded URLs in PHP and 
Flash.


