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Moore’s Law Is Alive And Well 
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Device scaling continues for at least another 10 years 
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Good Days Ended Nov. 2002 

[Yelick09] 

“New” Moore’s Law:  2x cores with every generation 

Moore’s Law Is Alive And Well 



Exponential Growth of Core Counts 
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So, are 1000-core chips a viable architecture? 
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Performance Expectations vs. Reality 
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Physical constraints limit speedup 



Area vs. Power Envelope 
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Good news: can fit 100’s cores. Bad news: cannot power them all 
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Pack More Slower Cores, Cheaper Cache 
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The reality of The Power Wall: a power-performance trade-off 

VFS 



1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128256512

N
u

m
b

e
r 

o
f 

C
o

re
s
 

Cache Size (MB) 

 Area (310mm)

 Power (130W)

 1 GHz, 0.27V

 2.7 GHz, 0.36V

 4.4 GHz, 0.45V

 5.7 GHz, 0.54V

 6.9 GHz, 0.63V

 8 GHz, 0.72V

 9 GHz, 0.81V

 Bandwidth (1 GHz)

 Bandwidth (2.7GHz)

Pin Bandwidth Constraint 
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Bandwidth constraint favors fewer + slower cores, more cache 

VFS 
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Example of Optimization Results 
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 BW: 

~2x loss 

 Power + BW: ~5x loss 

 Jointly optimize parameters, subject to constraints, SW trends 

 Design is first bandwidth-constrained, then power-constrained 



Core Counts for Peak-Performance Designs 
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 Embedded (EMB)
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Designs > 120 cores impractical for general-purpose server apps 

B/W and power envelopes + dataset scaling limit core counts 

Physical characteristics 

modeled after 

• UltraSPARC T2 (GPP) 

• ARM11 (EMB) 



Application Dataset Scaling 
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 Application datasets scale faster than Moore’s Law!  Big Caches 

0

2

4

6

8

10

12

14

16

18

20

2004 2007 2010 2013 2016 2019

S
c
a
li

n
g

 F
a
c

to
r 

Year of Technology Introduction 

 OS Dataset Scaling
(Muhrvold's Law)

 Transistor Scaling
(Moore's Law)

 TPC Dataset
(Historic)



Pin Bandwidth Scaling 
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 Off-chip bandwidth scales slowly (#pins, off-chip clock)  Big Caches 
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Supply Voltage Scaling 
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 Supply voltage scaling is SLOW!  Dark Silicon 
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Chip Power Scaling 
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 Chip power does not scale! 
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Range of Operational Voltage 
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[Watanabe et al., ISCA’10] 

 Shrinking range of operational voltage hampers voltage-freq. scaling 



Mitigating Bandwidth Limitations: 3D-stacking 
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[Loh et al., ISCA’08] 

 Delivers TB/sec of bandwidth; use as large “in-package” cache 

[Amcor Tech] 

[Philips] 



Performance Analysis of 3D-Stacked Multicores 
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 Chip becomes power-constrained 



Exponentially Large Die Area Left Unutilized 
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 Dark Silicon!!! Should we waste it? 



Example of a Specialized Multicore Chip 
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Core Specialization 
• Existing general designs 

 OoO for ILP, in-order MT for memory-latency-bound, SIMD 
for data-parallel, systolic arrays 

• Customizable cores 

 Tensilica Xtensa (custom ISA and datapath, operation fusion) 

• Reconfigurable logic 

• Generality of implemented operations 

 Target specific application 

 Common macro-operations 

 General ISA 

• Trade-offs in performance, power, programmability, generality 
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  Wide range of “heterogeneity” and “specialization” meanings 



First-Order Core Specialization Model 

• 720p HD H.264 encoder (high-definition video encoder) 

• Several optimized implementations exist 

 Commercial ASICs, FPGAs, CMP software 

• Wide range of computational motifs 
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Frames
per sec 

Energy per 
frame (mJ) 

Performance 
gap with ASIC 

Energy gap 
with ASIC 

ASIC 30 4 

CMP 

IME 0.06 1179 525x 707x 

FME 0.08 921 342x 468x 

Intra 0.48 137 63x 157x 

CABAC 1.82 39 17x 261x 

[Hameed et al., ASPLOS’10] 



Performance of Specialized Multicores 
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 Specialized multicores deliver 2x-12x higher performance  



Core Counts for Specialized Multicores 
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 Only few cores need to run at a time; large die area allow many cores 

 Power constraints? Yield? 



Taming Power and Bandwidth : Nanophotonics 
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Optical 

Interconnect 

 Split chip into chiplets, spread in space 

 Ease cooling and power delivery, high yield; photonics for bandwidth 



Nanophotonic Components 
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Ge-doped 

Rings selectively couple optical 
energy of a specific wavelength 110100101 

110100101 

 64 wavelengths DWDM, 3 ~ 5μm waveguide pitch, 10Gbps per link 

 ~100 Gbps/μm bandwidth density !!! [Batten et al., HOTI’08] 

 



Technology: Off-chip Channel Material 
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Material Optical Loss
Propagation 

Speed

Pitch 

(density)

Silicon 

Waveguide
0.3 dB/cm 0.286c 20um 

Optic Fiber 0.2 dB/km 0.676c 250um

• Optical fiber is low-loss, high speed 

 Enables further spreading out chiplets. 

 BW density was a challenge (fiber pitch size is large) 

* 

* J. Cardenas et al., Optics Express 2009 

 Fiber: low optical loss, high speed, flexibility eases assembly 

 



Technology: Dense Off-Chip Coupling 
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• Dense optical fiber array. [Lee et al., OSA / OFC/NFOEC 2010] 

• <1dB loss, 8 Tbps/mm demonstrated. 

 
 Tapered couplers solved bandwidth problem, demonstrated Tbps/mm 



Galaxy Overall Architecture 
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Large-Scale Interconnects 
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 200mm2 die, 64 routers per chiplet, 9 chiplets, 16cm fiber 

 Supports > 1K cores! 



Conclusions 

• Physical constraints and software pragmatics limit core counts 

 …and performance 

• Emerging/exotic technologies may solve some problems 

 3D-memory for bandwidth 

 Nanophotonics for bandwidth, power, yield 

• Need to reduce wasted energy per unit of work 

 Heterogeneity, only power the few cores needed 

• Need to innovate across software/hardware stack 

 Programmability, tools are a great challenge 

• Scaling forces caches to grow exponentially 

 Address data management both at cache and software 
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Thank You! 
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