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Moore’s Law Is Alive And Well

»
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®» Device scaling continues for at least another 10 years
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®» “New” Moore’s Law: 2x cores with every generation
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Exponential Growth of Core Counts
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®» So, are 1000-core chips a viable architecture?
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Performance Expectations vs. Reality
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®» Physical constraints limit speedup
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Good news: can fit 100’s cores. Bad news: cannot power them all
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Pack More Slower Cores, Cheaper Cache
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®» The reality of The Power Wall: a power-performance trade-off
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Pin Bandwidth Constraint
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®» Bandwidth constraint favors fewer + slower cores, more cache
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Example of Optimization Results
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®» Jointly optimize parameters, subject to constraints, SW trends

®» Design is first bandwidth-constrained, then power-constrained
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Core Counts for Peak-Performance Designs
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®» Designs > 120 cores impractical for general-purpose server apps

» B/W and power envelopes + dataset scaling limit core counts
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Application Dataset Scaling

-¢- OS Dataset Scaling
(Muhrvold's Law)

-&- Transistor Scaling
(Moore's Law)

-4 TPC Dataset
(Historic)

Scaling Factor
o

2004 2007 2010 2013 2016 2019

Year of Technology Introduction

®» Application datasets scale faster than Moore’s Law! = Big Caches
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Pin Bandwidth Scaling
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®» Off-chip bandwidth scales slowly (#pins, off-chip clock) = Big Caches
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Supply Voltage Scaling
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®» Supply voltage scaling is SLOW! = Dark Silicon
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Chip Power Scaling
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®» Chip power does not scale!
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Operating Voltage (V)
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[Watanabe et al., ISCA'10]

®» Shrinking range of operational voltage hampers voltage-freq. scaling
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Mitigating Bandwidth Limitations: 3D-stacking
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®» Delivers TB/sec of bandwidth; use as large “in-package” cache
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Performance Analysis of 3D-Stacked Multicores
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®» Chip becomes power-constrained
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Exponentially Large Die Area Left Unutilized
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®» Dark Silicon!!! Should we waste it?
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Example of a Specialized Multicore Chip

ILP O00O ILP 00O

Core Core
SIMD SIMD o
SIMD SIMD
Many NIy Reconfigurable
Threads || Threads

DSP || Crypto || TCP

®» Many custom cores on chip; power only the most useful ones
19
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Core Specialization
e Existing general designs

o OoO for ILP, in-order MT for memory-latency-bound, SIMD
for data-parallel, systolic arrays

e Customizable cores
o Tensilica Xtensa (custom ISA and datapath, operation fusion)
e Reconfigurable logic
e Generality of implemented operations
o Target specific application
o Common macro-operations
0 General ISA
e Trade-offs in performance, power, programmability, generality

®» Wide range of “heterogeneity” and “specialization” meanings
20
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First-Order Core Specialization Model

e 720p HD H.264 encoder (high-definition video encoder)
e Several optimized implementations exist

a Commercial ASICs, FPGAs, CMP software
e Wide range of computational motifs

Frames Energy per Performance Energy gap

per sec frame (mJ) gap with ASIC with ASIC

ASIC 30 4
IME 0.06 1179 525x 707X
FME 0.08 921 342x 468X
CMP
Intra 0.48 137 63X 157x

[Hameed et al., ASPLOS’10]
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Performance of Specialized Multicores
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®» Specialized multicores deliver 2x-12x higher performance

22

© Hardavellas



MCCormick
Northwestern Engineering

Core Counts for Specialized Multicores
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®» Only few cores need to run at a time; large die area allow many cores

®» Power constraints? Yield?
23
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Taming Power and Bandwidth : Nanophotonics

®» Split chip into chiplets, spread in space

®» Ease cooling and power delivery, high yield; photonics for bandwidth
24
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Nanophotonic Components
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®» 64 wavelengths DWDM, 3 ~ 5um waveguide pitch, 10Gbps per link
» ~100 Gbps/um bandwidth density !!! [satten et al., HOTI'08]
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Technology: Off-chip Channel Material

Propagation Pitch

Material Optical Loss

Speed (density)
Sili
MM 0.3dB/emt  0.286¢ 20um
Waveguide
Optic Fiber 0.2 dB/km 0.676¢ 250um

e QOptical fiber is low-loss, high speed
o Enables further spreading out chiplets.

o BW density was a challenge (fiber pitch size is large)
* ). Cardenas et al., Optics Express 2009

®» Fiber: low optical loss, high speed, flexibility eases assembly
26
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Technology: Dense Off-Chip Coupling

Si WG Array on

20-pm Pitch

e Dense optical fiber array. [Lee et al., 0SA / OFC/NFOEC 2010]
e <1dBloss, 8 Tbps/mm demonstrated.

®» Tapered couplers solved bandwidth problem, demonstrated Tbps/mm
27
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Galaxy Overall Architecture
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Large -Scale Interconnects

» 200mm? die, 64 routers per chlplet, 9 chiplets, 16cm fiber
®» Supports > 1K cores!
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Conclusions

e Physical constraints and software pragmatics limit core counts
0 ...and performance

e Emerging/exotic technologies may solve some problems
o 3D-memory for bandwidth
o Nanophotonics for bandwidth, power, yield

e Need to reduce wasted energy per unit of work
0 Heterogeneity, only power the few cores needed

e Need to innovate across software/hardware stack
o Programmability, tools are a great challenge

e Scaling forces caches to grow exponentially
0 Address data management both at cache and software
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Thank You!
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