
CS 331 Summer 2017

Final Exam

Instructions:

• This exam is closed-book, closed-notes. Calculators are not permitted.

• For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

• For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

• Turn in the exam question packet, bubble sheet, and written solution sheet separately.

• Good luck!

Page 1 of 8

Concepts (30 points):

1. An algorithm calls for appending N elements to an array-backed list, while invoking merge sort
on the list after each append operation to keep the list sorted. What is the time complexity
of the algorithm?

(a) O(N)

(b) O(N logN)

(c) O(N2)

(d) O(N2 logN)

2. What is the time complexity of locating (but not removing) the maximum element in a
max-heap of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

3. What is the time complexity of inserting a new element into a max-heap of N elements and
ensuring the heap property is maintained?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

4. What is the time complexity for inserting a new element into an unbalanced binary search tree
containing N elements, assuming that the new elements value is neither the new minimum
nor maximum value after insertion?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

5. Which data structure would you choose to help maintain multiple key/value associations, and
where a full-ordering of keys or values is not important?

(a) a queue

(b) a hashtable

(c) a heap

(d) a binary search tree

Page 2 of 8

6. Which data structure would you choose for an application where it is necessary to track
multiple objects, but where only the object with the largest value of some specified attribute
needs to be retrieved and processed?

(a) a queue

(b) a hashtable

(c) a heap

(d) a binary search tree

7. Which data structure would you choose for an application where it is necessary to track
multiple objects, but where only the object that has been tracked for the longest needs to be
retrieved and processed?

(a) a queue

(b) a hashtable

(c) a heap

(d) a binary search tree

8. Which data structure would you choose for an application where it is necessary at all times
to maintain a full ordering of multiple objects across insertions and deletions?

(a) a queue

(b) a hashtable

(c) a heap

(d) a binary search tree

9. A student has proposed the following method as a faster way of counting the number of
elements in a doubly-linked list with a sentinel head node.

def fast_count(self):

n = 0

h = self.head.next

while h is not self.head:

if h.next is not self.head:

n, h = n+2, h.next.next

else:

n, h = n+1, h.next

return n

What is the time complexity of fast_count when run on a list with N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

Page 3 of 8

10. Which completes the following implementation of insert, which inserts a new value val at
(positive) position idx within an array-backed list?

def insert(self, idx, val):

self.data.append(None)

self.data[idx] = val

(a) for i in range(idx, len(self.data)):

self.data[i+1] = self.data[i-1]

(b) for i in range(idx, len(self.data)):

self.data[i+1] = self.data[len(self.data)-i]

(c) for i in range(len(self.data)-1, idx, -1):

self.data[len(self.data)-i] = self.data[i]

(d) for i in range(len(self.data)-1, idx, -1):

self.data[i] = self.data[i-1]

11. Which removes the first element from a circular doubly-linked list with a sentinel head node?

(a) self.head = self.head.next

self.head.prior = self.head.prior

(b) self.head.next.prior = self.head

self.head.next = self.head.next.next

(c) self.head.next.next.prior = self.head

self.head.next = self.head.next.next

(d) self.head.next.prior = self.head.next

self.head.next.next = self.head.next.prior

12. Consider the following function:

def last(a):

if not a:

return None

elif len(a) == 1:

return a[0]

else:

return ______________

Which completes the implementation so that when passed a non-empty list as the initial
argument, the last element in the list is returned?

(a) last(a[0])

(b) last(a[1:])

(c) last(a[:-1])

(d) last(a[1:-1])

Page 4 of 8

13. Consider the following function:

def permutations(lst, p=()):

if not lst:

print(p)

else:

Which completes the implementation so that when passed a list, all permutations of the
list elements are printed out? E.g., when called with the list [1, 2, 3], the output would
consist of (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) though
not necessarily in that order.

(a) permutations(lst[1:], (lst[0],) + p)

(b) permutations(lst[1:], p + (lst[0],))

permutations(lst[1:], p)

(c) for i in range(len(lst)):

permutations(lst[:i] + lst[i+1:], p + (lst[i],))

(d) for i in range(1, len(lst)):

permutations(lst[i:], p + (lst[i],))

14. For this and the next question, consider the following recursive function, devised by a student
as an implementation of an alternative sort algorithm:

def swap_sort(lst):

if not lst or len(lst) == 1:

return lst

elif lst[0] > lst[-1]:

return [lst[-1]] + swap_sort(lst[1:-1]) + [lst[0]]

else:

return [lst[0]] + swap_sort(lst[1:-1]) + [lst[-1]]

The algorithm is flawed, however. What does it return given the input list [10, 3, 4, 1, 8, 16, 2]?

(a) [1, 3, 2, 4, 8, 10, 16]

(b) [2, 3, 4, 1, 8, 16, 10]

(c) [3, 10, 1, 4, 8, 16, 2]

(d) [10, 16, 8, 4, 3, 2, 1]

15. We can approximate the runtime complexity of swap_sort by estimating the number of
recursive calls (i.e., the depth of recursion). What is the runtime complexity of swap_sort
given an input list of N elements?

(a) O(N)

(b) O(logN)

(c) O(N logN)

(d) O(N2)

Page 5 of 8

Stacks (6 points):

Consider the following linked implementation of the Stack ADT:

class Stack:

class Node:

def __init__(self, val, next):

self.val = val

self.next = next

def __init__(self):

self.top = None

def push(self, val):

self.top = Stack.Node(val, self.top)

def pop(self):

val = self.top.val

self.top = self.top.next

return val

WP1 Implement the method roll as part of the linked stack data structure. With an argument
n ≥ 2, the method moves the top of the stack to the nth position, shifting all intervening
elements towards the top.

Examples:

• invoking roll(3) on a stack containing the values A, B, C, D, E (where A is the top-
most value) would result in the stack B, C, A, D, E

• invoking roll(5) on a stack containing the values A, B, C, D, E would result in the
stack B, C, D, E, A

Restrictions/Assumptions:

• Your implementation should not change the value contained in any of the nodes nor
create any new nodes. Instead, it should work by re-linking nodes.

• You may assume the argument, n, to roll is at least 2, and that the stack contains at
least n values.

Page 6 of 8

Heaps (8 points):

WP2 (a) Consider the following ordered sequence of values to be added to a max-heap:

4, 8, 6, 5, 7, 9

Sketch the heap after adding each value and re-heapifying.

WP2 (b) Consider the following implementation of third_largest, which is intended to return
the third largest value from a max-heap (assuming the heap contains at least three values):

class Heap:

def __init__(self):

self.data = []

def third_largest(self):

if self.data[1] > self.data[2]:

return self.data[2]

else:

return self.data[1]

The method does not work reliably, however. Sketch a valid max-heap for which the above
implementation fails.

Page 7 of 8

Binary Search Trees (12 points):

WP3 (a) Consider the following ordered sequence of values to be added to a (unbalanced) binary
search tree:

8, 4, 9, 5, 7, 6

Sketch the tree after adding each value.

WP3 (b) Consider the following binary search tree:

20

15

12 18

16

28

23

25

30

Sketch the resulting tree after removing the value 20 and replacing it with a suitable candidate
(as in the deletion algorithm presented in class).

WP3 (c) Implement the binary search tree method predecessor, which returns the largest value
in the tree that is smaller than the argument. If there is no such value, the method returns
None. You should not assume that the argument value itself is contained within the tree.

E.g., calling predecessor(17) on the tree above should return the value 16.

Note that a recursive helper function is already defined and called for you.

Page 8 of 8

