CS 331 Midterm Exam 1

Friday, February 24 ${ }^{\text {th }}, 2016$
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID number (without the leading ' A ').

1. Which line swaps the contents of variables a and b ?
(a) $\mathrm{a}=\mathrm{b}=\mathrm{b}=\mathrm{a}$
(b) $a, b=b, a$
(c) $\mathrm{a}, \mathrm{b}=\mathrm{a}, \mathrm{b}$
(d) $\mathrm{a}=\mathrm{b}=(\mathrm{a}, \mathrm{b})$
2. What is the output of the following program?
```
s = "hi!"
print(s * len(s))
```

(a) 9
(b) ! ! !
(c) hi!hi!hi!
(d) There is no output; the code produces an error
3. The following program produces an error when run:

```
class Foo:
    def bar(s, x, y):
        s.w = x + y
        return s.w
f = Foo()
f.bar(f, 5, 10)
```

Which of the following would fix the error?
(a) Adding an __init__
\qquad method to Foo that initializes the w attribute
(b) Renaming the first parameter of bar (and other references to s) to self
(c) Removing the parameter s from the definition of bar
(d) Removing the argument \mathbf{f} in the call to method bar
4. Consider the following incomplete implementation of binary_search:

```
def binary_search(lst, x): # lst is sorted in ascending order
    lo = 0
    hi = len(lst)-1
    while lo <= hi:
        mid = (lo + hi) // 2
        if lst[mid] < x:
```

\qquad

```
            #1
        elif lst[mid] > x:
            _-_-_-_-_-_-_-_
                #2
        else:
            return True # x is found in lst
    return False # x is not found in lst
Which of the following correctly fill in blanks \#1 and \#2 (in that order)?
(a) mid \(=10+1 / \operatorname{mid}=h i-1\)
(b) lo = hi - mid / hi = lo + mid
(c) hi = mid + \(1 / \mathrm{lo}=\) mid -1
(d) \(10=\operatorname{mid}+1 / h i=m i d-1\)
```

5. What is the output of the following program?
```
def gen(n):
    for x in range(n):
            print('Yielding', x)
            yield x
            print('Yielded', x)
g = gen(10)
print(next(g))
(a) Yielding 0
0
```

(b) Yielding 0

0
Yielded 0
(c) 0

Yielding θ
Yielded 0
(d) Yielding 0 Yielded 0
θ
6. What does the following list comprehension evaluate to?
$[x+y$ for x in range(1,4) for y in range $(2,6)$ if $x<y]$
(a) $[3,4,5,5,6,7,6,7,8]$
(b) $[3,4,5,6,5,6,7,7,8]$
(c) $[3,4,5,6,7,5,6,7,8,7,8,9,9,10]$
(d) $[3,4,5,5,6,7,6,7,8,9,7,8,9,10]$
7. What are the contents of lst at the end of the following program?

```
d = {'the': ['a', 'is'], 'a': ['is', 'this'], 'is': ['the', 'a']}
lst = ['the']
while lst[-1] in d:
    for w in d[lst[-1]]:
        lst.append(w)
(a) ['the', 'a', 'is', 'the', 'a', 'is', 'this']
(b) ['the', 'a', 'is', 'this']
(c) ['the', 'is', 'a', 'is', 'this']
(d) ['this', 'is', 'a', 'the', 'is', 'a', 'this']
```

8. The following method should return true iff the provided list lst contains any duplicate elements:
```
def has_repeats(lst):
    d = {}
    for x in lst:
        if
```

\qquad

``` : \#1
                return True
        else:
```

\qquad

```
return False
```

Which of the following correctly fill in blanks \#1 and \#2 (in that order)?
(a) x in $d \quad d[x]=x$
(b) x not in $d \quad /$ del $d[x]$
(c) x in d.values() / $d[x]=$ lst
(d) x in d.items() / d[lst] $=x$
9. Consider the following class definition and subsequent code:

```
class Bar:
    def __init__(self):
        self.data = {}
    def __getitem__(self, x):
        return self.data[x]
    def __delitem__(self, x):
        self.data[x] = x
    def __setitem__(self, x, y):
        self.data[x] = y
bar = Bar()
bar['a'] = 'b'
bar['c'] = bar['a']
del bar['a']
What are the contents of bar. data at the end of the program?
(a) \{'c': 'a'\}
(b) \{'a': 'a', 'c': 'c'\}
(c) \{'b': 'b', 'a': 'c'\}
(d) \{'a': 'a', 'c': 'b'\}
```

10. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate over its contents?
(a) it = iter(iterable)
while True:
try:
x = next(it)
\# do something with x
except stopIteration:
break
(b) it = iterable
while True:
i = iter(it)
$x=n e x t(i)$
\# do something with x
if not i:
break
(c) it = next(iterable)
while True:
try:
x = iter(it)
\# do something with x
except StopIteration:
break
(d) it = iter(iterable)
while True:
x = next(it)
\# do something with x
else:
raise StopIteration
11. What is the worst-case run-time complexity of a method that uses binary search to determine if a given element is not in a sorted, arraybacked list of N elements?
(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
12. What is the worst-case run-time complexity of creating a new array-backed list that contains the elements of one array-back list followed by that of another array-backed list, given that there are a total of N elements?
(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
13. What is the worst-case run-time complexity of deleting the last element (i.e., in the largest index) of an array-backed list of N elements?
(a) $O(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
14. What is the worst-case run-time complexity of finding and removing the element with the minimum value from an unsorted array-backed list of N elements?
(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
15. What is the worst case time complexity of inserting an element into a sorted array-backed list of N elements, such that the list remains sorted after insertion?
(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
16. What is the worst-case runtime complexity of the following function?
```
def fA(N):
    lst = []
    for i in range(N):
        for _ in range(N):
            lst.append(i)
    return lst
```

(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
17. What is the worst-case runtime complexity of the following function?

```
def fB(lst): # lst is a Python list of length N
    n = 1
    while lst[0] == lst[n]:
        n += 1
    return n
```

(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
18. What is the worst-case runtime complexity of the following function?

```
def fC(lst): # lst is a Python list of length N
    n = 0
    uniques = []
        for x in lst:
            if x in uniques:
                n += 1
            else:
                uniques.append(x)
    return n
```

(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
19. What is the worst-case runtime complexity of the following function?

```
def fD(N):
    res = 0
    for val in range(N // 1024):
        res = res + val
    return res
```

(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
20. What is the worst-case runtime complexity of the following function?

```
def fE(N):
    res = 1
    while True:
        if N == 0:
            return res
        else:
            res = res * N
            N = N // 2
```

(a) $\mathrm{O}(1)$
(b) $\mathrm{O}(\log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) $\mathrm{O}\left(\mathrm{N}^{2}\right)$
21. Which choice correctly completes the following method that reverses the contents of an array-backed list? def reverse(self):
for i in range(len(self) // 2):
(a) self[i], self[i+1] = self[i+1], self[i]
(b) self[i], self[len(self)-i-1] = self[len(self)-i-1], self[i]
(c) self[len(self)-i], self[i] = self[len(self)-i-1], self[i-1]
(d) self[i+1], self[i] = self[i], self[i+1]
22. Which choice correctly completes the following method to delete the first n elements from an array-backed list?
def $\operatorname{drop(self,~n):~}$
\qquad
for _ in range(n):
del self.data[len(self)-1]
(a) for i in range (θ, n) :
self[i-1] = self[i]
(b) for i in range(θ, len(self)):
self[i-n] = self[i]
(c) for i in range(n, len(self)-1):
self[i+1-n] = self[n]
(d) for i in range(n, len(self)): self[i-n] = self[i]
23. Which choice correctly completes the following method that returns an iterator over successive, non-overlapping pairs of elements (as tuples) from an array-backed list? (If there are an odd number of elements, the last element will be omitted.)
def pairs(self):
\qquad
\qquad
(a) for i in range(θ, len(self)):
if i+1 < len(self):
yield self[i], self[i+1]
(b) for i in range(θ, len(self), 2): if i+1 < len(self): yield self[i], self[i+1]
(c) for i in range(1, len(self), 2):
yield self[i+1], self[i-1]
(d) for i in range(θ, len(self)-2, 2): yield self[i], self[i+2]
24. Which choice correctly completes the following method that returns an "infinite" iterator that repeatedly cycles through the elements of an array-backed list, starting with the first?
def forever(self):
\qquad
\qquad
\qquad
(a) while True:

```
for i in range(len(self)):
            yield self[i]
```

(b) for i in range(len(self)):
yield self[i]
for j in range(len(self)): yield self[j]
(c) while True:
$j=0$
for i in range(j, len(self): yield self[i]
j += 1
(d) for i in range(len(self), $-1,-1$):
for j in range(len(self)): yield self[j]
yield self[i]

