
1 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

2 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

3 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

4 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

5 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

6 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

7 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

8 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

9 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

10 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

11 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

12 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

13 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

14 of 14

(a) l1 = []
i = 7
while i <= 110:
 l1.append(i)
 i += 5

(b) l1 = []
i = 0
while i < (110 + 5):
 l1.append(i)
 i += 7

(c) l1 = []
i = 5
while i <= 110:
 l1.append(i)
 i += 7

(d) l1 = []
i = 5
while i < 110:
 l1.append(i)
 i += 7

1. Which of the following snippets is equivalent to the
statement “l1 = list(range(5,110,7))”?

(a) 0

(b) -1

(c) 99

(d) 98

2. What is the output of the following code snippet?

x = 0
for i in range(100):
 if i % 9 == 0:
 x = i
else:
 x = -1
print(x)

(a) [8]

(b) [9]

(c) [2, 5]

(d) [6, 24]

3. What are the contents of lst2 after the following two statements are carried out?

lst1 = [x*x for x in range(1, 5)]
lst2 = [y-1 for y in lst1 if y % 3 == 0]

(a) 4

(b) -2

(c) -14

(d) 0

4. What is the output of the following code snippet?

def fold(fn, lst):
 res = lst[0]
 for x in lst[1:]:
 res = fn(res, x)
 return res

print(fold(lambda a, b: b - a, [1, 3, 5, 7]))

(a) Generating up to 10

(b) Generating up to 10
Yielding 0

(c) Generating up to
Yielding
Yielded

(d) (No output)

5. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

gen(10)

(a) Generating up to 10
Yielding 0

(b) Generating up to 10
Yielding 0
Yielded 0

(c) Generating up to 10
Yielding 0
Yielded 0
Yielding 1

(d) (No output)

6. What is the output of the following code snippet?

def gen(lim):
 print('Generating up to', lim)
 for i in range(lim):
 print('Yielding', i)
 yield i
 print('Yielded', i)

it = iter(gen(10))
next(it)

(a) it = iterable
while True:
 i = iter(it)
 x = next(i)
 # do something with x
 if not i:
 break

(b) it = iter(iterable)
while True:
 x = next(it)
 # do something with x
else:
 raise StopIteration

(c) it = iter(iterable)
while True:
 try:
 x = next(it)
 # do something with x
 except StopIteration:
 break

(d) it = next(iterable)
while True:
 try:
 x = iter(it)
 # do something with x
 except StopIteration:
 break

7. Given that iterable is an iterable object, which of the following emulates the behavior of a for loop to iterate
over its contents?

(a) 0

(b) 1

(c) 2

(d) 3

8. What is the output of the following code snippet?

x0 = [0, None]
x1 = [1, None]
x2 = [2, x0]
x3 = [3, x2]

x3[1] = x3[1][1] = x1

print(x2[1][0])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

9. What is the worst-case run-time complexity of inserting a new element into an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving an element based on its provided index from an array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of searching for an element with a given value in an unsorted array-
backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity of prepending a new element to a circular, doubly-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. What is the worst-case run-time complexity of removing the last element from a circular, double-linked list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of concatenating two circular, doubly-linked lists? (Assume that
copying either list is not a requirement.)

15. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_15(lst): # lst is a Python list
 res = 0
 for x in lst:
 res += res
 return res

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(lst): # lst is a Python list
 res = 0
 for x in range(100):
 res += lst[randrange(len(lst))]
 return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is a Python list
 res = 0
 bot, top = 0, len(lst)
 while bot < top:
 mid = (bot + top) // 2
 res += lst[mid]
 if res < 0:
 bot = mid + 1
 else:
 top = mid - 1
 return res

(a) nidx += len(self)

(b) nidx = -idx
if nidx < 0:
 nidx += len(self)

(c) nidx = idx
if nidx < 0:
 nidx += len(self)

(d) nidx = idx
if nidx < 0:
 nidx += len(self)
else:
 nidx -= len(self)

18. Which snippet provides a suitable implementation for _normalize_idx in a list implementation, in order to
support both negative and positive indexes?

def _normalize_idx(self, idx):

 return nidx

(a) self.extend(other)
return self

(b) nlst = ArrayList()
nlst.extend(self)
nlst.extend(other)
return nlst

(c) return self + self.extend(other)

(d) return self + other

19. Which snippet correctly completes the implementation of __add__, whose description is provided in the
accompanying docstring below, in an array-backed list?

def __add__(self, other):
 """Implements `self + other_array_list`. Returns a new ArrayList
 instance that contains the values in this list followed by those
 of other."""
 assert(isinstance(other, ArrayList))

(a) val = self.data.pop(0)

(b) val = self.data[0]
del self.data[0]

(c) val = self[0]
del self.data[len(self.data)-1]

(d) val = self[0]
del self[0]

20. Which snippet correctly implements remove_first in an array-backed list, given that the underlying data
storage mechanism is a ContrainedList (as provided in the ArrayList assignment)?

def remove_first(self):
 “””Removes and returns the first element in the list.”””

 return val

(a) while n.next is not self.head:
 yield n.val
 n = n.next

(b) while n is not self.head:
 yield n.val
 n = n.next

(c) while n.next:
 yield n.val
 n = n.next

(d) while n:
 yield n.val
 n = n.next

21. Which snippet completes the following implementation of __iter__, to support iteration over all elements in the
underlying circular, doubly-linked list (with a sentinel head node)?

def __iter__(self):
 n = self.head.next

(a) n = self.head
while n.next < idx:
 n = n.next

(b) n = self.head
for _ in range(idx):
 n = n.next

(c) n = self.head.next
for _ in range(idx):
 n = n.next

(d) n = self.head.next
for _ in range(idx+1):
 n = n.next

22. Which snippet completes the body for the following method in a circular, double-linked list (with a sentinel head
node)?

def __getitem__(self, idx):
 """Implements `x = self[idx]`"""

 return n.val

(a) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n, n.prior)
n.prior = n.prior.next = new

(b) for _ in range(idx+1):
 n = n.next
new = LinkedList.Node(value, n, n.next)
n.next.prior = n.next = new

(c) for _ in range(idx-1):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.next = n.prior
n = new

(d) for _ in range(idx):
 n = n.next
new = LinkedList.Node(value, n.prior, n)
n.prior.next = n.prior = new

23. Which snippet completes the following implementation of insert in a circular, double-linked list (with a
sentinel head node)?

def insert(self, idx, value):
 n = self.head.next

 self.length += 1

CS 331 Midterm Exam 1
Wednesday, June 14th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID
number (without the leading ‘A’).

